https://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 70, Number 2, Pages 600–611 (2021) DOI: 10.31801/cfsuasmas.792265 ISSN 1303–5991 E-ISSN 2618–6470

Received by the editors: September 8, 2020; Accepted: January 30, 2021

$S-\delta$ -CONNECTEDNESS IN S-PROXIMITY SPACES

Beenu SINGH¹ and Davinder SINGH²

¹Department of Mathematics, University of Delhi, New Delhi 110007 INDIA
² Department of Mathematics, Sri Aurobindo College, University of Delhi, Delhi 110017 INDIA

ABSTRACT. New types of connectedness in S-proximity spaces, named as an S- δ -connectedness, local S- δ -connectedness are introduced. Also, their interrelationships are studied. In an S-proximity space (X, δ_X) , the S- δ -connectedness of a subset U of X with respect to δ_X may not be same as the S- δ -connectedness of U with respect to its subspace proximity δ_U . Further, S- δ -component and S- δ -treelike spaces are also defined and a number of results are given.

1. INTRODUCTION

In 1908, Reisz [13] discussed the idea of proximity (now it is called an E-proximity) and although this idea was revived by Wallace [17, 18]. But the real beginning of E-proximity was due to Efremovič [5, 6] who gave axioms of it as a natural generalization of metric space and topological group. Smirnov [14, 15] demonstrated that a completely regular space always has a compatible E-proximity relation and vice versa. Also, he found the relationship between E-proximity space and uniform space. Several generalizations of E-proximity were defined and studied. The notion of Čech proximity spaces was given by E. Čech [2], later elaborated in [10], [11] and [12]. An S-proximity was introduced independently by Krishna Murti [7], Szymanski [16], Wallace [17, 18].

Mrówka *et al.* [9] defined the notion of δ -connectedness in *E*-proximity spaces and after that in 1987, the concepts of local δ -connectedness, δ -component and δ quasi components were introduced by Dimitrijević *et al.* [3]. Dimitrijević *et al.* [4] also studied δ -treelike proximity spaces. Recently, Modak *et al.* [8] introduced the weaker form of connectedness (*Cl-Cl*-connectedness) in topological spaces.

In this paper, we introduce a new type of δ -connectedness (named as S- δ -connectedness) in S-proximity spaces and show that S- δ -connectedness is different

©2021 Ankara University Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. Primary 54D40, 03E15; Secondary 54E05.

Keywords and phrases. S-proximity space, δ -connected, δ -component, locally δ -connected, δ -treelike.

Singhbeenu47@gmail.com-Corresponding author; dstopology@gmail.com

⁽D) 0000-0003-0196-7670; 0000-0002-1446-707X.

from δ -connectedness [9] in the category of S-proximity spaces. And it become identical in the categories of L-proximity spaces and E-proximity spaces. We give a characterization for an S-proximity space X to be S- δ -connected and several other properties analogous to δ -connectedness are justified. Relation among different types of connectedness are shown. In the last section, S- δ -component, local S- δ -connectedness and S- δ -treelike spaces are defined and their properties are studied.

Throughout this paper, $(A, B) \in \delta$ $((A, B) \notin \delta)$ denotes A, B are near (δ -separated). We write an S-proximity space as X instead of (X, δ) whenever there is no confusion of the S-proximity δ . $Cl_X(.)$ and $int_X(.)$ are used to denote closure and interior, respectively, with respect to topology \mathcal{T}_{δ} generated by δ in X.

2. Preliminaries

In this section, we recall some important definitions and results that will be used in subsequent sections.

Definition 1. [10] For a nonempty set X, a Čech proximity (or basic proximity) on X is a binary relation δ on the power set of X, $\mathcal{P}(X)$, that satisfies the following axioms for all A, B, $C \in \mathcal{P}(X)$:

(i) If $(A, B) \in \delta$, then $(B, A) \in \delta$.

- (ii) If $(A, B) \in \delta$, then $A \neq \phi$ and $B \neq \phi$.
- (iii) If $A \cap B \neq \phi$, then $(A, B) \in \delta$.
- (iv) $(A, B \cup C) \in \delta$ if and only if $(A, B) \in \delta$ or $(A, C) \in \delta$.

The set X together with a Čech proximity δ is called a Čech proximity space (X, δ) .

Definition 2. [10] A Čech proximity space X is called separated if we have $(\{x\}, \{y\}) \in \delta$, then x = y for all $x, y \in X$.

Definition 3. [10, 12] For $A, B, C \in \mathcal{P}(X)$, a Čech proximity δ on a set X is:

- (i) E-proximity if $(A, B) \notin \delta$, then there is some $E \subset X$ with $(A, E) \notin \delta$ and $(X \setminus E, B) \notin \delta$.
- (ii) L-proximity if $(A, B) \in \delta$ and $(\{b\}, C) \in \delta$ for each $b \in B$, then $(A, C) \in \delta$.
- (iii) S-proximity if $(\{x\}, B) \in \delta$ and $(\{b\}, C) \in \delta$ for each $b \in B$, then $(x, C) \in \delta$.

A Čech proximity space (X, δ) is called an *E*-proximity space (or a *L*-proximity space, an *S*-proximity space respectively) if the Čech proximity δ satisfies the *E*-proximity axiom (or *L*-proximity axiom, *S*-proximity axiom respectively.).

Definition 4. [10, 12] Let (X, δ) be an S-proximity space and \mathcal{T} be a topology on X. Then δ is compatible with \mathcal{T} if and only if the generated topology \mathcal{T}_{δ} and \mathcal{T} are equal.

Definition 5. [10] Let (X, δ) be a Čech proximity space. Then a subset V of X is said to be a δ -neighbourhood of $U \subset X$ if $(U, X \setminus V) \notin \delta$.

Definition 6. [10, 12] Let (X, δ) and (Y, δ') be two *E*-proximity spaces, a function $f: (X, \delta) \longrightarrow (Y, \delta')$ is δ -continuous (or p-continuous) if for all $A, B \subset X$ such that $(A, B) \in \delta$, implies $(f(A), f(B)) \in \delta'$.

Definition 7. [9] Let (X, δ) be an *E*-proximity space. Then *X* is said to be δ -connected if every δ -continuous map from *X* to discrete proximity space is constant.

Theorem 8. [9] Let (X, δ) be an *E*-proximity space. Then the following statements are equivalent:

- (i) X is δ -connected.
- (ii) $(A, X \setminus A) \in \delta$ for each nonempty subset A with $A \neq X$.
- (iii) For every δ -continuous real-valued function f, the image f(X) is dense in some interval of \mathbb{R} .
- (iv) If $X = A \cup B$ and $(A, B) \notin \delta$, then either $A = \phi$ or $B = \phi$.

However, if X is not δ -connected, then by Theorem 8 (*iv*) we have $X = A \cup B$ with $(A, B) \notin \delta$ where $A, B \subset X$ are nonempty. Here, the pair (A, B) forms a δ -separation for X.

Definition 9. [3] Let (X, δ) be an *E*-proximity space and $Y \subset X$. Then *Y* is δ -connected, if it is δ -connected with respect to the subspace proximity of *Y*.

Definition 10. [3] An E-proximity space X is locally δ -connected if for every point x of X and for every δ -neighborhood U of x, there exists some δ -connected δ -neighborhood V of x such that $x \in V \subset U$.

Definition 11. [7, 10] Let (X, δ_X) and (Y, δ_Y) be S-proximity spaces. Then a map $f: X \longrightarrow Y$ is said to be S- δ -continuous if $(A, B) \notin \delta_X$ implies $(f(A), f(B)) \notin \delta_Y$, for all $A, B \subset X$.

Definition 12. [8] Let (X, T) be a topological space. A pair of non-empty subsets A, B of X is called Cl - Cl-separated (weak separated) if $Cl(A) \cap Cl(B) = \phi$. A subset U of a space X is said to be Cl - Cl-connected (weak connected) if U is not the union of two Cl - Cl-separated (weak separated) sets in X.

Definition 13. [4] If an E-proximity space X can be written as $X = P \cup Q$ with $(P,Q) \notin \delta$, then the pair (P,Q) is said to be a separation for X and write it as X = P + Q. If P contains some set A and Q contains B, then it can be written as X = P(A) + Q(B).

Definition 14. [4] Let X be an E-proximity space. Then it is called δ -treelike if it is δ -connected, and for each pair (x, y) of distinct points in X there is a δ -connected set V such that $X \setminus V = P(x) + Q(y)$.

3. S- δ -connectedness

In this section, we define S- δ -connectedness in S-proximity spaces and give characterizations of it.

Recall that every discrete proximity is an S-proximity and induces the discrete topology.

Definition 15. An S-proximity space X is said to be S- δ -connected if every S- δ -continuous map from X to discrete space is constant.

Next, we give a characterization for an S-proximity space to be S- δ -connected.

Theorem 16. For an S-proximity space X, the following statements are equivalent:

- (i) X is S- δ -connected.
- (ii) $(Cl_X(A), X \setminus A) \in \delta$ for all nonempty proper subset A of X.
- (iii) If $X = P \cup Q$ with $(Cl_X(P), Q) \notin \delta$ or $(P, Cl_X(Q)) \notin \delta$, then either $P = \phi$ or $Q = \phi$.

Proof. $(i) \Rightarrow (ii)$. If $(Cl_X(A), X \setminus A) \notin \delta$ for some nonempty proper subset A of X, then the map $f : X \longrightarrow \{0, 1\}$ defined as $f(A) = \{0\}$ and $f(X \setminus A) = \{1\}$ is non-constant, S- δ -continuous map. Therefore, X is not S- δ -connected.

 $(ii) \Rightarrow (iii)$. If $X = P \cup Q$, where P, Q are nonempty subsets such that $(Cl_X(P), Q) \notin \delta$ or $(P, Cl_X(Q)) \notin \delta$, then $Q = X \setminus P$. Thus, $(Cl_X(P), X \setminus P) \notin \delta$, a contradiction.

 $(iii) \Rightarrow (i)$. If X is not S- δ -connected, then the map $f : (X, \delta) \longrightarrow \{0, 1\}$ defined as $f(P) = \{0\}$ and $f(Q) = \{1\}$ is non-constant, surjective, S- δ -continuous map. Therefore, $X = P \cup Q$, where P, Q are nonempty subsets such that $(Cl_X(P), Q) \notin \delta$ or $(P, Cl_X(Q)) \notin \delta$, a contradiction.

Definition 17. Let X be an S-proximity space. A pair (P,Q) of two nonempty subsets of X is said to be S- δ -separated in X if $(Cl_X(P),Q) \notin \delta$ or $(P,Cl_X(Q)) \notin \delta$.

Every S- δ -separated sets are always δ -separated. However, converse need not be true.

Example 18. Let $X = \mathbb{R}$ be the real line. For $P, Q \subset X$, define a binary relation δ on $\mathcal{P}(X)$ as:

 $(P,Q) \in \delta$ if and only if $(\bar{P} \cap Q) \cup (P \cap \bar{Q}) \neq \phi$

Here \overline{P} and \overline{Q} denote the closure of P and Q in X, respectively. Then δ is a compatible S-proximity on X which is not an L-proximity. The pair P = (1, 2) and Q = (2, 3) is δ -separated, but not S- δ -separated in X.

Definition 19. Let (X, δ_X) be an S-proximity space and $U \subset X$. Then U is said to be S- δ -connected in X (that is, with respect to δ_X) if it cannot be written as the union of a pair of two S- δ -separated sets in X. If U is not S- δ -connected, then it is called S- δ -disconnected and the pair of two S- δ -separated sets is called S- δ -separation for U in X.

By an S- δ -connected subset U of an S-proximity space (X, δ_X) , we mean it is an S- δ -connected with respect to δ_X (that is, with respect to the proximity of X not subspace proximity of U). Since every S- δ -separation for a set always forms δ -separation, therefore every δ -connected set is S- δ -connected. But converse need not be true.

Example 20. Let $X = \mathbb{R}$ be the real line and δ be a S-proximity on X defined as in Example 18. Let $U = (1, 2) \cup (2, 3)$. Then U is S- δ -connected, but not δ -connected subset of X.

Thus, S- δ -connectedness is different from δ -connectedness in general. Next, we know that δ -connectedness [9] of a subset U in E-proximity space (X, δ_X) is same as the δ -connectedness of U with respect to subspace proximity δ_U . But, it is not true for the case of an S- δ -connectedness. In Example 20, note that U is S- δ -connected with respect to δ_X , and with respect to δ_U , it is not S- δ -connected as $Cl_U((0,1)) = (0,1)$ and $Cl_U((1,2)) = (1,2)$ with respect to δ_U . But, if U is S- δ -connected with respect to δ_U , then it is also S- δ -connected with respect to δ_X .

Remark 21. The notions of δ -connectedness and S- δ -connectedness are equivalent in the category of L-proximity spaces, as for every L-proximity space X, we have $(P,Q) \in \delta$ if and only if $(Cl_X(P), Cl_X(Q) \in \delta$ for all non-empty P, Q in X.

Since every E-proximity is an L-proximity, so above remark holds for E-proximity spaces.

Recall that if for all $A, B \subset X$, $(A, B) \in \delta_1$ implies $(A, B) \in \delta_2$, then $\delta_1 > \delta_2$.

Corollary 22. Let δ_1, δ_2 be two S-proximities on X such that $\delta_1 > \delta_2$. If X is S- δ_1 -connected, then so is S- δ_2 -connected.

Theorem 23. Let X be an S-proximity space. Suppose M is an S- δ -connected subset of X and (P,Q) be a pair of S- δ -separated sets in X such that $M \subset P \cup Q$. Then either $M \subset P$ or $M \subset Q$.

Proof. If possible, $M \notin P$ and $M \notin Q$. M is S- δ -connected set such that $M \subset P \cup Q$. Therefore, $M = (M \cap P) \cup (M \cap Q)$. Also by hypothesis $(Cl_X(P), Q) \notin \delta$ or $(P, Cl_X(Q)) \notin \delta$. If $(Cl_X(P), Q) \notin \delta$, then $(Cl_X(M \cap P), M \cap Q) \notin \delta$. On the other hand, if $(P, Cl_X(Q)) \notin \delta$, then $(Cl_X(M \cap Q), M \cap P) \notin \delta$. Thus, the pair $M \cap P$ and $M \cap Q$ forms an S- δ -separation for X.

Theorem 24. Let M, N are two S- δ -connected subsets of an S-proximity space X. If (M, N) is not S- δ -separated, then $M \cup N$ is S- δ -connected in X.

Proof. Suppose (P, Q) be an S- δ -separation for $M \cup N$. Therefore, $M \cup N = P \cup Q$ where $(Cl_X(P), Q) \notin \delta$ or $(P, Cl_X(Q)) \notin \delta$. Since M and N are S- δ -connected. Thus, by Theorem 23, two case arises:

Case (i). If $M \subset P$ and $N \subset Q$, then $(Cl_X(M), N) \notin \delta$ or $(M, Cl_X(N)) \notin \delta$, because $(Cl_X(P), Q) \notin \delta$ or $(P, Cl_X(Q)) \notin \delta$. Hence, (M, N) is S- δ -separated which is a contradiction.

Case (*ii*). If $M \subset Q$ and $N \subset P$, then $(Cl_X(N), M) \notin \delta$ or $(N, Cl_X(M)) \notin \delta$, because $(Cl_X(P), Q) \notin \delta$ or $(P, Cl_X(Q)) \notin \delta$. Hence, (M, N) is S- δ -separated which is a contradiction.

Theorem 25. Let $\{W_j : j \in J\}$ be a nonempty family of S- δ -connected subsets of an S-proximity space X. If there exists some $j_0 \in J$ such that $(W_{j_0}, W_j) \in \delta$ for all $j \in J$, then $\bigcup_{i \in J} W_j$ is also S- δ -connected in X.

Proof. If possible, there exists an S- δ -separation (P,Q) such that $\bigcup_{j\in J} W_j = P \cup Q$ with $(Cl(P),Q) \notin \delta$ or $(P,Cl(Q)) \notin \delta$. Therefore, $W_{j_0} \subset P \cup Q$ which implies either $W_{j_0} \subset P$ or $W_{j_0} \subset Q$. If $W_{j_0} \subset P$, then $W_j \subset P$ for all $j \in J$ because $(W_{j_0}, W_j) \in \delta$ for all $j \in J$. Thus $\bigcup_{j\in J} W_j \subset P$ so $Q = \phi$. Similarly, if $W_{j_0} \subset Q$, then $P = \phi$. Thus, $\bigcup_{i\in J} W_j$ is S- δ -connected.

Corollary 26. If $\{W_j : j \in J\}$ is a nonempty family of S- δ -connected subsets of an S-proximity space X and $\bigcap_{j \in J} W_j \neq \phi$, then $\bigcup_{j \in J} W_j$ is also S- δ -connected in X.

Proof. Since $\bigcap_{j \in J} W_j \neq \phi$, therefore $(W_i, W_j) \in \delta$ for all $i, j \in J$. So for some fix $j_0 \in J$, $(W_{j_0}, W_j) \in \delta$ for all $j \in J$. Thus, by Theorem 25, $\bigcup_{j \in J} W_j$ is S- δ -connected in X.

Corollary 27. If Y is an S- δ -connected subset of an S-proximity space X, then every subset Z such that $Y \subset Z \subset Cl_X(Y)$ is also S- δ -connected in X.

Proof. Note that $\{Y \cup \{z\} : z \in Z\}$ is a family of S- δ -connected sets such that Y is near to each of the set. Therefore, by Theorem 25, Z is S- δ -connected.

Corollary 28. If an S-proximity space X contains some S- δ -connected dense subset, then X is S- δ -connected.

Proof. Let Y be an S- δ -connected dense subset of X. Then, $Cl_X(Y) = X$. Therefore, by Corollary 27, X is S- δ -connected.

Lemma 29. Let X be an S-proximity space and $\{M_i : i \in I\}$ be a nonempty family of S- δ -connected subsets of X. If M is S- δ -connected in X such that $M \cap M_i \neq \phi$ for all $i \in I$, then $M \cup (\bigcup_{i \in I} M_i)$ is also S- δ -connected in X.

Proof. By Theorem 25, $(M, M_i) \in \delta$ for all $i \in I$. Hence the proof follows.

Corollary 30. In an S-proximity space X, if any two points can be joined by an S- δ -connected subset of X, then X is S- δ -connected.

Proof. Fix a point x_0 in X and let M_x be an S- δ -connected subset of X which joins x_0 and x. By Lemma 29, $M = \{x_0\}$ and $M \cap M_x \neq \phi$ for all $x \in X$. Thus, $M \cup (\bigcup_{x \in X} M_x) = X$ is S- δ -connected.

Theorem 31. The S- δ -continuous image of S- δ -connected space is S- δ -connected.

Proof. Let $f : (X, \delta) \longrightarrow (Y, \delta')$ be S- δ -continuous, surjective map and X is S- δ connected space. It is to show that Y is also an S- δ -connected space. On contrary, suppose Y is not S- δ -connected space. So, there exists a pair (P,Q) in Y such that $Y = P \cup Q$ with $(Cl_Y(P), Q) \notin \delta'$ or $(P, Cl_Y(Q)) \notin \delta'$. If $(Cl_Y(P), Q) \notin \delta'$, then $(f^{-1}(Cl_Y(P)), f^{-1}(Q)) \notin \delta$. Since S- δ -continuity of f implies continuity with respect to \mathcal{T}_{δ} , so $Cl_X(f^{-1}(P)) \subset f^{-1}(Cl_Y(P))$. Thus, $(Cl_X(f^{-1}(P)), f^{-1}(Q)) \notin \delta$. Hence, $(f^{-1}(P), f^{-1}(Q))$ forms an S- δ -separation for X, a contradiction. A similar case for $(P, Cl_Y(Q)) \notin \delta'$.

As every S- δ -continuous map is continuous, so every weak connected [8] space is S- δ -connected.

Example 32. The set of rationals \mathbb{Q} is an S- δ -connected in \mathbb{R} , but is not weak connected.

However, compact Hausdorff S- δ -connected space is weak connected as every continuous map with compact Hausdorff domain is S- δ -continuous. Thus, we have the following diagram of implications.

$$\begin{array}{ccc} \delta - \text{connected} & \longleftarrow & \text{connected} \\ & \downarrow & & \downarrow \\ S - \delta - \text{connected} & \longleftarrow & \text{weak connected} \end{array}$$

Following example concludes that a locally δ -connected space may not be an S- δ -connected.

Example 33. Let \mathbb{R} be the real line and δ be a compatible S-proximity defined as in Example 18. Let $X = (-1, 0) \cup (2, 3)$. Then the pair (P, Q) where P = (-1, 0) and Q = (2, 3), is S- δ -separation for X. Therefore X is not S- δ -connected in \mathbb{R} , but it is locally δ -connected.

An S- δ -connected space may not be locally δ -connected.

Example 34. The closed Topologist's Sine curve $T = \{(x, \sin(1/x)) : 0 < x \leq 1\} \cup \{(0, y) : -1 \leq y \leq 1\}$ with subspace *E*-proximity induced by \mathbb{R}^2 is *S*- δ -connected in \mathbb{R}^2 , but not locally δ -connected.

Theorem 35. Suppose $\{(X_i, \delta_i) : i \in I\}$ be a nonempty family of S-proximity spaces. Then the product $(X, \delta) = \prod\{(X_i, \delta_i) : i \in I\}$ is S- δ -connected if and only if X_i is S- δ -connected for each $i \in I$.

Proof. Let $\prod_{i \in I} X_i$ be S- δ -connected. Since S- δ -continuous image of S- δ -connected set is S- δ -connected, therefore X_i is S- δ -connected for each $i \in I$ as projections are S- δ -continuous, surjective maps.

Conversely, assume that each X_i is S- δ -connected. Firstly, take $I = \{1, 2\}$. Then in $X_1 \times X_2$, any two distinct points (x_1, x_2) and (y_1, y_2) can be connected by the S- δ -connected set $(X_1 \times \{x_2\}) \cup (\{y_1\} \times X_2)$. Therefore, $X_1 \times X_2$ is S- δ -connected. Using induction, it can be shown that any finite product of S- δ -connected set is S- δ -connected. Now, for an arbitrary product, choose $x_i \in X_i$ for all $i \in I$. Consider a family \mathcal{F} consisting of all finite subsets of the set I and put $K_F = \prod_{i \in I} L_i$ for all $F \in \mathcal{F}$ with $L_i = X_i$ if $i \in F$ and $L_i = \{x_i\}$ if $i \notin F$. Then, $\{K_F : F \in \mathcal{F}\}$ is

a family of S- δ -connected sets by induction hypothesis. Therefore, $K = \bigcup_{F \in \mathcal{F}} K_F$ is S- δ -connected as $\bigcap_{F \in \mathcal{F}} K_F \neq \phi$. Since K is dense in $\prod_{i \in I} X_i$, therefore by Corollary 28, $\prod_{i \in I} X_i$ is S- δ -connected.

Definition 36. For given S-proximity spaces (X, δ) and (Y, δ') , S- δ -continuous map $f : X \longrightarrow Y$ is said to be S- δ -monotone if for every $y \in Y$, the pullback $f^{-1}(y)$ is S- δ -connected in X.

Definition 37. A map $f : (X, \delta) \longrightarrow (Y, \delta')$ is said to be δ_b -map if for every pair of subsets A, B of Y, the following two axioms hold:

- (i) If $(Cl_X f^{-1}(A), f^{-1}(B)) \notin \delta$, then $(Cl_Y(A), B) \notin \delta'_{-}$.
- (ii) If $(f^{-1}(A), Cl_X f^{-1}(B)) \notin \delta$, then $(A, Cl_Y(B)) \notin \delta'$.

Following theorem shows that if a map is S- δ -monotone, surjective, δ_b -map, then inverse image of S- δ -connected set is S- δ -connected.

Theorem 38. Let $f : (X, \delta) \longrightarrow (Y, \delta')$ be a δ_b -map, S- δ -monotone, surjective map. Then for each S- δ -connected subset U of Y, $f^{-1}(U)$ is S- δ -connected in X.

Proof. Let $f^{-1}(U)$ be not S- δ -connected. Then, $f^{-1}(U) = P \cup Q$ with $(Cl_X(P), Q) \notin \delta$ or $(P, Cl_X(Q)) \notin \delta$. As f is S- δ -monotone, so for each $y \in U$, $f^{-1}(y)$ is S- δ -connected. Thus, $f^{-1}(y) \subset P$ or $f^{-1}(y) \subset Q$ for all $y \in U$. Now, let us define $A = \{y \in U : f^{-1}(y) \subset P\}$ and $B = \{y \in U : f^{-1}(y) \subset Q\}$. Note that $P = f^{-1}(A)$, $Q = f^{-1}(B)$ and $U = A \cup B$. Since f is δ_b - map with $(Cl_X(P), Q) \notin \delta$ or $(P, Cl_X(Q)) \notin \delta$, therefore (A, B) forms an S- δ -separation for U.

Definition 39. In an S-proximity space X, a finite sequence U_1, U_2, \dots, U_n of subsets of X is called an S- δ -chain if $(Cl_X(U_i), U_{i+1}) \in \delta$ and $(U_i, Cl_X(U_{i+1})) \in \delta$ for all $i = 1, 2, \dots, n-1$.

A family \mathcal{F} of subsets of X is said to be S- δ -chained in X if for every pair (U, V) of elements of \mathcal{F} , there is an S- δ -chain in \mathcal{F} joining U and V.

Theorem 40. Suppose $\{U_i\}_{i=1}^n$ be a finite family of S- δ -connected subsets of an S-proximity space X and forms an S- δ -chain, then $\bigcup_{i=1}^n U_i$ is S- δ -connected in X.

Proof. The Proof follows by induction on n as it holds for n = 2 by Theorem 24. \Box

Theorem 41. For an S- δ -chained family $\mathcal{F} = \{U_i : i \in I\}$ in X, if each member U_i is S- δ -connected in X, then $U = \bigcup_{i \in I} U_i$ is also S- δ -connected in X.

Proof. Let $x, y \in U$ be arbitrary. So, there is some $i, j \in I$ such that $x \in U_i$ and $y \in U_j$. Thus by hypothesis, there is an S- δ -chain joining U_i and U_j . Therefore, by Theorem 40, union of all the members of this S- δ -chain is S- δ -connected. Thus, x and y can be joined by an S- δ -connected set. Hence, by Corollary 30, U is S- δ -connected in X.

Definition 42. In an S-proximity space X, a cover \mathcal{F} is said to be an S- δ -cover if $(Cl_X(M), N) \in \delta$ and $(M, Cl_X(N)) \in \delta$ for $M, N \subset X$, then there is some $U \in \mathcal{F}$ such that $M \cap U \neq \phi$ and $N \cap U \neq \phi$.

Theorem 43. In an S- δ -connected space X, every S- δ -cover is an S- δ -chained family.

Proof. Assume that $\mathcal{F} = \{U_i : i \in I\}$ be any S- δ -cover of X. Suppose there exist $i, j \in I$ such that U_i and U_j can not be joined by any S- δ -chain in \mathcal{F} . Now, consider P as the union of all the members of \mathcal{F} which are joinable with U_i by some S- δ -chain $\mathcal{F}' \subset \mathcal{F}$, and Q as the union of rest of the elements of \mathcal{F} . Then note that $X = P \cup Q$. Now it is to show that X is not S- δ -connected, that is, $(Cl_X(P), Q) \notin \delta$ or $(P, Cl_X(Q)) \notin \delta$. Again on the contrary, let $(Cl_X(P), Q) \in \delta$ and $(P, Cl_X(Q)) \in \delta$. Then there exists $U \in \mathcal{F}$ such that $U \cap P \neq \phi$ and $U \cap Q \neq \phi$. Thus, there is some $U_m \subset P$ and $U_n \subset Q$ such that $U \cap U_m \neq \phi$ and $U \cap U_n \neq \phi$. So, U_n can be joined with U_i using an S- δ -chain $\mathcal{F}'' \subset \mathcal{F}$, which is absurd. \Box

Theorem 44. Let X be an S- δ -connected, separated S-proximity space. If for some $x \in X, X \setminus \{x\} = P \cup Q$ where (P,Q) is S- δ -separated in X, then $(\{x\}, Cl_X(P)) \in \delta$ and $(\{y\}, Cl_X(Q)) \in \delta$.

Proof. If $(\{x\}, Cl_X(P)) \notin \delta$, then $(\{x\}, P) \notin \delta$. Since pair (P, Q) is S- δ -separated in X and X is separated, therefore it is easy to conclude that X is not S- δ -connected, a contradiction. Similarly, conclude that $(\{y\}, Cl_X(Q)) \in \delta$.

4. Local S- δ -connectedness

In this section, local S- δ -connectedness is defined and it's several properties are studied.

Definition 45. The S- δ -component of a subset U in an S-proximity space X is defined as the union of all S- δ -connected subsets of X containing U and it is denoted by $C^*_{\delta}(U)$.

Every δ -component is contained in some S- δ -component. Any S- δ -component being union of S- δ -connected sets with nonempty intersection is S- δ -connected. An S- δ -component being a maximal S- δ -connected set is \mathcal{T}_{δ} -closed.

Analogously, the S- δ -component of a point x can be defined as the union of all S- δ -connected subsets of X containing x. Note that S- δ -components of any two distinct points of X are either same or δ -far sets in X.

In the next theorem, we show that the S- δ -component of product S-proximity is exactly the product of S- δ -components of each S-proximity.

Theorem 46. Suppose $\{(X_i, \delta_i) : i \in I\}$ be a nonempty family of S-proximity spaces. Then the S- δ -component of the product $(X, \delta) = \prod\{(X_i, \delta_i) : i \in I\}$ coincides with the product $\prod\{C^*_{\delta_i}(x_i) : i \in I\}$ of each S- δ -component of the point $x_i \in X_i$.

Proof. Let $C^*_{\delta}(x)$ be the S- δ -component of x in X and for each $i \in I$, $C^*_{\delta_i}(x_i)$ be the S- δ -component of x_i in X_i . Then, $\prod\{C^*_{\delta_i}(x_i) : i \in I\}$ being the product of the S- δ -connected sets is S- δ -connected. Therefore it is contained in $C^*_{\delta}(x)$. Conversely, for each $i \in I$, $p_i C^*_{\delta}(x)$ being S- δ -continuous image of S- δ -connected set is S- δ -connected. Therefore, $p_i C^*_{\delta}(x) \subset C^*_{\delta_i}(x_i)$ for each $i \in I$. Hence, $C^*_{\delta}(x) \subset$ $\prod\{p_i C^*_{\delta}(x) : i \in I\} \subset \prod\{C^*_{\delta_i}(x_i) : i \in I\}$.

Next, we show that S- δ -component is preserved under an S- δ -monotone, surjective, δ_b -map

Theorem 47. Suppose $f: (X, \delta) \longrightarrow (Y, \delta')$ be S- δ -monotone, surjective and δ_b map. Then C^* is an S- δ -component of $W \subset Y$ if and only if $f^{-1}(C^*)$ is an S- δ component of $f^{-1}(W)$.

Proof. Assume that C^* is S- δ -component of subspace $W \subset Y$. Obviously, $f^{-1}(C^*)$ is S- δ -connected by Theorem 38. Now, suppose there is some S- δ -connected set M in $f^{-1}(W)$ such that $f^{-1}(C^*) \subset M \subset f^{-1}(W)$. Since the map f is surjective, therefore $C^* \subset f(M) \subset W$. As f is S- δ -continuous being S- δ -monotone, so f(M) is S- δ -connected. Thus, $f(M) = C^*$ which implies $f^{-1}(C^*) = M$.

Conversely, let $f^{-1}(C^*)$ be an S- δ -component of $f^{-1}(W)$. Therfore, $f^{-1}(C^*)$ is S- δ -connected subset of $f^{-1}(W)$ and f is S- δ -continuous being S- δ -monotone. Thus, C^* is S- δ -connected subset of W. Now, suppose that N be an S- δ -connected set such that $C^* \subset N \subset W$. Then, $f^{-1}(C^*) \subset f^{-1}(N) \subset f^{-1}(W)$ and $f^{-1}(N)$ is S- δ -connected by Theorem 38. Hence, by hypothesis, $f^{-1}(C^*) = f^{-1}(N)$ which implies $C^* = N$.

Definition 48. Let X be an S-proximity space. Then X is locally S- δ -connected at $x \in X$, if every δ -neighbourhood of x contains some S- δ -connected δ -neighbourhood of x. We call X is locally S- δ -connected if it is locally S- δ -connected for all $x \in X$. Further, a subset $Y \subset X$ is locally S- δ -connected if Y is locally S- δ -connected in the subspace S-proximity of X.

Now, we show that locally S- δ -connectedness and S- δ -connectedness are two independent concepts.

Example 49. (a). Let X be any discrete proximity space with $|X| \ge 2$. Then X is locally S- δ -connected, but it is not S- δ -connected.

(b). Suppose X be an S-proximity space defined as in Example 33. Then X is locally S- δ -connected, but not S- δ -connected.

Example 50. The closed Topologist's sine curve $T = \{(x, \sin(1/x)) : 0 < x \leq 1\} \cup \{(0, y) : -1 \leq y \leq 1\}$ with subspace E-proximity induced by \mathbb{R}^2 is S- δ -connected, but not locally S- δ -connected.

Example 51. The subspace $X = \{0\} \cup \{1/n : n \in \mathbb{N}\}$ of \mathbb{R} with S-proximity defined as in Example 18. Then X is not locally S- δ -connected.

Theorem 52. Suppose $x \in P \cap Q$, where P and Q are locally S- δ -connected sets at x. Then $P \cup Q$ is also locally S- δ -connected at x.

Proof. Let W be a δ -neighbourhood of the point x. Then, $W_P = W \cap P$ and $W_Q = W \cap Q$ are δ -neighbourhoods of the point x in P and Q respectively. Using hypothesis, there exist some S- δ -connected δ -neighbourhoods M_P and M_Q of x such that $M_P \subset W_P$ and $M_Q \subset W_Q$. Then, $x \in M_P \cup M_Q \subset W_P \cup W_Q$ such that $M_P \cup M_Q$ is S- δ -connected set. Also, $(\{x\}, (P \setminus M_P) \cup (Q \setminus M_Q)) \notin \delta$ which implies $(\{x\}, (P \cup Q) \setminus (M_P \cup M_Q) \notin \delta$. Therefore, $M_P \cup M_Q$ is a δ -neighbourhood of x. \Box

Theorem 53. If an S-proximity space X is locally S- δ -connected, then S- δ -component of every \mathcal{T}_{δ} -open subspace of X is \mathcal{T}_{δ} -open.

Proof. Assme that X is locally S- δ -connected and W be \mathcal{T}_{δ} -open subspace in X. Let C^* be an S- δ -component of W. If $y \in C^*$, then $(\{y\}, X \setminus W) \notin \delta$. Therefore W is a δ -neighbourhood of y. Since X is locally S- δ -connected, then there exists an S- δ -connected δ -neighbourhood M of y such that $y \in M \subset W$. But C^* is maximal S- δ -connected set containing y, so $y \in M \subset C^*$. Therefore, C^* is \mathcal{T}_{δ} -open.

Corollary 54. If X is locally S- δ -connected space, then S- δ -components of X are clopen sets in the induced topology T_{δ} .

Corollary 55. If an S-proximity space X is locally S- δ -connected and compact, then it has at most finite number of S- δ -components.

Definition 56. Let U be a subset of an S-proximity space X. Then it is called an S- δ -treelike in X if it is S- δ -connected and for each pair of points $x, y \in U$ there exists an S- δ -connected set $V \subset U$ in X such that $U \setminus V = P \cup Q$ where $x \in P$, $y \in Q$ and the pair (P,Q) is S- δ -separated in X.

Example 20 shows that there exists an S- δ -treelike S-proximity space which is not δ -treelike [4], and from Example 32 we conclude that there exists an S- δ -treelike S-proximity space which is not treelike [1] (Topologically).

Theorem 57. If an S-proximity space X is S- δ -treelike, then it is separated.

Proof. Suppose X is not separated. So, there exist two distinct points x, y in X such that $(\{x\}, \{y\}) \in \delta$. Thus, $\{x, y\}$ is S- δ -connected in X. Since X is an S- δ -treelike space, therefore there exists an S- δ -connected set U in X such that $X \setminus U = P \cup Q$ where $x \in P$, $y \in Q$ and the pair (P, Q) is S- δ -separated in X. Then the pair $P \cap \{x, y\}$ and $Q \cap \{x, y\}$ forms an S- δ -separation for $\{x, y\}$, a contradiction. \Box

Authors Contribution Statement All the authors have contributed equally in the making of this paper.

Declaration of Competing Interests The authors of this paper declare that there are no conflicts of interest about publication of the paper.

References

- A.E. Brouwer, Treelike Spaces and related connected Topological Spaces, Mathematical Centre Tracts, Mathematisch centrum, 75, 1977.
- [2] E. Čech, Topological spaces, Wiley London (1966) fr seminar, Brno, 1936 1939; rev. ed. Z. Frolik, M. Katětov.
- [3] R. Dimitrijević, Lj. Kočinac, On connectedness of proximity spaces, Mat. Vesnik, 39 (1), (1987), 27-35.
- [4] R. Dimitrijević, Lj. Kočinac, On treelike proximity spaces, Mat. Vesnik, 39 (3), (1987), 257-261.
- [5] V.A. Efremovič, Infinitesimal spaces, Dokl. Akad. Nauk SSSR, 76, (1951), 341-343 (in Russian).
- [6] V.A. Efremovič, The geometry of proximity I, Mat. Sb., 31, (1952), 189-200 (in Russian).
- [7] S.B. Krishna Murti, A set of axioms for topological algebra, J. Indian Math. Soc., 4, (1940), 116-119.
- [8] S. Modak, T. Noiri, A weaker form of connectedness, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 65, (2016), 49 – 52.
- [9] S. G. Mrówka, W. J. Pervin, On uniform connectedness, Proc. Amer. Math. Soc., 15, (1964), 446-449.
- S. Naimpally, Proximity Approach to Problems in Topology and Analysis, Oldenbourg Verlag, München, 2009.
- [11] S. Naimpally, J. Peters, Topology with applications; Topological spaces via near and far, World Scientific Publishing Co. Pte. Ltd., 2013.
- [12] S. Naimpally, B.D. Warrack, Proximity Spaces, Cambridge Univ. Press, 1970.
- [13] F. Reisz, Stetigkeitsbegriff and abstrakte Mengelehre, Atti IV Congr. Intern. dei Mat. Roma, 2, (1908), 18 – 24.
- [14] Y.M. Smirnov, On Completeness of Proximity Spaces I, Amer. Math. Soc. Trans., 38, (1964), 37-73.
- [15] Y.M. Smirnov, On Proximity Spaces, Amer. Math. Soc. Trans., 38, (1964), 5 35.
- [16] P. Szymanski, La notion des ensembles séparés comme terme primitif de la topologie, Math. Timisoara, 17, (1941), 65 – 84.
- [17] A.D. Wallace, Separation spaces, Ann. Math., 42(3), (1941), 687-697.
- [18] A.D. Wallace, Separation spaces II, Anais. Acad. Brasil Ciencias, 14, (1942), 203-206.