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Abstract. In this study, ruled surfaces formed by Frenet’s trihedral of involute curve β of a given curve α are
discussed. These surfaces are named as involute trajectory ruled surfaces. These type of ruled surfaces are expressed
depending on the angle θ between the binormal vector b and Darboux vector D of the main curve (evolute) α. Also,
some new results and theorems related to the developability of the involute trajectory ruled surfaces are obtained.
Finally we illustrate these surfaces by presenting some examples.
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1. Introduction

A ruled surface can be generated by the motion of a line in space, similar to the way that a curve can be generated
by the motion of a point. So, in spatial motion, the trajectories of oriented lines embedded in a moving space or in a
moving rigid body are generally called trajectory ruled surfaces (see [7]). A developable ruled surface can be defined
as isometrically into the plane. The most obvious examples of developable ruled surfaces are cones and cylinders.
Developable surfaces play an distinguished role since they have broad applications in many areas from engineering to
manufacturing. For instance, an aircraft designer uses them to design airplane wings. In textile design one starts with
a planar piece of cloth to produce garments and their quality improves if the cloth is not stretched. In naval industry
one has to adapt planar sheets of steel to the form of the hull of a vessel. This can be done with a folding machine if
the result is a developable surface, avoiding the application of heat and reducing the costs. They are also useful for
modeling pages of a book [11] for 3D reconstruction and they can also be found in architectural constructions [12].

In the literature, there have been many studies on trajectory ruled surfaces and developable ruled surfaces. Gürsoy
and Küçük gave the some new results on the geometric invariants of the closed trajectory ruled surfaces for spatial
motions [5]. Also, Kucuk gave the developable of Bertrand trajectory ruled surface offsets [6]. He also showed that
the striction curve of the base ruled surface is a helix if there are more than one developable Bertrand offsets within a
developable ruled surface. The geometry of trajectory ruled surfaces is widely applied to the study of design problems
in spatial mechanisms or space kinematics [4, 13, 14].

On the other hand, Yaylı and Saraçoglu [15] studied timelike and spacelike developable ruled surfaces in Minkowski
space. Orbay and Aydemir [10] obtained the distrubition parameter, mean curvature, and Gaussian curvature, and some
new results and theorems were given for developable and minimal spacelike ruled surfaces. In [1], Bayram and Bilici
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consructed a surface family possessing an involute β of a given curve α as an asymptotic curve with curvatures κ, τ.
They say that if τ

κ
, ∓1 then there exists a ruled surface possessing β as an asymptotic curve. As a result of this

proposition, they concluded that the ruled surface is developable if and only if α is a unit speed helix.
In this paper, unlike existing literature, a generalization of involute trajectory ruled surfaces generated by the Frenet

trihedron moving along involutes of a given curve is stated by a firmly connected angle between the binormal vector
and Darboux vector of this base curve. And, some new results and theorems related to the developability of involute
trajectory ruled surfaces are obtained. Additionally, we illustrate these type of ruled surfaces with three different
example.

2. Preliminaries

Suppose we are given a 3-dimensional parametric curve r(s) : I → E3, s ∈ I ⊂ R, in which s is the arch length
(regular and ‖r′(s)‖ = 1) and r(s) has second derivatives. We assume that r′′(s) , 0, because otherwise the curve is a
straight line segment or the principal normal is undefined at some point on the curve. Because r(s) is a regular curve
with r′′(s) , 0, the Frenet frame {t (s) , n (s) , b (s)} along r(s) is defined, where t (s) = r′(s), n (s) = r′′(s)/ ‖r′(s)‖,
b (s) = t (s)×n (s) are the unit tangent, principal normal and binormal vectors of the curve at the point r(s), respectively.
The derivative formulas of the Frenet frame are governed by the following relations [3]:

d
ds

 t (s)
n (s)
b (s)

 =

 0 κ (s) 0
−κ (s) 0 τ (s)

0 τ (s) 0


 t (s)

n (s)
b (s)

 , (2.1)

where κ (s) and τ (s) are the curvature and torsion of the curve r(s), respectively.
The Frenet formulae can be interpreted kinematically as follows: If a moving point traverses the curve in such a

way that s is the time parameter, then the moving frame {t (s) , n (s) , b (s)} moves in accordance with Eq. (2.1). This
motion contains, apart from an instantaneous translation, an instantaneous rotation with an angular velocity vector
given by the Darboux vector [8].

D (s) = τ (s) t (s) + κ (s) b (s) . (2.2)

The direction of the Darboux vector is that of the instantaneous axis of rotation and its length ‖D‖ =
√
κ2 (s) + τ2 (s)

is the scalar angular velocity [8]. Let θ denote the angle from b (s) to D (s) measured in the sense of the shortest rotation
which brings b (s) into t (s). Then we have

κ = ‖D‖ cos θ, τ = ‖D‖ sin θ. (2.3)

From Eq. (2.3) we say that τ
κ

= tan θ and if θ is a constant then r(s) is a general helix.
Now consider a space curve r(s) and its involutes γ (s). If t (s) denotes the unit tangent of r(s) then γ (s) has principal

normal n∗ (s) which is the same as t (s). A point on γ (s) corresponding to a point on r(s) is then given by

γ (s) = r(s) + (c − s) t (s) , (2.4)

where c is a constant and t (s) = r′(s). On the other hand the relationship between the Frenet trihedron of r(s) and that
of its involutes γ (s) can be written as [2] t∗ (s)

n∗ (s)
b∗ (s)

 =

 0 1 0
− cos θ 0 sin θ
sin θ 0 cos θ


 t (s)

n (s)
b (s)

 . (2.5)

The trace of an X oriented line along a space curve r(s) is generally a trajectory ruled surface. A parametric equation
of this trajectory ruled surface generated by X oriented line is given by

ϕ (s, k) = r(s) + kd (s) , s, k ∈ I ⊂ R,

where d is the unit direction vector of X oriented line. The distribution parameter (or drall) of the ϕ (s, k) trajectory
ruled surface is given as

δd =
det (r′, d, d′)

‖d′‖2
. (2.6)

A developable trajectory ruled surface is characterized by δd = 0. If there exist a common perpendicular to two
constructive rulings in the ruled surface, then the foot of the common perpendicular on the main ruling is called a
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central point. The locus of the central point is called striction curve. The parametrization of the sitriction curve on a
trajectory ruled surface in [9] is given

C (s) = r(s) −
〈r′, d′〉

‖d′‖2
d.

3. Involute Trajectory Ruled Surfaces

Let γ (s) be the involutes of a space curve r(s) and {t∗ (s) , n∗ (s) , b∗ (s)} be its Frenet frame defined as in Eq. (2.5).
And also, we consider that a oriented unit line X (s) in E3 such that it is firmly connected to Frenet frame of the
involutes γ (s) is represented, uniquely with respect to this frame, in the form

X (s) = x1t∗ (s) + x2n∗ (s) + x3 b∗ (s) , ‖X‖ = 1, (3.1)

where xi (i = 1, 2, 3) are scalar of the arc length parameter of the involutes γ (s). The trajectory ruled surfaces gener-
ated by line X (s), t∗ (s), n∗ (s) and b∗ (s) are

M : ϕ (s, v) = γ (s) + vX (s) ,

M1 : ϕ (s, u) = γ (s) + ut∗ (s) , (3.2)

M2 : ϕ (s, z) = γ (s) + zn∗ (s) , (3.3)

M3 : ϕ (s,w) = γ (s) + wb∗ (s) , (3.4)

respectively. We can obtained the distribution parameter of the involute trajectory ruled surface generated by X (s) in
E3. Analitically, from equations (2.5), (3.1) and Frenet formulas

X′ (s) =
(
−x1κ + x2θ

′ sin θ + x3 θ
′ cos θ

)
t + (−x2 ‖D‖) n

+
(
x1τ + x2θ

′ cos θ − x3 θ
′ sin θ

)
b. (3.5)

By diffentiating Eq. (2.4) with respect to the arc length parameter s, we have

γ′ (s) = (c − s) κn. (3.6)

By substituting Eqs.(3.5) and (3.6) into the Eq. (2.6), the distribution parameter of this surface is

δX =
det (γ′, X, X′)

‖X′‖2
,

=
(c − s) κ

[
θ′

(
x2

2 + x2
3

)
− x1x3 ‖D‖

](
x2

1 + x2
2

)
‖D‖2 +

(
x2

2 + x2
3

)
θ′2 − 2θ′x1x3 ‖D‖

. (3.7)

The ruled surface developable if and only if δX is zero. From Eq. (3.7) we have

(c − s) κ
[
θ′

(
x2

2 + x2
3

)
− x1x3 ‖D‖

]
= 0.

Thus we state the following theorem.

Theorem 3.1. The involute trajectory ruled surface M is developable if and only if the angle between b (s) and D (s)
of space curve r(s) satisfies the following equality

θ =
x1x3

x2
2 + x2

3

∫
‖D‖ ds + λ,

where λ is an arbitrary constant.

4. Special Cases

4.1. The Case X (s) = t∗ (s). In this case, x1 = 1, x2 = x3 = 0. Thus from Eq. (3.7)

δt∗ = 0.
We can give the following corollary

Corollary 4.1. The involute trajectory ruled surface M1 given by the equation (3.2) is developable.
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4.2. The Case X (s) = n∗ (s). In this case, x1 = x3 = 0, x2 = 1 and from Eq. (3.7)

δn∗ =
(c − s) κθ′

‖D‖2 + θ′2
. (4.1)

So we can give following corollary.

Corollary 4.2. If θ =constant (i.e. space curve r(s) is a general helix) then the involute trajectory ruled surface M2
given by the equation (3.3) is developable.

4.3. The Case X (s) = b∗ (s). In this case, x1 = x2 = 0, x3 = 1 and from Eq. (3.7)

δb∗ =
(c − s) κ

θ′
. (4.2)

So we can give following corollary.

Corollary 4.3. If c = s (i.e. space curve r(s) is coincident with γ (s)) then the involute trajectory ruled surface M3
given by the equation (3.4) is developable.

From the Eqs. (4.1) and (4.2) we have
δn∗

δb∗
= 1 +

(
θ′

‖D‖

)2

. (4.3)

Thus, the following theorem can be given.

Theorem 4.4. If θ denotes the angle from b (s) to D (s) measured in the sense of the shortest rotation wich brings
b (s) into t (s) then there is the relationship (4.3) between Darboux vector of r(s) and the distribution parameters of the
involute trajectory ruled surfaces generated by n∗ (s) and b∗ (s).

From Eq. (4.3), if θ is constant then δn∗

δb∗
= 1. On the contrary, if δn∗

δb∗
= 1 then θ is constant. Therefore, with respect

to this condition, we can give the following theorem.

Theorem 4.5. The space curve r(s) is general helix if and only if δn∗

δb∗
= 1.

4.4. The Case X (s) is in the Normal Plane. In this case x1 is zero
(
x2

2 + x2
3 = 1

)
. From Eq. (3.7), the distribution

parameters of the involute trajectory ruled surface M is

δX =
(c − s) κθ′

x2
2 ‖D‖

2 + θ′2
.

Hence the following corollary holds.

Corollary 4.6. If the space curve r(s) is a general helix or coincident with γ (s) then the involute trajectory ruled
surface M which generated by the oriented line X (s) in the normal plane is developable.

4.5. The Case X (s) is in the Osculating Plane. In this case x3 is zero
(
x2

1 + x2
2 = 1

)
. From Eq. (3.7), the distribution

parameters of the involute trajectory ruled surface M is

δX =
(c − s) κθ′x2

2

‖D‖2 + x2
2θ
′2

.

Thus Corollary 4.6 can be restated for the involute trajectory ruled surface M which generated by the oriented line
X (s) in the osculating plane.

4.6. The Case X (s) is in the Rectifying Plane. In this case x2 is zero
(
x2

1 + x2
3 = 1

)
. From Eq. (3.7), the distribution

parameters of the involute trajectory ruled surface M is

δX =
(c − s) κ

[
θ′x2

3 − x1x3 ‖D‖
]

x2
1 ‖D‖

2 + x2
3θ
′2 − 2θ′x1x3 ‖D‖

.

Hence the following corollary holds.
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Corollary 4.7. The involute trajectory ruled surface M which generated by the oriented line X (s) in the rectifying
plane is developable if and only if the angle between b (s) and D (s) of space curve r(s) satisfies the following equality

θ =
x1

x3

∫
‖D‖ ds + λ,

where λ is an arbitrary constant.

4.7. The Case the Base Curve γ(s) is the Striction Curve C (s). From Eq. (2.6) the parametrization of the striction
curve on a involute trajectory ruled surface generated by oriented line X (s) is given by

C (s) = γ(s) +
x2 (c − s) κ ‖D‖
‖X′‖2

X.

From here if the base curve γ(s) is the striction curve C (s) then we have x2 = 0 or c = s. Hence the following
theorem can be given.

Theorem 4.8. If the base curve γ(s) is the same as the striction curve C (s) then the oriented line X (s) of the involute
trajectory ruled surface is in the rectifying plane or space curve r(s) is coincident with γ (s)

5. Examples of Involute Trajectory Ruled Surfaces

Example 5.1. Let r (s) =
(

4
5 cos s, 1 − sin s,− 3

5 cos s
)

be a unit speed curve. Then, it is easy to show that

t (s) =

(
−

4
5

sin s,− cos s,
3
5

sin s
)
,

n (s) =

(
−

4
5

cos s, sin s,
3
5

cos s
)
,

b (s) =

(
−

3
5
, 0,−

4
5

)
,

with curatures κ = 1 and τ = 0. In this situation, the involutes γ(s) of the curve r (s) can be given by the equation

γ (s) =(
4
5

cos s −
4
5

(c − s) sin s, 1 − sin s − (c − s) cos s,−
3
5

cos s +
3
5

(c − s) sin s),

where c is an arbitrary constant.

Figure 1. Cirle r (s) and its involute curve γ(s) for c=2



M. Bilici, Turk. J. Math. Comput. Sci., 13(1)(2021), 94–105 99

From Eqs. (2.2) and (2.3) we have D (s) = b (s) and θ = 0◦, respectively. By using Eq. (2.5) we have the Frenet
trihedron of the involutes γ(s) of the curve r (s)

t∗ (s) = n (s) =

(
−

4
5

cos s, sin s,
3
5

cos s
)
,

n∗ (s) = −t (s) =

(
4
5

sin s, cos s,−
3
5

sin s
)
,

b∗ (s) = b (s) =

(
−

3
5
, 0,−

4
5

)
.

Thus we obtain the involute trajectory ruled surfaces generated by t∗ (s), n∗ (s) and b∗ (s) as

ϕt∗ (s, v) = (
4
5

cos s −
4
5

(c − s) sin s −
4
5

v cos s, 1 − sin s − (c − s) cos s + v sin s,

−
3
5

cos s +
3
5

(c − s) sin s +
3
5

v sin s),

ϕn∗ (s, v) = (
4
5

cos s −
4
5

(c − s) sin s −
4
5

v cos s, 1 − sin s − (c − s) cos s + v sin s,

−
3
5

cos s +
3
5

(c − s) sin s +
3
5

v sin s),

ϕb∗ (s, v) = (
4
5

cos s −
4
5

(c − s) sin s −
4
5

v cos s, 1 − sin s − (c − s) cos s + v sin s,

−
3
5

cos s +
3
5

(c − s) sin s +
3
5

v sin s),

respectively, where −5 ≤ v ≤ 5 and c = 2 (Figs. 2-4).

Figure 2. The involute trajectory ruled surface ϕt∗ (s, v) generated by t∗ (s) for sε [−2, 2]

Example 5.2. Let α (s) =

( √
3

2 sin s, s
2 ,
√

3
2 cos s

)
be a unit speed helix. Then, it is easy to show that

t (s) =

 √3
2

cos s,
1
2
,−

√
3

2
sin s

 ,
n (s) = (− sin s, 0,− cos s) ,

b (s) =

−1
2

cos s,

√
3

2
,

1
2

sin s
 ,
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Figure 3. The involute trajectory ruled surface ϕn∗ (s, v) generated by n∗ (s) for sε [−3, 3]

Figure 4. The involute trajectory ruled surface ϕn∗ (s, v) generated by n∗ (s) for sε [−3, 3]

with curatures κ =
√

3
2 and τ = 1

2 . In this situation, the involutes β(s) of the curve α (s) can be given by the equation

β(s) =(

√
3

2
sin s +

√
3

2
(c − s) cos s,

s
2

+
1
2

(c − s) ,

√
3

2
cos s −

√
3

2
(c − s) sin s)

where c is an arbitrary constant.
From Eqs. (2.2) and (2.3) we have D (s) = 1

2 t (s) +
√

3
2 b (s) and θ = 30◦, respectively. By using Eq. (2.5) we have

the Frenet trihedron of the involutes β(s) of the curve α (s)

t∗ (s) = n (s) = (− sin s, 0,− cos s) ,

n∗ (s) = −

√
3

2
t (s) +

1
2

b (s) = (− cos s, 0, sin s) ,

b∗ (s) =
1
2

t (s) +

√
3

2
b (s) = (0, 1, 0) .

Thus we obtain the involute trajectory ruled surfaces generated by t∗ (s), n∗ (s) and b∗ (s) as

Pt∗ (s, v) = (

√
3

2
sin s +

√
3

2
(c − s) cos s − v sin s,

s
2

+
1
2

(c − s) ,
√

3
2

cos s −

√
3

2
(c − s) sin s − v cos s),
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Figure 5. Helix α (s) and its involute curve β(s) for c=6

Pn∗ (s, v) = (

√
3

2
sin s +

√
3

2
(c − s) cos s − v cos s,

s
2

+
1
2

(c − s) ,
√

3
2

cos s −

√
3

2
(c − s) sin s + v sin s),

Pb∗ (s, v) = (

√
3

2
sin s +

√
3

2
(c − s) cos s,

s
2

+
1
2

(c − s) + v,
√

3
2

cos s −

√
3

2
(c − s) sin s),

respectively, where −5 ≤ s, v ≤ 5 and c = 6 (Figs. 6-8).

Figure 6. The involute trajectory ruled surface Pt∗ (s, v) generated by t∗ (s)
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Figure 7. The involute trajectory ruled surface Pn∗ (s, v) generated by n∗ (s)

Figure 8. The involute trajectory ruled surface Pb∗ (s, v) generated by b∗ (s)

Example 5.3. Let Let η (s) =

(
cos

( √
2

2 s
)
, sin

( √
2

2 s
)
,
√

2
2 s

)
be a unit speed helix. Then, it is easy to show that

t (s) =

√
2

2

− sin
 √2

2
s
 , cos

 √2
2

s
 , 1 ,

n (s) =

− cos
 √2

2
s
 ,− sin

 √2
2

s
 , 0 ,

b (s) =

√
2

2

sin
 √2

2
s
 ,− cos

 √2
2

s
 , 1 ,

with curatures κ = τ = 1
2 . In this situation, the involutes ζ(s) of the curve η (s) can be given by the equation

ζ(s) = (cos
 √2

2
s
 − √2

2
(c − s) sin

 √2
2

s
 , sin

 √2
2

s
 +

√
2

2
(c − s) cos

 √2
2

s
 ,  √2

2
− 1

 s + c),

where c is an arbitrary constant.
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Figure 9. Helix η (s) and its involute curve ζ(s) for c=10

From Eqs. (2.2) and (2.3) we have D (s) = 1
2 [t (s) + b (s)] and θ = 45◦, respectively. By using Eq. (2.5) we have

the Frenet trihedron of the involutes ζ(s) of the curve η (s)

t∗ (s) = n (s) =

− cos
 √2

2
s
 ,− sin

 √2
2

s
 , 0 ,

n∗ (s) = −

√
2

2
[t (s) − b (s)] =

sin
 √2

2
s
 ,− cos

 √2
2

s
 , 0 ,

b∗ (s) =

√
2

2
[t (s) + b (s)] =

sin
 √2

2
s
 , 0, 1 .

Thus we obtain the involute trajectory ruled surfaces generated by t∗ (s), n∗ (s) and b∗ (s) as ,

Kt∗ (s, v) = (cos
 √2

2
s
 − √2

2
(c − s) sin

 √2
2

s
 − v cos

 √2
2

s
 , sin

 √2
2

s
 +

√
2

2
(c − s) cos

 √2
2

s
 − v sin

 √2
2

s
 , √2

2
s + (c − s)),

Kn∗ (s, v) = (cos
 √2

2
s
 − √2

2
(c − s) sin

 √2
2

s
 + v sin

 √2
2

s
 , sin

 √2
2

s
 +

√
2

2
(c − s) cos

 √2
2

s
 − v cos

 √2
2

s
 , √2

2
s + (c − s)),

Kb∗ (s, v) = (cos
 √2

2
s
 − √2

2
(c − s) sin

 √2
2

s
 + v sin

 √2
2

s
 , sin

 √2
2

s
 +

√
2

2
(c − s) cos

 √2
2

s
 , √2

2
s + (c − s) + v),

respectively, where −5 ≤ s, v ≤ 5 and c = 10 (Figs. 10-12).
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Figure 10. The involute trajectory ruled surface: Kt∗ (s, v) generated by t∗ (s)

Figure 11. The involute trajectory ruled surface: Kn∗ (s, v) generated by n∗ (s)

Figure 12. The involute trajectory ruled surface: Kb∗ (s, v) generated by b∗ (s)
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6. Conclusion

Involute trajectory ruled surfaces occurs as a result of the continuosly movement of the frenet vectors along the in-
volute curve. In this study, Involute trajectory ruled surfaces is stated by a firmly connected angle between the binormal
vector and Darboux vector of this base curve. Also, some new results and theorems related to the developability of the
involute of trajectory ruled surfaces are obtained. It is hoped that this study will provide the impetus for new studies
and contribute to the study of trajectory ruled surfaces.
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