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Abstract 
 
PM10 can be stated as a particulate matter smaller than 10 micrometer and it can be suspended in the air. 
The incremental concentration of PM10 affects both human and environment drastically. In this study, an 
air quality assessment by exhibiting the potential relationships among the secondary indicators and PM10 
has been focused. For the analyses, statistical learning-based regularization procedures such as Ridge, the 
Lasso and Elastic-net algorithms have been practiced. In particular, use of Elastic-net algorithm in 
predicting PM10 concentration includes a novelty. As a result of the computational studies, it has been 
recorded that all the models showed high accuracy capacities. However, the elastic-net model 
outperforms the other models both accuracy and robustness (stability). Considering the error 
measurements (MSE and MAPE), the best numerical results have been provided by the Elastic-net model. 
Use of machine learning-based regularization algorithms in environmental problems can provide accurate 
model structures as well as generality and transparency. 
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İstatistiksel Öğrenmeye Dayalı Düzenlemeyle Hava Kalitesinin 

Değerlendirilmesi  
 
Öz 
 
PM10, 10 mikrometreden daha küçük boyutta, havada askıda kalma özelliğine sahip parçacık madde 
olarak tanımlanabilir. PM10’un çok yüksek konsantrasyonları insan ve çevreyi şiddetli biçimde etkiler. Bu 
çalışmada, hava kalitesinin değerlendirilmesi amacıyla, ikincil parametreler ile PM10 arasındaki ilişkilerin 
ortaya çıkarılmasına odaklanılmıştır. Analizler için istatistiksel öğrenmeye dayalı düzenleme yöntemleri 
olan Ridge, Lasso ve Elastic-net yordamlarından yararlanılmıştır. Özellikle Elastic-net yordamının PM10 
tahmininde kullanımı yenilik taşımaktadır. Hesaplamaların sonucu olarak, bütün modellerin yüksek 
kestirim kapasitesine sahip oldukları kaydedilmiştir. Bununla birlikte, gerek kestirim başarısı ve gerekse 
de model gürbüzlüğü (duraylılığı) bakımından Elastic-net modeli diğer yöntemlerle karşılaştırıldığında 
daha başarılı sonuçlar vermektedir. Model hata ölçümleri (MSE ve MAPE) temel alındığında, en iyi 
sayısal sonuçlar Elastic-net modeliyle elde edilmiştir. Makine öğrenmesine dayalı düzenleme 
yordamlarının çevresel problemlerin değerlendirilmesi amacıyla kullanımı başarılı, genelleştirilmiş ve 
şeffaf model yapılarının oluşturulmasını sağlayabilecektir. 
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1. INTRODUCTION 
 
Air quality management has gained critical 
importance due to urban life and crowded cities. 
As a result of the industrialization and unrestrained 
population increase, new paradigms as well as 
scientific-statistical control mechanisms have 
accompanied these trends. Among the set points of 
the process, industry and agricultural works can be 
highlighted [1]. 
 
Air quality is referenced by critical measurements 
such as particle matters (PM10, PM2.5), SO2, 
temperature, velocity, humidity, pressure [2]. Like 
in Turkey, the most countries use these indicators 
and evaluations are performed both at global 
(country) and local scales (city, town etc.) 
periodically. Thus wise, the pollution levels are 
determined and necessary precautions are taken by 
public authorities. 
 
In the recent literature, various mathematical-
statistical modelling tools have been examined for 
appraising particle matter concentrations in the air. 
One of the important indicators, fine particle PM2.5 

was investigated in different studies. Lai [3] 
focused on fine particle events and a quality index 
suggested based on fine particle matter. Nguyen et 
al. [4] performed a numerical assessment using 
baseline simulation aerosol effects. Thus, spatio-
temporal variations of air quality parameters were 
appraised. Recently, Yatkin et al. [5] discussed the 
potential effects of fine particles on small urban 
domain. For this evaluation, both natural and 
anthropogenic sources have been utilized. 
 
In parallel to fine particles, relatively coarse 
particles (PM10) have been handled in various 
scientific works. One of these works, remote 
sensing-based estimation was conducted using air 
station data obtained from Ecuador [6]. In an 
interesting study, air quality was handled along 
with chronic stress and potential effects on human 
health were assessed [7]. Similarly, the influences 
of particulate matter concentrations (PM10) on 
tourism have been inspected by a generalized 
additive model [8]. More recently, a forecasting-
based study which uses time series and harmonic 

regression has been carried out for analyzing the 
PM10 variations in Ankara [9]. 
 
In general, the relationships between indicator 
variables and a target variable are analysed by 
multivariate regression methods. Although the 
traditional regression methodologies like linear 
least squares (LS) generate low bias, these are also 
sensitive against high variance. The LS fitting is 
mostly used to obtain a linear structure [10]. On 
the other hand, more robust tools are required for 
many problems due to interpretability. In 
particular, limited number of variables and more 
generality should be considered by a regression 
modelling.  Besides this, air quality appraising 
built upon particulate matters includes many 
complexities due to natural variability and 
different sourced independent variables and a 
reliable data analysis should be performed based 
on reduced variability and high accuracy. 
 
From a statistical point of view, performing high 
accuracy (regression) or clear pattern recognition 
(classification) under multi-collinearity conditions 
has critical importance. To model the complex 
systems based on reduced variance is also a 
required conditions for a high level identification. 
To overcome these problems, Ridge and Lasso 
(Least absolute shrinkage and selection operator) 
regularization paths were formulated to structure 
observations based on optimal coefficients both for 
regression and classification purposes [11,12]. 
Recently as a regularized regression method, 
Elastic-Net has been suggested for eliminating the 
drawbacks of Ridge and the Lasso techniques [13]. 
All the methods use shrinkage and regularization, 
and the relationships are revealed using penalty 
functions and adaptive parameters. 
 
In this study, PM10 concentrations measured by the 
quality stations in a city are appraised by 
regularization paths. By this way, the potential 
complexity and the relationships are assessed by 
high level regression algorithms. Based on a 
numerical comparison, the use of relatively new 
regularization (Elastic-net) in environmental data 
analysis was objected. Therefore, the results have 
been given using both performance indicators and 
magnitude of the coefficients.  
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2. METHODOLOGY 
 
2.1. Problem statement 

 
Many observations are recorded at air quality 
stations such as Particulate Matters, SO2, 
Temperature, Velocity, Pressure, and Humidity 
measurements. In general, air condition of a region 
is described by particulate matter level and 
distribution [14]. In this process, multivariate and 
simultaneous interdependent relationships should 
be focused and analyzed. Due to potential 
collinearities, high variance and natural 
uncertainties, more accurate and reliable 
modelling-classification tools are required.  
 
2.2. Ridge Regression 
 
In a traditional multivariate analysis, a matrix 
solution is the best way to provide the regression 
coefficients (Equation 1): 
 

β�=�XTX�
-1

XTY (1) 
 
The ridge estimator is constructed using an 
additive small constant as follows [15]      
(Equation 2): 
 

β
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In Eq (2), λ is a preliminary invariant, employed as 

a tuning parameter. β
R
� is defined to minimize the 

penalized sum of squares (Equation 3): 
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In eq (3), RSS denotes the residual sum of squares. 

The term λ∑ β
j
2p

j=1  is defined as shrinkage penalty. 

When β
1
,…,β

p
 are close to zero, this penalty 

reduces. In eq. (3), the relative impact of the terms 
is expressed via the constant λ [16]. 
 

2.2. The Lasso 
 
The ridge regression employs all the indicators in 
the resulting structure. This approach results in 
limited generality. To eliminate the drawbacks of 
ridge regression and to increase the model 
interpretability, the Lasso path was suggested [17]. 
 
The Lasso model shrinks down the model 
coefficients. It establishes models that 
simultaneously employ regularization to conduct 
feature selection [18]. The estimated Lasso 

coefficients β
L
� can be stated as (Equation 4): 
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The Lasso path utilizes an l1 (norm) penalty in 
place of an l2. In parallel to ridge analysis, the 
selection of a reliable λ has also determinative 
importance. 
 
2.2. Elastic-net 
 
Even though the Lasso is an effective variable 
selection method, it may contain several 
drawbacks [13]. If the number of variables is 
bigger than the number of measurements, the 
Lasso can select at most N variables. In the same 
condition, when the variables are correlated, ridge 
regression outperforms the Lasso. As an 
integration of the Lasso and ridge, elastic net 
performs best, because it obtains a strong 
combination of sparsity and regularization [19]. 
The following structure shows the objective 
function of the model (Equation 5): 
 

L(λ1,λ2,β)=�y-Xβ�
2
+λ2|β|

2+λ1|β|1 (5) 
 
In Eq. (5), λ1,λ2 are fixed and non-negative. For 
��[0,1) the elastic-net penalty can be provided 
(Equation 6 and 7): 
 
α=λ2/(λ1+λ2), (6) 
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�1-α�|β|1+α|β|2 (7) 
 
In the regularization system, the l1 part of the 
penalty forms a sparse model. However, the 
quadratic part of the penalty performs the l1 part 
more stable. Elastic-net regularization consists of 
two stages [13]: 
 
- For each fixed ��, the ridge regression 
coefficients are determined, 
 
- The Lasso-type shrinkage along the Lasso 
coefficient determination path is performed. 
 
 

3. IMPLEMENTATION 
 
3.1. Data Set and Structure Identification 
 
The air quality data set includes the observations 
recorded in Eskisehir city by national authority 
within an action plan [20]. The data set covers the 
temporal measurements within the period February 
2007 - December 2013. Due to the practical 
problems encountered in measurement processes 
[20] and outlier values, some of data were not able 
to consider. The data set comprising of 75 average 
values covers particulate matter (PM10), SO2 and 
meteorological parameters such as temperature, 
pressure, humidity and velocity [21]. The 
parameters considered are the general air quality 
assessment parameters referred in literature [2]. 
 
To reveal the pattern of the relationships in the 
data set, a series of bivarite median plots have been 
constructed as in Figure 1. The fences separate the 
observations. The bags consist of 50% of all 
observations.  By this structure, the outliers can be 
exhibited. The relationships between each 
indicator variable and PM10 indicate that 
temperature, velocity and humidity effects are 
similar and high variability. There are no outliers. 
On the other hand, both pressure and SO2 produce 
lower variance and some outliers. It should be 
noticed that the outlier provided by SO2 bivarite 
plot may be resourced from recording or extra 
ordinary situation. 

3.2. Results and Discussion 
 
The substantial parts of the computations have 
been performed via the packages in R [22] such as 
glmnet [23] and Caret [24]. Data scaling in the 
regularization algorithms have been performed by 
[15] (Equation 8): 
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xij

�∑ �xij-x�j�
2n
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Figure 1. Bivariate plots for relationships 
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To determine the initial constants like �, a grid  
was structured. using 6 x 75 matrix, with 6 rows   

(5 indicator variables plus intercept) and 75 
columns (number of observations). 

 

 
Figure 2. Coefficients provided by training models 

 
To provide the model parameters and performance 
measures, first data set was splitted into two 

groups: 75% (Training) and 25% (Testing). Figure 
2 indicates the optimized model coefficients 
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obtained by the λ grid values. The numbers on the 
plots refer the number of indicator variables using 
for determining the coefficients. These reference 
model parameters have been obtained using 
training observations.  

In the second step, the critical parameter λ was 
optimized by ten-fold cross validation. Figure 3 
indicates the cross validation-based parameter 
optimization structure. 

 

 
Figure 3. Cross Validation-based MSEs 

 
In consequence of the simulations, the optimum 
tuning value has been provided by the smallest 
cross-validation error. In order to obtain the 
determinative parameter λ against MSEs, ten-fold 
cross validation has been conducted. 

The model optimizations (final coefficients) are 
given in Table 1. The case studies showed that all 
the models have notable estimation capacities. The 
magnitudes of the coefficients include some 
potential for an explanation. As seen in Table 1, 
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the Elastic-net model explains the relationships via 
relatively smaller magnitudes comparing with the 
other models. This point has importance to analyse 
the degree of the variability. 
 
Providing an effective bias-variance trade-off 
permits to minimize the model's total error [25].  
From an error-based analysis, the best accuracy 
has been provided by the elastic-net model. Table 
2 summarizes the testing model performances 
based on Mean Squared Error (MSE) and Mean 
Absolute Percentage Error (MAPE) measures. The 
lower MSE and MAPE refer the better accuracy. It 
should be noticed that even though the Ridge 
model employs 5 indicator variables, not only the 
Lasso but also the Elastic-net models use 4 
independent variables in identification. This means 
that both the models have more generality 
comparing with the ridge model structure. 
 
Table 1. Optimized model coefficients 

Model Equation 

Ridge 
PM10 = 95.96+0.61SO2+0.23Tem-  
            3.18Vel-0.14Hum-0.05Pre 

Lasso 
PM10 = 88.33+1.18SO2+0.28Tem 
           -0.20Hum-0.05Pre 

Elastic-
Net 

PM10 = 41.68+0.78SO2+0.23Tem 
           -0.02Hum-0.01Pre 

 
Table 2. MSE and MAPE performances on 

testing data 
Model MSE MAPE 
Ridge 146.32 0.253 
Lasso 145.44 0.246 
Elastic-Net 142.01 0.232 

 
One of the main motivations of this study was 
specify the effects of air quality model parameters 
on particulate matter. Table 1 indicates that SO2 
and temperature parameters have additive effects. 
However, the rest of the parameters such as 
velocity, humidity and pressure have reducing 
effects. 
 
Although the elastic-net model seems the best 
model from Table 2, the estimation capacities of 
the regularization paths are also very close. It 
should be noticed that both the Lasso and the 
elastic-net use limited parameters and these have 

more general structures than the Ridge model. 
Besides these, as a hybrid model structure, elastic-
net confirmed more technical superiorities: 
 
– Eliminating limitation on the number of selected 
variables; 
– Stabilizing the l1 regularization path. 
 

4. CONCLUSIONS 
 
Particulate matter (PM) addresses particles 
suspended in the air. The incremental 
concentration of PM10 and its detrimental effects 
on human and environment have gained attention 
in the world. 
This study focused on revealing the potential 
relationships among the secondary air quality 
indicators and PM10 concentrations. For this 
purpose, high level regression procedures such as 
Ridge, the Lasso and Elastic-net regularization 
algorithms have been utilized. The case studies 
showed that all the models have huge capacities to 
specify the relationships. In particular, the elastic-
net path can be suggested for the system including 
high number of variables. Due to generality and 
transparency, this hybrid model can be suggested 
for analyzing spatial-environmental processes. 
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