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Abstract. New types of connectedness in S-proximity spaces, named as an
S-�-connectedness, local S-�-connectedness are introduced. Also, their inter-
relationships are studied. In an S-proximity space (X; �X), the S-�-connectedness
of a subset U ofX with respect to �X may not be same as the S-�-connectedness
of U with respect to its subspace proximity �U . Further, S-�-component and
S-�-treelike spaces are also de�ned and a number of results are given.

1. Introduction

In 1908, Reisz [13] discussed the idea of proximity (now it is called an E-
proximity) and although this idea was revived by Wallace [17, 18]. But the real
beginning of E-proximity was due to Efremoviµc [5, 6] who gave axioms of it as
a natural generalization of metric space and topological group. Smirnov [14, 15]
demonstrated that a completely regular space always has a compatible E-proximity
relation and vice versa. Also, he found the relationship between E-proximity space
and uniform space. Several generalizations of E-proximity were de�ned and stud-
ied. The notion of µCech proximity spaces was given by E. µCech [2], later elaborated
in [10], [11] and [12]. An S-proximity was introduced independently by Krishna
Murti [7], Szymanski [16], Wallace [17,18].
Mrówka et al. [9] de�ned the notion of �-connectedness in E-proximity spaces

and after that in 1987, the concepts of local �-connectedness, �-component and �-
quasi components were introduced by Dimitrijevíc et al. [3]. Dimitrijevíc et al. [4]
also studied �-treelike proximity spaces. Recently, Modak et al. [8] introduced the
weaker form of connectedness (Cl-Cl-connectedness) in topological spaces.
In this paper, we introduce a new type of �-connectedness (named as S-�-

connectedness) in S-proximity spaces and show that S-�-connectedness is di¤erent
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from �-connectedness [9] in the category of S-proximity spaces. And it become
identical in the categories of L-proximity spaces and E-proximity spaces. We give
a characterization for an S-proximity space X to be S-�-connected and several
other properties analogous to �-connectedness are justi�ed. Relation among dif-
ferent types of connectedness are shown. In the last section, S-�-component, local
S-�-connectedness and S-�-treelike spaces are de�ned and their properties are stud-
ied.
Throughout this paper, (A;B) 2 � ((A;B) =2 �) denotes A, B are near (�-

separated). We write an S-proximity space as X instead of (X; �) whenever there
is no confusion of the S-proximity �. ClX(:) and intX(:) are used to denote closure
and interior, respectively, with respect to topology T� generated by � in X.

2. Preliminaries

In this section, we recall some important de�nitions and results that will be used
in subsequent sections.

De�nition 1. [10] For a nonempty set X, a µCech proximity (or basic proximity)
on X is a binary relation � on the power set of X, P(X), that satis�es the following
axioms for all A;B;C 2 P(X):

(i) If (A;B) 2 �, then (B;A) 2 �.
(ii) If (A;B) 2 �, then A 6= � and B 6= �.
(iii) If A \B 6= �, then (A;B) 2 �.
(iv) (A;B [ C) 2 � if and only if (A;B) 2 � or (A;C) 2 �.
The set X together with a µCech proximity � is called a µCech proximity space

(X; �).

De�nition 2. [10] A µCech proximity space X is called separated if we have (fxg; fyg) 2
�, then x = y for all x; y 2 X.

De�nition 3. [10,12] For A;B;C 2 P(X), a µCech proximity � on a set X is:
(i) E-proximity if (A;B) =2 �, then there is some E � X with (A;E) =2 � and

(XnE;B) =2 �.
(ii) L-proximity if (A;B) 2 � and (fbg; C) 2 � for each b 2 B, then (A;C) 2 �.
(iii) S-proximity if (fxg; B) 2 � and (fbg; C) 2 � for each b 2 B, then (x;C) 2 �.

A µCech proximity space (X; �) is called an E-proximity space (or a L-proximity
space, an S-proximity space respectively) if the µCech proximity � satis�es the E-
proximity axiom (or L-proximity axiom, S-proximity axiom respectively.).

De�nition 4. [10, 12] Let (X; �) be an S-proximity space and T be a topology on
X. Then � is compatible with T if and only if the generated topology T� and T are
equal.

De�nition 5. [10] Let (X; �) be a µCech proximity space. Then a subset V of X is
said to be a �-neighbourhood of U � X if (U;XnV ) =2 �.
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De�nition 6. [10,12] Let (X; �) and (Y; �
0
) be two E-proximity spaces, a function

f : (X; �) �! (Y; �
0
) is �-continuous (or p-continuous) if for all A;B � X such

that (A;B) 2 �, implies (f(A); f(B)) 2 �
0
.

De�nition 7. [9] Let (X; �) be an E-proximity space. Then X is said to be �-
connected if every �-continuous map from X to discrete proximity space is constant.

Theorem 8. [9] Let (X; �) be an E-proximity space. Then the following statements
are equivalent:

(i) X is �-connected.
(ii) (A;XnA) 2 � for each nonempty subset A with A 6= X.
(iii) For every �-continuous real-valued function f , the image f(X) is dense in

some interval of R.
(iv) If X = A [B and (A;B) =2 �, then either A = � or B = �.
However, if X is not �-connected, then by Theorem 8 (iv) we have X = A [ B

with (A;B) =2 � where A;B � X are nonempty. Here, the pair (A;B) forms a
�-separation for X.

De�nition 9. [3] Let (X; �) be an E-proximity space and Y � X. Then Y is
�-connected, if it is �-connected with respect to the subspace proximity of Y .

De�nition 10. [3] An E-proximity space X is locally �-connected if for every
point x of X and for every �-neighborhood U of x, there exists some �-connected
�-neighborhood V of x such that x 2 V � U .
De�nition 11. [7,10] Let (X; �X) and (Y; �Y ) be S-proximity spaces. Then a map
f : X �! Y is said to be S-�-continuous if (A;B) =2 �X implies (f(A); f(B)) =2 �Y ,
for all A;B � X.
De�nition 12. [8] Let (X; T ) be a topological space. A pair of non-empty subsets
A;B of X is called Cl � Cl-separated (weak separated) if Cl(A) \ Cl(B) = �. A
subset U of a space X is said to be Cl�Cl-connected (weak connected) if U is not
the union of two Cl � Cl-separated (weak separated) sets in X.
De�nition 13. [4] If an E-proximity space X can be written as X = P [Q with
(P;Q) =2 �, then the pair (P;Q) is said to be a separation for X and write it as
X = P +Q. If P contains some set A and Q contains B, then it can be written as
X = P (A) +Q(B).

De�nition 14. [4] Let X be an E-proximity space. Then it is called �-treelike if it
is �-connected, and for each pair (x; y) of distinct points in X there is a �-connected
set V such that XnV = P (x) +Q(y).

3. S-�-connectedness

In this section, we de�ne S-�-connectedness in S-proximity spaces and give char-
acterizations of it.
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Recall that every discrete proximity is an S-proximity and induces the discrete
topology.

De�nition 15. An S-proximity space X is said to be S-�-connected if every S-�-
continuous map from X to discrete space is constant.

Next, we give a characterization for an S-proximity space to be S-�-connected.

Theorem 16. For an S-proximity space X, the following statements are equivalent:
(i) X is S-�-connected.
(ii) (ClX(A); XnA) 2 � for all nonempty proper subset A of X.
(iii) If X = P [Q with (ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �, then either P = �

or Q = �.

Proof. (i) ) (ii). If (ClX(A); XnA) =2 � for some nonempty proper subset A of
X, then the map f : X �! f0; 1g de�ned as f(A) = f0g and f(XnA) = f1g is
non-constant, S-�-continuous map. Therefore, X is not S-�-connected.
(ii) ) (iii). If X = P [ Q, where P , Q are nonempty subsets such that

(ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �, then Q = XnP . Thus, (ClX(P ); XnP ) =2 �, a
contradiction.
(iii)) (i). If X is not S-�-connected, then the map f : (X; �) �! f0; 1g de�ned

as f(P ) = f0g and f(Q) = f1g is non-constant, surjective, S-�-continuous map.
Therefore, X = P[Q, where P , Q are nonempty subsets such that (ClX(P ); Q) =2 �
or (P;ClX(Q)) =2 �, a contradiction. �
De�nition 17. Let X be an S-proximity space. A pair (P;Q) of two nonempty
subsets of X is said to be S-�-separated in X if (ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �.
Every S-�-separated sets are always �-separated. However, converse need not be

true.

Example 18. Let X = R be the real line. For P;Q � X, de�ne a binary relation
� on P(X) as:

(P;Q) 2 � if and only if ( �P \Q) [ (P \ �Q) 6= �
Here �P and �Q denote the closure of P and Q in X, respectively. Then � is a
compatible S-proximity on X which is not an L-proximity. The pair P = (1; 2) and
Q = (2; 3) is �-separated, but not S-�-separated in X.

De�nition 19. Let (X; �X) be an S-proximity space and U � X. Then U is said
to be S-�-connected in X (that is, with respect to �X) if it cannot be written as
the union of a pair of two S-�-separated sets in X. If U is not S-�-connected,
then it is called S-�-disconnected and the pair of two S-�-separated sets is called
S-�-separation for U in X.

By an S-�-connected subset U of an S-proximity space (X; �X), we mean it is
an S-�-connected with respect to �X (that is, with respect to the proximity of X
not subspace proximity of U).
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Since every S-�-separation for a set always forms �-separation, therefore every
�-connected set is S-�-connected. But converse need not be true.

Example 20. Let X = R be the real line and � be a S-proximity on X de�ned as in
Example 18. Let U = (1; 2) [ (2; 3). Then U is S-�-connected, but not �-connected
subset of X.

Thus, S-�-connectedness is di¤erent from �-connectedness in general. Next, we
know that �-connectedness [9] of a subset U in E-proximity space (X; �X) is same
as the �-connectedness of U with respect to subspace proximity �U . But, it is
not true for the case of an S-�-connectedness. In Example 20, note that U is S-
�-connected with respect to �X , and with respect to �U , it is not S-�-connected
as ClU ((0; 1)) = (0; 1) and ClU ((1; 2)) = (1; 2) with respect to �U . But, if U is
S-�-connected with respect to �U , then it is also S-�-connected with respect to �X .

Remark 21. The notions of �-connectedness and S-�-connectedness are equivalent
in the category of L-proximity spaces, as for every L-proximity space X, we have
(P;Q) 2 � if and only if (ClX(P ); ClX(Q) 2 � for all non-empty P , Q in X.

Since every E-proximity is an L-proximity, so above remark holds for E-proximity
spaces.
Recall that if for all A;B � X, (A;B) 2 �1 implies (A;B) 2 �2, then �1 > �2.

Corollary 22. Let �1; �2 be two S-proximities on X such that �1 > �2. If X is
S-�1-connected, then so is S-�2-connected.

Theorem 23. Let X be an S-proximity space. Suppose M is an S-�-connected
subset of X and (P;Q) be a pair of S-�-separated sets in X such that M � P [Q.
Then either M � P or M � Q.
Proof. If possible, M * P and M * Q. M is S-�-connected set such that M �
P [Q. Therefore, M = (M \ P ) [ (M \Q). Also by hypothesis (ClX(P ); Q) =2 �
or (P;ClX(Q)) =2 �. If (ClX(P ); Q) =2 �, then (ClX(M \ P );M \ Q) =2 �. On the
other hand, if (P;ClX(Q)) =2 �, then (ClX(M \ Q);M \ P ) =2 �. Thus, the pair
M \ P and M \Q forms an S-�-separation for X. �
Theorem 24. Let M , N are two S-�-connected subsets of an S-proximity space
X. If (M;N) is not S-�-separated, then M [N is S-�-connected in X.

Proof. Suppose (P;Q) be an S-�-separation for M [N . Therefore, M [N = P [Q
where (ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �. Since M and N are S-�-connected.
Thus, by Theorem 23, two case arises:
Case (i). If M � P and N � Q, then (ClX(M); N) =2 � or (M;ClX(N)) =2 �,

because (ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �. Hence, (M;N) is S-�-separated
which is a contradiction.
Case (ii). If M � Q and N � P , then (ClX(N);M) =2 � or (N;ClX(M)) =2 �,

because (ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �. Hence, (M;N) is S-�-separated
which is a contradiction. �
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Theorem 25. Let fWj : j 2 Jg be a nonempty family of S-�-connected subsets of
an S-proximity space X. If there exists some j0 2 J such that (Wj0 ;Wj) 2 � for
all j 2 J , then

S
j2JWj is also S-�-connected in X.

Proof. If possible, there exists an S-�-separation (P;Q) such that
S
j2JWj = P [Q

with (Cl(P ); Q) =2 � or (P;Cl(Q)) =2 �. Therefore,Wj0 � P [Q which implies either
Wj0 � P orWj0 � Q. IfWj0 � P , thenWj � P for all j 2 J because (Wj0 ;Wj) 2 �
for all j 2 J . Thus

S
j2JWj � P so Q = �. Similarly, if Wj0 � Q, then P = �.

Thus,
S
j2JWj is S-�-connected. �

Corollary 26. If fWj : j 2 Jg is a nonempty family of S-�-connected subsets of
an S-proximity space X and

T
j2JWj 6= �, then

S
j2JWj is also S-�-connected in

X.

Proof. Since
T
j2JWj 6= �, therefore (Wi;Wj) 2 � for all i; j 2 J . So for some

�x j0 2 J , (Wj0 ;Wj) 2 � for all j 2 J . Thus, by Theorem 25,
S
j2JWj is S-�-

connected in X. �
Corollary 27. If Y is an S-�-connected subset of an S-proximity space X, then
every subset Z such that Y � Z � ClX(Y ) is also S-�-connected in X.

Proof. Note that fY [ fzg : z 2 Zg is a family of S-�-connected sets such that Y
is near to each of the set. Therefore, by Theorem 25, Z is S-�-connected. �
Corollary 28. If an S-proximity space X contains some S-�-connected dense sub-
set, then X is S-�-connected.

Proof. Let Y be an S-�-connected dense subset of X. Then, ClX(Y ) = X. There-
fore, by Corollary 27, X is S-�-connected. �
Lemma 29. Let X be an S-proximity space and fMi : i 2 Ig be a nonempty family
of S-�-connected subsets of X. If M is S-�-connected in X such that M \Mi 6= �
for all i 2 I, then M [ (

S
i2IMi) is also S-�-connected in X.

Proof. By Theorem 25, (M;Mi) 2 � for all i 2 I. Hence the proof follows. �
Corollary 30. In an S-proximity space X, if any two points can be joined by an
S-�-connected subset of X, then X is S-�-connected.

Proof. Fix a point x0 in X and let Mx be an S-�-connected subset of X which
joins x0 and x. By Lemma 29, M = fx0g and M \Mx 6= � for all x 2 X. Thus,
M [ (

S
x2XMx) = X is S-�-connected. �

Theorem 31. The S-�-continuous image of S-�-connected space is S-�-connected.

Proof. Let f : (X; �) �! (Y; �0) be S-�-continuous, surjective map and X is S-�-
connected space. It is to show that Y is also an S-�-connected space. On contrary,
suppose Y is not S-�-connected space. So, there exists a pair (P;Q) in Y such
that Y = P [ Q with (ClY (P ); Q) =2 �0 or (P;ClY (Q)) =2 �0. If (ClY (P ); Q) =2 �0,
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then (f�1(ClY (P )); f�1(Q)) =2 �. Since S-�-continuity of f implies continuity with
respect to T�, so ClX(f�1(P )) � f�1(ClY (P )). Thus, (ClX(f�1(P )); f�1(Q)) =2 �.
Hence, (f�1(P ); f�1(Q)) forms an S-�-separation for X, a contradiction. A similar
case for (P;ClY (Q)) =2 �0. �

As every S-�-continuous map is continuous, so every weak connected [8] space is
S-�-connected.

Example 32. The set of rationals Q is an S-�-connected in R, but is not weak
connected.

However, compact Hausdor¤ S-�-connected space is weak connected as every
continuous map with compact Hausdor¤ domain is S-�-continuous. Thus, we have
the following diagram of implications.

� � connected (= connected
+ +

S � � � connected (= weak connected

Following example concludes that a locally �-connected space may not be an
S-�-connected.

Example 33. Let R be the real line and � be a compatible S-proximity de�ned as
in Example 18. Let X = (�1; 0) [ (2; 3). Then the pair (P;Q) where P = (�1; 0)
and Q = (2; 3), is S-�-separation for X. Therefore X is not S-�-connected in R,
but it is locally �-connected.

An S-�-connected space may not be locally �-connected.

Example 34. The closed Topologist�s Sine curve T = f(x; sin(1=x)) : 0 < x �
1g[f(0; y) : �1 � y � 1g with subspace E-proximity induced by R2 is S-�-connected
in R2, but not locally �-connected.

Theorem 35. Suppose f(Xi; �i) : i 2 Ig be a nonempty family of S-proximity
spaces. Then the product (X; �) =

Q
f(Xi; �i) : i 2 Ig is S-�-connected if and only

if Xi is S-�-connected for each i 2 I.

Proof. Let
Q
i2I Xi be S-�-connected. Since S-�-continuous image of S-�-connected

set is S-�-connected, therefore Xi is S-�-connected for each i 2 I as projections are
S-�-continuous, surjective maps.
Conversely, assume that each Xi is S-�-connected. Firstly, take I = f1; 2g. Then

in X1 �X2, any two distinct points (x1; x2) and (y1; y2) can be connected by the
S-�-connected set (X1�fx2g)[ (fy1g�X2). Therefore, X1�X2 is S-�-connected.
Using induction, it can be shown that any �nite product of S-�-connected set is S-
�-connected. Now, for an arbitrary product, choose xi 2 Xi for all i 2 I. Consider
a family F consisting of all �nite subsets of the set I and put KF =

Q
i2I Li for

all F 2 F with Li = Xi if i 2 F and Li = fxig if i =2 F . Then, fKF : F 2 Fg is
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a family of S-�-connected sets by induction hypothesis. Therefore, K =
S
F2F KF

is S-�-connected as
T
F2F KF 6= �. Since K is dense in

Q
i2I Xi, therefore by

Corollary 28,
Q
i2I Xi is S-�-connected. �

De�nition 36. For given S-proximity spaces (X; �) and (Y; �
0
), S-�-continuous

map f : X �! Y is said to be S-�-monotone if for every y 2 Y , the pullback
f�1(y) is S-�-connected in X.

De�nition 37. A map f : (X; �) �! (Y; �
0
) is said to be �b�map if for every pair

of subsets A;B of Y , the following two axioms hold:

(i) If (ClXf�1(A); f�1(B)) =2 �, then (ClY (A); B) =2 �
0
.

(ii) If (f�1(A); ClXf�1(B)) =2 �, then (A;ClY (B)) =2 �
0
.

Following theorem shows that if a map is S-�-monotone, surjective, �b�map,
then inverse image of S-�-connected set is S-�-connected.

Theorem 38. Let f : (X; �) �! (Y; �
0
) be a �b�map, S-�-monotone, surjective

map. Then for each S-�-connected subset U of Y , f�1(U) is S-�-connected in X.

Proof. Let f�1(U) be not S-�-connected. Then, f�1(U) = P[Q with (ClX(P ); Q) =2
� or (P;ClX(Q)) =2 �. As f is S-�-monotone, so for each y 2 U , f�1(y) is S-�-
connected. Thus, f�1(y) � P or f�1(y) � Q for all y 2 U . Now, let us de�ne
A = fy 2 U : f�1(y) � Pg and B = fy 2 U : f�1(y) � Qg. Note that P = f�1(A),
Q = f�1(B) and U = A [ B. Since f is �b� map with (ClX(P ); Q) =2 � or
(P;ClX(Q)) =2 �, therefore (A;B) forms an S-�-separation for U . �

De�nition 39. In an S-proximity space X, a �nite sequence U1; U2; � � � ; Un of
subsets of X is called an S-�-chain if (ClX(Ui); Ui+1) 2 � and (Ui; ClX(Ui+1)) 2 �
for all i = 1; 2; � � � ; n� 1.
A family F of subsets of X is said to be S-�-chained in X if for every pair (U; V )

of elements of F , there is an S-�-chain in F joining U and V .

Theorem 40. Suppose fUigni=1 be a �nite family of S-�-connected subsets of an
S-proximity space X and forms an S-�-chain, then

Sn
i=1 Ui is S-�-connected in X.

Proof. The Proof follows by induction on n as it holds for n = 2 by Theorem 24. �

Theorem 41. For an S-�-chained family F = fUi : i 2 Ig in X, if each member
Ui is S-�-connected in X, then U =

S
i2I Ui is also S-�-connected in X.

Proof. Let x; y 2 U be arbitrary. So, there is some i; j 2 I such that x 2 Ui and
y 2 Uj . Thus by hypothesis, there is an S-�-chain joining Ui and Uj . Therefore,
by Theorem 40, union of all the members of this S-�-chain is S-�-connected. Thus,
x and y can be joined by an S-�-connected set. Hence, by Corollary 30, U is
S-�-connected in X. �
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De�nition 42. In an S-proximity space X, a cover F is said to be an S-�-cover if
(ClX(M); N) 2 � and (M;ClX(N)) 2 � for M;N � X, then there is some U 2 F
such that M \ U 6= � and N \ U 6= �.

Theorem 43. In an S-�-connected space X, every S-�-cover is an S-�-chained
family.

Proof. Assume that F = fUi : i 2 Ig be any S-�-cover of X. Suppose there
exist i; j 2 I such that Ui and Uj can not be joined by any S-�-chain in F . Now,
consider P as the union of all the members of F which are joinable with Ui by
some S-�-chain F 0 � F , and Q as the union of rest of the elements of F . Then
note that X = P [ Q. Now it is to show that X is not S-�-connected, that is,
(ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �. Again on the contrary, let (ClX(P ); Q) 2 �
and (P;ClX(Q)) 2 �. Then there exists U 2 F such that U \P 6= � and U \Q 6= �.
Thus, there is some Um � P and Un � Q such that U \ Um 6= � and U \ Un 6= �.
So, Un can be joined with Ui using an S-�-chain F 00 � F , which is absurd. �
Theorem 44. Let X be an S-�-connected, separated S-proximity space. If for some
x 2 X, Xnfxg = P [Q where (P;Q) is S-�-separated in X, then (fxg; ClX(P )) 2 �
and (fyg; ClX(Q)) 2 �.

Proof. If (fxg; ClX(P )) =2 �, then (fxg; P ) =2 �. Since pair (P;Q) is S-�-separated in
X and X is separated, therefore it is easy to conclude that X is not S-�-connected,
a contradiction. Similarly, conclude that (fyg; ClX(Q)) 2 �. �

4. Local S-�-connectedness

In this section, local S-�-connectedness is de�ned and it�s several properties are
studied.

De�nition 45. The S-�-component of a subset U in an S-proximity space X is
de�ned as the union of all S-�-connected subsets of X containing U and it is denoted
by C�� (U).

Every �-component is contained in some S-�-component. Any S-�-component
being union of S-�-connected sets with nonempty intersection is S-�-connected. An
S-�-component being a maximal S-�-connected set is T�-closed.
Analogously, the S-�-component of a point x can be de�ned as the union of all

S-�-connected subsets of X containing x. Note that S-�-components of any two
distinct points of X are either same or �-far sets in X.
In the next theorem, we show that the S-�-component of product S-proximity

is exactly the product of S-�-components of each S-proximity.

Theorem 46. Suppose f(Xi; �i) : i 2 Ig be a nonempty family of S-proximity
spaces. Then the S-�-component of the product (X; �) =

Q
f(Xi; �i) : i 2 Ig co-

incides with the product
Q
fC��i(xi) : i 2 Ig of each S-�-component of the point

xi 2 Xi.
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Proof. Let C�� (x) be the S-�-component of x in X and for each i 2 I, C��i(xi)
be the S-�-component of xi in Xi. Then,

Q
fC��i(xi) : i 2 Ig being the product

of the S-�-connected sets is S-�-connected. Therefore it is contained in C�� (x).
Conversely, for each i 2 I, piC�� (x) being S-�-continuous image of S-�-connected
set is S-�-connected. Therefore, piC�� (x) � C��i(xi) for each i 2 I. Hence, C

�
� (x) �Q

fpiC�� (x) : i 2 Ig �
Q
fC��i(xi) : i 2 Ig. �

Next, we show that S-�-component is preserved under an S-�-monotone, surjec-
tive, �b�map

Theorem 47. Suppose f : (X; �) �! (Y; �0) be S-�-monotone, surjective and �b�
map. Then C� is an S-�-component of W � Y if and only if f�1(C�) is an S-�-
component of f�1(W ).

Proof. Assume that C� is S-�-component of subspace W � Y . Obviously, f�1(C�)
is S-�-connected by Theorem 38: Now, suppose there is some S-�-connected set M
in f�1(W ) such that f�1(C�) � M � f�1(W ). Since the map f is surjective,
therefore C� � f(M) � W . As f is S-�-continuous being S-�-monotone, so f(M)
is S-�-connected. Thus, f(M) = C� which implies f�1(C�) =M .
Conversely, let f�1(C�) be an S-�-component of f�1(W ). Therfore, f�1(C�)

is S-�-connected subset of f�1(W ) and f is S-�-continuous being S-�-monotone.
Thus, C� is S-�-connected subset of W . Now, suppose that N be an S-�-connected
set such that C� � N � W . Then, f�1(C�) � f�1(N) � f�1(W ) and f�1(N)
is S-�-connected by Theorem 38. Hence, by hypothesis, f�1(C�) = f�1(N) which
implies C� = N . �

De�nition 48. Let X be an S-proximity space. Then X is locally S-�-connected at
x 2 X, if every �-neighbourhood of x contains some S-�-connected �-neighbourhood
of x. We call X is locally S-�-connected if it is locally S-�-connected for all x 2 X.
Further, a subset Y � X is locally S-�-connected if Y is locally S-�-connected in
the subspace S-proximity of X.

Now, we show that locally S-�-connectedness and S-�-connectedness are two
independent concepts.

Example 49. (a). Let X be any discrete proximity space with jXj � 2. Then X
is locally S-�-connected, but it is not S-�-connected.
(b). Suppose X be an S-proximity space de�ned as in Example 33. Then X is

locally S-�-connected, but not S-�-connected.

Example 50. The closed Topologist�s sine curve T = f(x; sin(1=x)) : 0 < x �
1g[f(0; y) : �1 � y � 1g with subspace E-proximity induced by R2 is S-�-connected,
but not locally S-�-connected.

Example 51. The subspace X = f0g[f1=n : n 2 Ng of R with S-proximity de�ned
as in Example 18. Then X is not locally S-�-connected.
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Theorem 52. Suppose x 2 P \ Q, where P and Q are locally S-�-connected sets
at x. Then P [Q is also locally S-�-connected at x.

Proof. Let W be a �-neighbourhood of the point x. Then, WP = W \ P and
WQ =W \Q are �-neighbourhoods of the point x in P and Q respectively. Using
hypothesis, there exist some S-�-connected �-neighbourhoods MP and MQ of x
such that MP � WP and MQ � WQ. Then, x 2MP [MQ � WP [WQ such that
MP [MQ is S-�-connected set. Also, (fxg; (PnMP ) [ (QnMQ)) =2 � which implies
(fxg; (P [Q)n(MP [MQ) =2 �. Therefore, MP [MQ is a �-neighbourhood of x. �

Theorem 53. If an S-proximity space X is locally S-�-connected, then S-�-component
of every T�-open subspace of X is T�-open.

Proof. Assme that X is locally S-�-connected and W be T�-open subspace in X.
Let C� be an S-�-component of W . If y 2 C�, then (fyg; XnW ) =2 �. Therefore W
is a �-neighbourhood of y. Since X is locally S-�-connected, then there exists an
S-�-connected �-neighbourhood M of y such that y 2M �W . But C� is maximal
S-�-connected set containing y, so y 2M � C�. Therefore, C� is T�-open. �

Corollary 54. If X is locally S-�-connected space, then S-�-components of X are
clopen sets in the induced topology T�.

Corollary 55. If an S-proximity space X is locally S-�-connected and compact,
then it has at most �nite number of S-�-components.

De�nition 56. Let U be a subset of an S-proximity space X. Then it is called an
S-�-treelike in X if it is S-�-connected and for each pair of points x; y 2 U there
exists an S-�-connected set V � U in X such that UnV = P [ Q where x 2 P ,
y 2 Q and the pair (P;Q) is S-�-separated in X.

Example 20 shows that there exists an S-�-treelike S-proximity space which is
not �-treelike [4], and from Example 32 we conclude that there exists an S-�-treelike
S-proximity space which is not treelike [1] (Topologically).

Theorem 57. If an S-proximity space X is S-�-treelike, then it is separated.

Proof. SupposeX is not separated. So, there exist two distinct points x; y inX such
that (fxg; fyg) 2 �. Thus, fx; yg is S-�-connected in X. Since X is an S-�-treelike
space, therefore there exists an S-�-connected set U in X such that XnU = P [Q
where x 2 P , y 2 Q and the pair (P;Q) is S-�-separated in X. Then the pair
P \ fx; yg and Q \ fx; yg forms an S-�-separation for fx; yg, a contradiction. �
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