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ABSTRACT. New types of connectedness in S-proximity spaces, named as an
S-6-connectedness, local S-d-connectedness are introduced. Also, their inter-
relationships are studied. In an S-proximity space (X, dx ), the S-d-connectedness
of a subset U of X with respect to § x may not be same as the S-d-connectedness
of U with respect to its subspace proximity §y. Further, S-§-component and
S-0-treelike spaces are also defined and a number of results are given.

1. INTRODUCTION

In 1908, Reisz [13] discussed the idea of proximity (now it is called an FE-
proximity) and although this idea was revived by Wallace . But the real
beginning of E-proximity was due to Efremovic @ who gave axioms of it as
a natural generalization of metric space and topological group. Smirnov
demonstrated that a completely regular space always has a compatible E-proximity
relation and vice versa. Also, he found the relationship between E-proximity space
and uniform space. Several generalizations of F-proximity were defined and stud-
ied. The notion of Cech proximity spaces was given by E. Cech 7 later elaborated
in 7 and . An S-proximity was introduced independently by Krishna
Murti [7], Szymanski [16], Wallace [17,[18].

Mréwka, et al. @ﬂ defined the notion of d-connectedness in E-proximity spaces
and after that in 1987, the concepts of local §-connectedness, d-component and J-
quasi components were introduced by Dimitrijevi¢ et al. . Dimitrijevi¢ et al.
also studied d-treelike proximity spaces. Recently, Modak et al. introduced the
weaker form of connectedness (CI-Cl-connectedness) in topological spaces.

In this paper, we introduce a new type of d-connectedness (named as S-9-
connectedness) in S-proximity spaces and show that S-d-connectedness is different
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from d-connectedness [9] in the category of S-proximity spaces. And it become
identical in the categories of L-proximity spaces and E-proximity spaces. We give
a characterization for an S-proximity space X to be S-d-connected and several
other properties analogous to J-connectedness are justified. Relation among dif-
ferent types of connectedness are shown. In the last section, S-d-component, local
S-6-connectedness and S-d-treelike spaces are defined and their properties are stud-
ied.

Throughout this paper, (A,B) € 6 ((4,B) ¢ §) denotes A, B are near (-
separated). We write an S-proximity space as X instead of (X, ) whenever there
is no confusion of the S-proximity §. Clx(.) and intx(.) are used to denote closure
and interior, respectively, with respect to topology 75 generated by § in X.

2. PRELIMINARIES

In this section, we recall some important definitions and results that will be used
in subsequent sections.

Definition 1. [10] For a nonempty set X, a Cech prozimity (or basic proximity)
on X is a binary relation § on the power set of X, P(X), that satisfies the following
azioms for all A,B,C € P(X):
(i) If (A,B) €6, then (B, A) € 6.

(ii) If (A,B) €6, then A # ¢ and B # ¢.

(iii) If AN B # ¢, then (A,B) € 6.

(iv) (A,BUC) €4 if and only if (A,B) € 6 or (A,C) € 6.

The set X together with a Cech prozimity § is called a Cech proximity space
(X,9).

Definition 2. [10] A Cech prozimity space X is called separated if we have ({z},{y}) €
0, then x =y for all z,y € X.

Definition 3. [10,[12] For A, B,C € P(X), a Cech prozimity 6 on a set X is:
(i) E-proximity if (A, B) ¢ 0, then there is some E C X with (A, E) ¢ § and
(X\E,B) ¢ 4.
(ii) L-prozimity if (A, B) € 0 and ({b},C) € ¢ for each b € B, then (A,C) € 0.
(iii) S-prozimity if ({z}, B) € 6 and ({b},C) € 0 for each b € B, then (z,C) € 4.

A Cech proximity space (X, d) is called an E-proximity space (or a L-proximity
space, an S-proximity space respectively) if the Cech proximity 0 satisfies the E-
proximity axiom (or L-proximity axiom, S-proximity axiom respectively.).

Definition 4. [10,/12] Let (X,8) be an S-proximity space and T be a topology on
X. Then § is compatible with T if and only if the generated topology Ts and T are
equal.

Definition 5. [10] Let (X,6) be a Cech prowimity space. Then a subset V of X is
said to be a d-neighbourhood of U C X if (U, X\V) ¢ 4.
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Definition 6. [10,(12] Let (X, ) and (Y, 5/) be two E-proximity spaces, a function
f:(X,6) — (Y,0) is d-continuous (or p-continuous) if for all A,B C X such
that (A, B) € §, implies (f(A), f(B)) €6 .

Definition 7. [9] Let (X,d) be an E-prozimity space. Then X is said to be -
connected if every §-continuous map from X to discrete proximity space is constant.

Theorem 8. (9] Let (X, ) be an E-proximity space. Then the following statements
are equivalent:

(i) X is 0-connected.
(il) (A, X\A) € 0 for each nonempty subset A with A # X.
(iii) For every §-continuous real-valued function f, the image f(X) is dense in

some interval of R.
(iv) If X = AUB and (A, B) ¢ 6, then either A= ¢ or B = ¢.

However, if X is not d-connected, then by Theorem 8 (iv) we have X = AU B
with (A, B) ¢ 6 where A, B C X are nonempty. Here, the pair (A, B) forms a
d-separation for X.

Definition 9. [3] Let (X,0) be an E-prozimity space and Y C X. Then Y is
d-connected, if it is §-connected with respect to the subspace proximity of Y.

Definition 10. [5/ An E-proximity space X is locally §-connected if for every
point © of X and for every d-neighborhood U of x, there exists some &-connected
d-neighborhood V' of x such that x € V C U.

Definition 11. [7|10] Let (X,dx) and (Y, dy) be S-prozimity spaces. Then a map
f: X —Y is said to be S-§-continuous if (A, B) ¢ dx implies (f(A), f(B)) ¢ oy,
forall A,B C X.

Definition 12. [§] Let (X,T) be a topological space. A pair of non-empty subsets
A, B of X is called Cl — Cl-separated (weak separated) if Cl(A) N Cl(B) = ¢. A
subset U of a space X is said to be Cl — Cl-connected (weak connected) if U is not
the union of two Cl — Cl-separated (weak separated) sets in X.

Definition 13. [J] If an E-proxzimity space X can be written as X = P U Q with
(P,Q) ¢ 4, then the pair (P,Q) is said to be a separation for X and write it as
X =P+ Q. If P contains some set A and Q) contains B, then it can be written as
X =P(A)+Q(B).

Definition 14. [J] Let X be an E-proximity space. Then it is called §-treelike if it
is 0-connected, and for each pair (z,y) of distinct points in X there is a §-connected
set V' such that X\V = P(z) + Q(y).

3. S-6-CONNECTEDNESS

In this section, we define S-d-connectedness in S-proximity spaces and give char-
acterizations of it.
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Recall that every discrete proximity is an S-proximity and induces the discrete
topology.

Definition 15. An S-prozimity space X is said to be S-6-connected if every S-0-
continuous map from X to discrete space is constant.

Next, we give a characterization for an S-proximity space to be S-J-connected.

Theorem 16. For an S-proximity space X, the following statements are equivalent:

(i) X is S-0-connected.
(ii) (Clx(A),X\A) € 0 for all nonempty proper subset A of X.

(iii) If X = PUQ with (Clx(P),Q) ¢ ¢ or (P,Clx(Q)) ¢ 9, then either P = ¢

or Q = ¢.
Proof. (i) = (i1). If (Clx(A),X\A) ¢ 6 for some nonempty proper subset A of
X, then the map f : X — {0,1} defined as f(A) = {0} and f(X\A) = {1} is
non-constant, S-é-continuous map. Therefore, X is not S-J-connected.

(i) = (i9). If X = P UQ, where P, () are nonempty subsets such that
(Clx(P),Q) ¢ 6 or (P,Clx(Q)) ¢ J, then @ = X\P. Thus, (Cix(P),X\P) ¢4, a
contradiction.

(#4i) = (4). If X is not S-0-connected, then the map f : (X,d) — {0, 1} defined
as f(P) = {0} and f(Q) = {1} is non-constant, surjective, S-d-continuous map.
Therefore, X = PUQ, where P, ) are nonempty subsets such that (Clx (P),Q) ¢ ¢
or (P,Clx(Q)) ¢ ¢, a contradiction. O

Definition 17. Let X be an S-prozimity space. A pair (P,Q) of two nonempty
subsets of X is said to be S-6-separated in X if (Clx(P),Q) ¢  or (P,Clx(Q)) ¢ 6.

Every S-d-separated sets are always d-separated. However, converse need not be
true.

Example 18. Let X = R be the real line. For P,Q C X, define a binary relation
§ on P(X) as:

(P,Q) €6 if and only if (PNQ)U(PNQ) # ¢
Here P and Q denote the closure of P and Q in X, respectively. Then § is a
compatible S-prozimity on X which is not an L-prozimity. The pair P = (1,2) and
Q = (2,3) is d-separated, but not S-§-separated in X.

Definition 19. Let (X,dx) be an S-proximity space and U C X. Then U is said
to be S-0-connected in X (that is, with respect to dx) if it cannot be written as
the union of a pair of two S-0-separated sets in X. If U is not S-d-connected,
then it is called S-6-disconnected and the pair of two S-0-separated sets is called
S-0-separation for U in X.

By an S-6-connected subset U of an S-proximity space (X,dx), we mean it is
an S-d-connected with respect to dx (that is, with respect to the proximity of X
not subspace proximity of U).
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Since every S-d-separation for a set always forms d-separation, therefore every
o-connected set is S-d-connected. But converse need not be true.

Example 20. Let X = R be the real line and 6 be a S-proximity on X defined as in
Ezample 18. Let U = (1,2) U (2,3). Then U is S-§-connected, but not §-connected
subset of X.

Thus, S-d-connectedness is different from J§-connectedness in general. Next, we
know that §-connectedness [9] of a subset U in E-proximity space (X, dx) is same
as the d-connectedness of U with respect to subspace proximity ;. But, it is
not true for the case of an S-d-connectedness. In Example 20, note that U is S-
d-connected with respect to dx, and with respect to dy, it is not S-d-connected
as Cly((0,1)) = (0,1) and Cly((1,2)) = (1,2) with respect to dy. But, if U is
S-d-connected with respect to dy7, then it is also S-6-connected with respect to dx.

Remark 21. The notions of §-connectedness and S-6-connectedness are equivalent
in the category of L-proximity spaces, as for every L-proximity space X, we have
(P,Q) €46 if and only if (Clx(P),Clx(Q) € ¢ for all non-empty P, Q in X.

Since every E-proximity is an L-proximity, so above remark holds for E-proximity

spaces.
Recall that if for all A, B C X, (A, B) € 6; implies (A, B) € 02, then §; > d2.

Corollary 22. Let §1,02 be two S-proximities on X such that 61 > 6. If X is
S-01-connected, then so is S-02-connected.

Theorem 23. Let X be an S-proximity space. Suppose M is an S-§-connected
subset of X and (P, Q) be a pair of S-d-separated sets in X such that M C PUQ.
Then either M C P or M C Q.

Proof. 1f possible, M ¢ P and M ¢ Q. M is S-6-connected set such that M C
PUQ. Therefore, M = (M N P)U (M NQ). Also by hypothesis (Clx(P),Q) ¢ ¢
or (P,Clx(Q)) ¢ 6. If (Clx(P),Q) ¢ 6, then (Clx(MNP),MNQ)¢3J. On the
other hand, if (P,Clx(Q)) ¢ 0, then (Clx(M NQ),M N P) ¢ §. Thus, the pair
MNP and M NQ forms an S-§-separation for X. O

Theorem 24. Let M, N are two S-0-connected subsets of an S-prozimity space
X. If (M, N) is not S-§-separated, then M U N is S-§-connected in X .

Proof. Suppose (P, Q) be an S-§-separation for M UN. Therefore, MUN = PUQ
where (Clx(P),Q) ¢ ¢ or (P,Clx(Q)) ¢ 0. Since M and N are S-§-connected.
Thus, by Theorem 23, two case arises:

Case (7). If M C P and N C @Q, then (Clx(M),N) ¢ 6 or (M,Clx(N)) ¢ 9,
because (Clx(P),Q) ¢ d or (P,Clx(Q)) ¢ 6. Hence, (M,N) is S-0-separated
which is a contradiction.

Case (i1). f M C Q and N C P, then (Clx(N),M) ¢ § or (N,Clx(M)) ¢ 4,
because (Clx(P),Q) ¢ d or (P,Clx(Q)) ¢ 6. Hence, (M,N) is S-0-separated
which is a contradiction. (]
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Theorem 25. Let {W; : j € J} be a nonempty family of S-0-connected subsets of
an S-proximity space X. If there exists some jo € J such that (W;,,W;) € ¢ for
all j € J, then \J;c; Wj is also S-0-connected in X.

Proof. 1f possible, there exists an S-d-separation (P, Q) such that (J;., W; = PUQ
with (CI(P),Q) ¢ 6 or (P,Cl(Q)) ¢ 6. Therefore, W;, C PUQ which implies either
W, C Por W, C Q. If W, C P, then W; C P for all j € J because (W;,, W;) € ¢
for all j € J. Thus UjeJ W; C P so Q = ¢. Similarly, if W;, C @, then P = ¢.
Thus, ;¢ ; Wj is S-6-connected. O

Corollary 26. If {W; : j € J} is a nonempty family of S-6-connected subsets of
an S-proximity space X and ﬂjeJ W; # ¢, then UjeJ W; is also S-0-connected in
X.

Proof. Since (;c; W; # ¢, therefore (W;,W;) € ¢ for all 4,5 € J. So for some
fix jo € J, (Wj,,W;) € ¢ for all j € J. Thus, by Theorem 25, |J;, W; is S-6-
connected in X. ([
Corollary 27. If Y is an S-§-connected subset of an S-prozimity space X, then
every subset Z such thatY C Z C Clx(Y) is also S-6-connected in X .

Proof. Note that {Y U{z}: 2z € Z} is a family of S-d-connected sets such that YV’
is near to each of the set. Therefore, by Theorem 25, Z is S-J-connected. O

Corollary 28. If an S-proximity space X contains some S-§-connected dense sub-
set, then X is S-0-connected.

Proof. Let Y be an S-d-connected dense subset of X. Then, Clx(Y) = X. There-
fore, by Corollary 27, X is S-d-connected. 0

Lemma 29. Let X be an S-prozimity space and {M; : i € I} be a nonempty family
of S-6-connected subsets of X. If M is S-d-connected in X such that M N M; # ¢
foralli € I, then M U (J;c; M;) is also S-0-connected in X .

Proof. By Theorem 25, (M, M;) € ¢ for all ¢ € I. Hence the proof follows. O

Corollary 30. In an S-proximity space X, if any two points can be joined by an
S-0-connected subset of X, then X is S-0-connected.

Proof. Fix a point zg in X and let M, be an S-J-connected subset of X which
joins z¢ and . By Lemma 29, M = {x0} and M N M, # ¢ for all x € X. Thus,
MU (U,ex Mz) = X is S-0-connected. O

Theorem 31. The S-0-continuous image of S-d-connected space is S-6-connected.

Proof. Let f : (X,6) — (Y,4’) be S-6-continuous, surjective map and X is S-6-
connected space. It is to show that Y is also an S-d-connected space. On contrary,
suppose Y is not S-d-connected space. So, there exists a pair (P,Q) in Y such

that Y = P U Q with (Cly (P),Q) ¢ &' or (P,Cly(Q)) ¢ &'. If (Cly(P),Q) ¢ &,
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then (f~1(Cly (P)), f~1(Q)) ¢ 6. Since S-d-continuity of f implies continuity with
respect to 75, so Cl (f~1(P)) C £~} (Cly (P)). Thus, (Clx (f-(P)). f~1(Q)) ¢ 6.
Hence, (f~1(P), f~1(Q)) forms an S-6-separation for X, a contradiction. A similar
case for (P,Cly(Q)) ¢ ¢'. O

As every S-d-continuous map is continuous, so every weak connected [8] space is
S-d-connected.

Example 32. The set of rationals Q is an S-6-connected in R, but is not weak
connected.

However, compact Hausdorff S-d-connected space is weak connected as every
continuous map with compact Hausdorff domain is S-d-continuous. Thus, we have
the following diagram of implications.

6 — connected <— connected

I I

S — 6 — connected <= weak connected

Following example concludes that a locally d-connected space may not be an
S-d-connected.

Example 33. Let R be the real line and § be a compatible S-proximity defined as
in Example 18. Let X = (—1,0) U (2,3). Then the pair (P, Q) where P = (—1,0)
and Q = (2,3), is S-0-separation for X. Therefore X is not S-d-connected in R,
but it is locally 6-connected.

An S-é-connected space may not be locally d-connected.

Example 34. The closed Topologist’s Sine curve T = {(z,sin(1/z)) : 0 < <
13U{(0,y) : =1 <y < 1} with subspace E-proximity induced by R? is S-§-connected
in R%, but not locally §-connected.

Theorem 35. Suppose {(X;,0;) : i € I} be a nonempty family of S-proximity
spaces. Then the product (X,0) = [[{(X;,d:) : i € I} is S-d-connected if and only
if X; is S-6-connected for each i € I.

Proof. Let [[,.; X; be S-0-connected. Since S-é-continuous image of S-0-connected
set is S-d-connected, therefore X; is S-d-connected for each i € I as projections are
S-d-continuous, surjective maps.

Conversely, assume that each X; is S-d-connected. Firstly, take I = {1,2}. Then
in X7 x Xo, any two distinct points (x1,z2) and (y1,y2) can be connected by the
S-d-connected set (X1 X {z2}) U ({y1} x X2). Therefore, X; x X is S-d-connected.
Using induction, it can be shown that any finite product of S-§-connected set is S-
d-connected. Now, for an arbitrary product, choose z; € X; for all i € I. Consider
a family F consisting of all finite subsets of the set I and put Kr = [[,.; L; for
al F e Fwith L; = X; ifi€ Fand L, = {x;} if i ¢ F. Then, {Kp: F € F} is
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a family of S-0-connected sets by induction hypothesis. Therefore, K = . Kr
is S-d-connected as (pcr Kr # ¢. Since K is dense in [];.; X;, therefore by
Corollary 28, [],c; X; is S-6-connected. O
Definition 36. For given S-proximity spaces (X,0) and (Y, 5/), S--continuous
map f : X — Y is said to be S-§-monotone if for every y € Y, the pullback
f7(y) is S-6-connected in X.

Definition 37. A map f: (X,0) — (Y, 5/) is said to be 6p,—map if for every pair
of subsets A, B of Y, the following two azioms hold:

(i) If (CLx S~ (A), f~(B)) ¢ 6, then (Cly(A),B) ¢4 .
(if) I (f7'(A), Clx f~1(B)) ¢ 8, then (A, Cly (B)) ¢4 .

Following theorem shows that if a map is S-d-monotone, surjective, §,—map,
then inverse image of S-J-connected set is S-d-connected.

Theorem 38. Let f : (X,0) — (Y, 5l) be a dp—map, S-0-monotone, surjective
map. Then for each S-0-connected subset U of Y, f~Y(U) is S-5-connected in X.

Proof. Let f~1(U) be not S-§-connected. Then, f~1(U) = PUQ with (Clx(P),Q) ¢
§ or (P,Clx(Q)) ¢ 6. As f is S-5-monotone, so for each y € U, f~1(y) is S-6-
connected. Thus, f~1(y) € P or f~1(y) C Q for all y € U. Now, let us define
A={yeU:fy)cPtand B={y e U: f~'(y) C Q}. Note that P = f~1(A),
Q = fY(B) and U = AU B. Since f is §,— map with (Clx(P),Q) ¢ ¢ or
(P,Clx(Q)) ¢ ¢, therefore (A, B) forms an S-é-separation for U. O

Definition 39. In an S-provimity space X, a finite sequence Uy,Us,--- U, of
subsets of X is called an S-6-chain if (Clx (U;),Uiy1) € 6 and (U;,Clx(Uij1)) €6
foralli=1,2,--- ,n—1.

A family F of subsets of X is said to be S-6-chained in X if for every pair (U, V)
of elements of F, there is an S-§-chain in F joining U and V.

Theorem 40. Suppose {U;}_; be a finite family of S-6-connected subsets of an
S-prozimity space X and forms an S-6-chain, then \J;_, U; is S-6-connected in X.

Proof. The Proof follows by induction on n as it holds for n = 2 by Theorem 24. [

Theorem 41. For an S-0-chained family F = {U; : i € I} in X, if each member
U; is S-6-connected in X, then U = Uiel U; is also S-6-connected in X.

Proof. Let x,y € U be arbitrary. So, there is some i,7 € I such that z € U; and
y € U;. Thus by hypothesis, there is an S-6-chain joining U; and U;. Therefore,
by Theorem 40, union of all the members of this S-d-chain is S-d-connected. Thus,
x and y can be joined by an S-§-connected set. Hence, by Corollary 30, U is
S-d-connected in X. O
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Definition 42. In an S-proximity space X, a cover F is said to be an S-0-cover if
(Clx(M),N) €6 and (M,Clx(N)) € 6 for M,N C X, then there is some U € F
such that M NU # ¢ and N NU # ¢.

Theorem 43. In an S-0-connected space X, every S-§-cover is an S-6-chained
family.

Proof. Assume that F = {U; : i € I} be any S-d-cover of X. Suppose there
exist 4,7 € I such that U; and U; can not be joined by any S-d-chain in F. Now,
consider P as the union of all the members of F which are joinable with U; by
some S-d-chain F' C F, and @ as the union of rest of the elements of F. Then
note that X = P U Q. Now it is to show that X is not S-d-connected, that is,
(Cix(P),Q) ¢ § or (P,Clx(Q)) ¢ 6. Again on the contrary, let (Cix(P),Q) € ¢
and (P, Clx(Q)) € 8. Then there exists U € F such that UNP # ¢ and UNQ # ¢.
Thus, there is some U, C P and U, C @ such that UNU,, # ¢ and U NU,, # ¢.
So, U, can be joined with U; using an S-6-chain F” C F, which is absurd. O

Theorem 44. Let X be an S-6-connected, separated S-prozimity space. If for some
x € X, X\{z} = PUQ where (P, Q) is S-§-separated in X, then ({z},Clx(P)) € §
and ({y}, Clx(Q)) € 0.

Proof. If ({z},Clx(P)) ¢ d, then ({z}, P) ¢ §. Since pair (P, Q) is S-0-separated in
X and X is separated, therefore it is easy to conclude that X is not S-d-connected,
a contradiction. Similarly, conclude that ({y}, Clx(Q)) € 0. O

4. LOCAL S-6-CONNECTEDNESS

In this section, local S-d-connectedness is defined and it’s several properties are
studied.

Definition 45. The S-§-component of a subset U in an S-proximity space X is
defined as the union of all S-§-connected subsets of X containing U and it is denoted

by C5(U).

Every é-component is contained in some S-d-component. Any S-§-component
being union of S-d-connected sets with nonempty intersection is S-d-connected. An
S-d-component being a maximal S-d-connected set is 7s-closed.

Analogously, the S-d-component of a point x can be defined as the union of all
S-d-connected subsets of X containing x. Note that S-§-components of any two
distinct points of X are either same or d-far sets in X.

In the next theorem, we show that the S-d-component of product S-proximity
is exactly the product of S-d-components of each S-proximity.

Theorem 46. Suppose {(X;,0;) : i € I} be a nonempty family of S-proximity
spaces. Then the S-0-component of the product (X,6) = [[{(X:,0;) : ¢ € I} co-
incides with the product [[{Cj (z;) : i € I} of each S-5-component of the point
z; € X;.
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Proof. Let C3(x) be the S-d-component of z in X and for each i € I, Cj (;)
be the S-0-component of z; in X;. Then, [[{C5 (z;) : i € I} being the product
of the S-d-connected sets is S-d-connected. Therefore it is contained in Cj(z).
Conversely, for each ¢ € I, p;C(x) being S-d-continuous image of S-d-connected
set is S-0-connected. Therefore, p;C5(z) C Cf (;) for each i € I. Hence, Cj(z) C

[{piCi(x):iel}C H{C’g(m,) (i eI} O

Next, we show that S-d-component is preserved under an S-§-monotone, surjec-
tive, §p—map

Theorem 47. Suppose f : (X,8) — (Y, 48') be S-5-monotone, surjective and &,—
map. Then C* is an S-5-component of W C Y if and only if f~1(C*) is an S-6-
component of f~H(W).

Proof. Assume that C* is S-5-component of subspace W C Y. Obviously, f~1(C*)
is S-6-connected by Theorem 38. Now, suppose there is some S-d-connected set M
in f~Y(W) such that f~1(C*) ¢ M C f~Y(W). Since the map f is surjective,
therefore C* C f(M) C W. As f is S-d-continuous being S-§-monotone, so f(M)
is S-9-connected. Thus, f(M) = C* which implies f~1(C*) = M.

Conversely, let f~1(C*) be an S-§-component of f~1(W). Therfore, f~1(C*)
is S-§-connected subset of f~1(W) and f is S-d-continuous being S-6-monotone.
Thus, C* is S-d-connected subset of W. Now, suppose that N be an S-é-connected
set such that C* C N ¢ W. Then, f~1(C*) C f~(N) C f~Y(W) and f~1(N)
is S-§-connected by Theorem 38. Hence, by hypothesis, f~1(C*) = f~1(N) which
implies C* = N. (I

Definition 48. Let X be an S-proximity space. Then X is locally S-§-connected at
x € X, if every 6-neighbourhood of © contains some S-§-connected d-neighbourhood
of x. We call X is locally S-6-connected if it is locally S-0-connected for all x € X.
Further, a subset Y C X is locally S-6-connected if Y is locally S-0-connected in
the subspace S-provimity of X.

Now, we show that locally S-d-connectedness and S-d-connectedness are two
independent concepts.

Example 49. (a). Let X be any discrete proximity space with | X| > 2. Then X
1s locally S-6-connected, but it is not S-0-connected.

(b). Suppose X be an S-proximity space defined as in Example 33. Then X is
locally S-6-connected, but not S-§-connected.

Example 50. The closed Topologist’s sine curve T = {(z,sin(l/z)) : 0 < z <
1JU{(0,y) : =1 <y < 1} with subspace E-proximity induced by R? is S-5-connected,
but not locally S-0-connected.

Example 51. The subspace X = {0}U{1/n : n € N} of R with S-prozimity defined
as in Example 18. Then X is not locally S-§-connected.
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Theorem 52. Suppose x € PN Q, where P and @ are locally S-§-connected sets
at x. Then P U Q is also locally S-6-connected at x.

Proof. Let W be a §-neighbourhood of the point . Then, Wp = W N P and
Wgo = W N Q are d-neighbourhoods of the point = in P and @ respectively. Using
hypothesis, there exist some S-d-connected J-neighbourhoods Mp and Mg of x
such that Mp C Wp and Mg C Wy. Then, z € Mp U Mg C WpUWg such that
Mp U Mg is S-d-connected set. Also, ({z}, (P\Mp) U (Q\Mg)) ¢ 6 which implies
({z}, (PUQN\(MpUMqg) ¢ 6. Therefore, MpU Mg is a 6-neighbourhood of z. O

Theorem 53. If an S-prozimity space X is locally S-6-connected, then S-0-component
of every Ts-open subspace of X is T5-open.

Proof. Assme that X is locally S-é-connected and W be 75-open subspace in X.
Let C* be an S-6-component of W. If y € C*, then ({y}, X\W) ¢ 6. Therefore W
is a d-neighbourhood of y. Since X is locally S-d-connected, then there exists an
S-6-connected d-neighbourhood M of y such that y € M C W. But C* is maximal
S-6-connected set containing y, so y € M C C*. Therefore, C* is 75-open. (]

Corollary 54. If X is locally S-6-connected space, then S-d-components of X are
clopen sets in the induced topology Ts.

Corollary 55. If an S-proximity space X is locally S-6-connected and compact,
then it has at most finite number of S-§-components.

Definition 56. Let U be a subset of an S-proximity space X. Then it is called an
S-0-treelike in X if it is S-6-connected and for each pair of points x,y € U there
exists an S-§-connected set V. C U in X such that U\V = P UQ where z € P,
y € Q and the pair (P, Q) is S-6-separated in X.

Example 20 shows that there exists an S-0-treelike S-proximity space which is
not d-treelike [4], and from Example 32 we conclude that there exists an S-J-treelike
S-proximity space which is not treelike [1] (Topologically).

Theorem 57. If an S-prozimity space X is S-6-treelike, then it is separated.

Proof. Suppose X is not separated. So, there exist two distinct points z,y in X such
that ({z},{y}) € §. Thus, {z,y} is S-0-connected in X. Since X is an S-0-treelike
space, therefore there exists an S-d-connected set U in X such that X\U = PUQ
where z € P, y € @ and the pair (P,Q) is S-0-separated in X. Then the pair
Pn{z,y} and Q N{z,y} forms an S-0-separation for {z,y}, a contradiction. O
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