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Abstract: The RSOR algorithm is a recursive algorithm that has been proposed as an alternative to the 

RLS algorithm for updating adaptive filter parameters. As with other algorithms, the forgetting factor, 

filter length and relaxation parameter significantly affects the performance of the RSOR algorithm. In this 

study, using an adaptive FIR filter in system identification mode, the effect of forgetting factor, filter 

length and relaxation parameter on the leakage phenomenon of the RSOR algorithm was analyzed. For 

this purpose, firstly, the effect of measurement noise on the adaptive filter output, namely the leakage 

phenomenon, was explained analytically, and then the influence of the forgetting factor and other filter 

parameters on this leakage phenomenon was examined. The results obtained from the simulation studies 

are compared with similar algorithms. 
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RSOR Algoritmasının Sızıntı Analizi 

 

Öz: RSOR algoritması, uyarlamalı filtre parametrelerini güncellemek için RLS algoritmasına alternatif 

olarak önerilmiş olan tekrarlamalı bir algoritmadır. Diğer algoritmalarda olduğu gibi, unutma faktörü, 

filtre uzunluğu ve gevşetme parametresi RSOR algoritmasının performansını önemli ölçüde 

etkilemektedir. Bu çalışmada, bir uyarlamalı FIR filtre sistem tanıma modunda kullanılarak unutma 

faktörünün, filtre uzunluğunun ve gevşetme parametresinin RSOR algoritmasındaki sızıntı olayına etkisi 

incelenmiştir. Bu amaçla, öncelikle ölçme gürültüsünün uyarlamalı filtre çıkışına etkisi, yani sızıntı olayı, 

analitik olarak açıklanmış, sonra unutma faktörünün ve diğer filtre parametrelerinin bu sızıntı olayına 

etkisi incelenmiştir. Yapılan benzetim çalışmalarıyla elde edilen sonuçlar, benzer algoritmalar ile 

karşılaştırılmıştır. 

 

Anahtar Kelimeler: Uyarlamalı Filtre, Sistem Tanıma, Sızıntı Olayı, Unutma Faktörü 
 

 

1. INTRODUCTION 

 

The RLS (Recursive Least Squares) algorithm is preferred in many applications due to its 

high convergence speed despite its high computational load (Haykin, 2002, Diniz, 2013). On the 

other hand, some alternative algorithms have been proposed: These are the RSOR (Recursive 

SOR) algorithm based on the single-step SOR (Successive Over-Relaxation) iteration (Hatun 

and Koçal, 2012), and the RI (Recursive Inverse) algorithm based on the one-step gradient 

iteration (Ahmad et al., 2011a). In these type algorithms, the forgetting factor, which is a 

positive number and taken as close to 1, is used for tracking parameter changes. If the forgetting 

factor is chosen less than 1, the parameter tracking capability of the algorithm increases, but the 

stability and misadjustment value of the algorithm are affected negatively. If the forgetting 

factor approaches 1, the stability and misadjustment value of the algorithm changes positively, 

but in this case, the parameter tracking capability decreases. 
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Adaptive filters are used in system identification mode in many applications. In the system 

identification mode, the estimated values of the adaptive filter parameters converge to their 

correct values, and the measurement noise can be recovered from the signal estimation error. 

This result indicates that the system identification process is working correctly. However, in 

some cases, the measurement noise corrupts the output signal of the filter. In this case, which 

was called as “the leakage phenomenon”, the system identification process does not work 

properly (Paleologu et al., 2008). The mathematical expression of the leakage signal can simply 

be derived, but the results obtained between different algorithms may not be the same. The 

leakage term depends on the forgetting factor, filter length, and other filter parameters, if any.  

 

The leakage phenomenon is a fundamental problem which affects the adaptive filtering 

applications negatively by increasing the misadjustment. For example, the leakage signal causes 

a residual error and inefficient cancellation of noise signal in adaptive noise cancellation 

applications, or imperfect rejection of echo signal in echo cancellation applications (Haykin, 

2002, Paleologu et al., 2008, Ciochină et al., 2009).  

 

The effects of forgetting factor and filter length on the leakage phenomenon of RLS and RI 

algorithms have been studied in detail (Ciochină et al., 2009, Ahmad et al., 2011b). In this 

article, it is aimed to perform a similar leakage analysis for the RSOR algorithm.  

 

In this paper: The leakage signal for the RSOR algorithm was formulated and analyzed 

depending on the forgetting factor and the other filter parameters in section 2. The simulation 

results obtained for the RSOR algorithm were compared with the RLS and RI algorithms in 

section 3, and some conclusions were given in section 4. 

 

2. THE LEAKAGE PHENOMENON 

 

2.1. System Identification Using The RSOR Algorithm 

In system identification process given in Figure 1, an algorithm adjusts the parameters of 

the adaptive filter. The system output and the adaptive filter output are given as  

 

𝑦(𝑛) = 𝐱𝑇(𝑛)𝐰, (1) 

 

𝑦̂(𝑛) = 𝐱𝑇(𝑛)𝐰̂(𝑛). (2) 

 

The parameter vectors of the system and adaptive filter, and the data input vector are defined as 

follows, respectively:  
 

𝐰 = [𝑤0 𝑤1 ⋯ 𝑤𝑀−1]𝑇 (3) 

 

𝐰̂(𝑛) = [𝑤̂0(𝑛) 𝑤̂1(𝑛) ⋯ 𝑤̂𝑀−1(𝑛)]𝑇, (4) 

 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝑀 + 1)]𝑇, (5) 

 

where 𝑀 is the filter length and 𝑥(𝑛) is the input signal. The desired signal 𝑑(𝑛) is tracked by 

the output of the filter, and it is written as 

  

𝑑(𝑛) = 𝑦(𝑛) + 𝑣(𝑛) = 𝐱𝑇(𝑛)𝐰 + 𝑣(𝑛) , (6) 

 



Uludağ University Journal of The Faculty of Engineering, Vol. 26, No. 1, 2021                        

 
 

327 

where 𝑣(𝑛) is the measurement noise with a zero-mean and variance 𝜎𝑣
2, and independent with 

the input signal 𝑥(𝑛). The error signal 𝑒(𝑛) is defined as  

 

𝑒(𝑛) = 𝑑(𝑛) − 𝑦̂(𝑛) = [ 𝑦(𝑛) − 𝑦̂(n)] + 𝑣(𝑛) = −𝐱𝑇(𝑛)[𝐰̂(𝑛) − 𝐰] + 𝑣(𝑛) (7) 

 

 
 

Figure 1: 

System identification diagram 

 

The RSOR algorithm minimizes the least-squares error function  

 

𝑉(𝐰, 𝑛) =  ∑ 𝜆𝑛−𝑖𝑒2(𝑖)

𝑛

𝑖=1

= ∑ 𝜆𝑛−𝑖[𝑑(𝑖) − 𝐱𝑇(𝑖)𝐰̂(𝑖)]2

𝑛

𝑖=1

  (8) 

 

and its minimization gives the optimal parameter vector 𝐰̂(𝑛) = 𝐑−1(𝑛)𝐩(𝑛), which is the 

solution of  the normal equation  

 

𝐑(𝑛)𝐰̂(𝑛) = 𝐩(𝑛) . (9) 

 

The estimates for 𝐑(𝑛) and 𝐩(𝑛) can be computed as  

 

𝐑(𝑛) =  ∑ 𝜆𝑛−𝑖𝐱(𝑖)𝐱𝑇(𝑖)

𝑛

𝑖=1

      ,       𝐩(𝑛) =  ∑ 𝜆𝑛−𝑖𝐱(𝑖)𝑑(𝑖)

𝑛

𝑖=1

 (10) 

 

but they can be updated using the following recursive equations in practical: 

 

𝐑(𝑛) = 𝜆 𝐑(𝑛 − 1) + 𝐱(𝑛)𝐱𝑇(𝑛) (11) 

  

𝐩(𝑛) = 𝜆 𝐩(𝑛 − 1) + 𝐱(𝑛)𝑑(𝑛) (12) 

 

The RSOR algorithm solves the normal equation (9) using one SOR iteration during a sampling 

interval as follows (Hatun and Koçal, 2012, 2017).  
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𝑤̂𝑖(𝑛 + 1) = [ 𝑝𝑖(𝑛) − ∑ 𝑅𝑖𝑗(𝑛)𝑤̂𝑗(𝑛 + 1)

𝑖−1

𝑗=1

− ∑ 𝑅𝑖𝑗(𝑛)𝑤̂𝑗(𝑛)

𝑀

𝑗=𝑖+1

]
𝜔

𝑅𝑖𝑖(𝑛)
+ (1 − 𝜔)𝑤̂𝑖(𝑛) 

𝑖 = 1, 2, … , 𝑀    ,    ( 0 < 𝜔 < 2 ) 

(13) 
 

 

Equations (11), (12) and (13) are used for implementation of the RSOR algorithm. The 

parameter 𝜔 is known as the relaxation parameter and should be taken between 0 < 𝜔 < 2 for 

the stability of the SOR iteration. If 𝜔 > 1 is chosen, the SOR iteration faster converges than 

the Gauss-Seidel iteration (Golub and Van Loan, 1996).  

 

2.2. Quantitative Expression of The Leakage Phenomenon for The RSOR Algorithm 

The RSOR algorithm in scalar updating form (13) can be represented in vector updating 

form as follows (Hatun and Koçal, 2012). 

 

𝐰̂(𝑛 + 1) = 𝐰̂(𝑛) + 𝜔[𝐑𝐿(𝑛) + 𝜔𝐑𝐷(𝑛)]−1[𝐩(𝑛) − 𝐑(𝑛)𝐰̂(𝑛)] (14) 

 

which is based on the following splitting as given in the classical SOR method (Golub and Van 

Loan, 1996). 

 

𝜔𝐑(𝑛) = [𝐑𝐷(𝑛) + 𝜔𝐑𝐿(𝑛)] − [(1 − 𝜔)𝐑𝐷(𝑛) − 𝜔𝐑𝑈(𝑛)] (15) 

 

A convergence analysis for the RSOR algorithm can be performed in a more tractable manner 

by decomposing the symmetric correlation matrix 𝐑(𝑛) to its lower triangle, diagonal and upper 

triangle parts as follows 

 

𝐑(𝑛) = 𝐑𝐿(𝑛) + 𝐑𝐷(𝑛) + 𝐑𝑈(𝑛) . (16) 

 

Defining the parameter estimation errors as a vector:  

 

𝐰̃(𝑛) = 𝐰̂(𝑛) − 𝐰 (17) 

 

and subtracting the correct parameter vector, 𝐰 from the both sides of (14), the following 

iteration is obtained for the parameter error vector after some arrangements (Hatun and Koçal, 

2012). 

 

𝐰̃(𝑛 + 1) = {𝐈 − 𝜔[𝐑𝐿(𝑛) + 𝜔𝐑𝐷(𝑛)]−1𝐑(𝑛)} 𝐰̃(𝑛) 

                    + 𝜔[𝐑𝐿(𝑛) + 𝜔𝐑𝐷(𝑛)]−1[𝐩(𝑛) − 𝐑(𝑛)𝐰] 
(18) 

 

By rewriting the vector quantity in the second term as 

 

𝐩(𝑛) − 𝐑(𝑛)𝐰 = ∑ 𝜆𝑛−𝑖𝐱(𝑖)𝑑(𝑖)

𝑛

𝑖=1

− ∑ 𝜆𝑛−𝑖𝐱(𝑖)𝐱𝑇(𝑖)𝐰

𝑛

𝑖=1

= ∑ 𝜆𝑛−𝑖𝐱(𝑖)𝑣(𝑖)

𝑛

𝑖=1

 (19) 

 

and substituting in (18) the following result is obtained for the parameter error vector. 
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𝐰̃(𝑛 + 1) = {𝐈 − 𝜔[𝐑𝐿(𝑛) + 𝜔𝐑𝐷(𝑛)]−1𝐑(𝑛)} 𝐰̃(𝑛) 

                    + 𝜔[𝐑𝐿(𝑛) + 𝜔𝐑𝐷(𝑛)]−1 ∑ 𝜆𝑛−𝑖𝐱(𝑖)𝑣(𝑖)

𝑛

𝑖=1

 

 

 

(20) 

 

A similar analysis gives the following iteration for the RI algorithm (Ahmad et al., 2011b, 

Salman et al., 2017). 

 

𝐰̃(𝑛 + 1) = {𝐈 − 𝜇(𝑛)𝐑(𝑛)} 𝐰̃(𝑛) + 𝜇(𝑛) ∑ 𝜆𝑛−𝑖𝐱(𝑖)𝑣(𝑖)

𝑛

𝑖=1

 (21) 

 

The following equation is also given for the RLS algorithm (Ciochină et al., 2009). 

 

𝐰̃(𝑛) = 𝐑−1(𝑛) ∑ 𝜆𝑛−𝑖𝐱(𝑖)𝑣(𝑖)

𝑛

𝑖=1

 (22) 

 

Considering (18), the error is represented as  

 

𝑒(𝑛) = −𝐱𝑇(𝑛)𝐰̃(𝑛) + 𝑣(𝑛) (23) 

 

and thus, the leakage term is introduced as (Ciochină et al., 2009, Ahmad et al., 2011b). 

 

𝑟(𝑛) = 𝑦̂(𝑛) − 𝑦(𝑛) = 𝑦̂(𝑛) − [𝑑(𝑛) − 𝑣(𝑛)] = 𝑦̂(𝑛) − [ 𝑦̂(𝑛) + 𝑒(𝑛) − 𝑣(𝑛)] 

          = 𝐱𝑇(𝑛)𝐰̃(𝑛) 

 

 

(24) 

 

The usage of (20) in (24) gives an estimate of the leakage term for the RSOR algorithm based 

on the data used and the filter parameters, and this term 𝑟(𝑛), which is caused by 𝑣(𝑛), leaks to 

the output signal of the filter 

 

𝑦̂(𝑛) = 𝑦(𝑛) + 𝑟(𝑛) = 𝑦(𝑛) + 𝐱𝑇(𝑛)𝐰̃(𝑛) . (25) 

 

On the other hand, using (6) and (10), the vector 𝐩(𝑛) is represented as 

 

𝐩(𝑛) =  ∑ 𝜆𝑛−𝑖𝐱(𝑖)[𝐱𝑇(𝑖)𝐰 + 𝑣(𝑖)]

𝑛

𝑖=1

= 𝐑(𝑛)𝐰 + ∑ 𝜆𝑛−𝑖𝐱(𝑖)𝑣(𝑖)

𝑛

𝑖=1

 (26) 

 

and thus, the normal equation (9) is rewritten as 

 

𝐑(𝑛)𝐰̂(𝑛) =  𝐑(𝑛)𝐰 + ∑ 𝜆𝑛−𝑖𝐱(𝑖)𝑣(𝑖)

𝑛

𝑖=1

 (27) 

 

This equation also gives the parameter error vector in (22) for the RLS algorithm. Assuming 𝜆 is 

close to 1 and 𝑛 is high enough, the following assumption can be written. 
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lim
𝑛→∞

1

 𝑛 
∑ 𝜆𝑛−𝑖𝐱(𝑖)𝑣(𝑖)

𝑛

𝑖=1

≅ 𝐸{𝐱(𝑛)𝑣(𝑛)} = 𝟎𝑀𝗑1 (28) 

 

Using this assumption, when time index goes to infinity or a large value, as 𝑛 → ∞, the normal 

equation (27) becomes  

 

𝐑(𝑛)𝐰̂(𝑛) ≅  𝐑(𝑛)𝐰 (29) 

 

and consequently, the parameter estimations vector 𝐰̂(𝑛) is close to correct parameters 𝐰, 

namely, 𝐰̂(𝑛) ≅  𝐰. Thus, the filter output gives the system output as 𝑦̂(𝑛) ≅ 𝑦(𝑛), and the 

measurement noise can be close to the error signal as 𝑒(𝑛) ≅ 𝑣(𝑛). Thus, according to the 

leakage definition in (24), the measurement noise does not produce a leakage. Under the 

assumption (28), the parameter error iteration (20) is reduced to 

 

𝐰̃(𝑛 + 1) = {𝐈 − 𝜔[𝐑𝐿(𝑛) + 𝜔𝐑𝐷(𝑛)]−1𝐑(𝑛)} 𝐰̃(𝑛) . (30) 

 

If 𝜆 < 1 or 𝑛 is not high enough, the second term in (27) is not equal to zero vector, and 

therefore, the time-averaged normal equation (27) cannot be reduced to (29) and the parameter 

error iteration cannot be reduced to (30). According to (17), the parameter estimations have 

fluctuations around the correct parameter values. Thus, according to the leakage definition in 

(24), the measurement noise 𝑣(𝑛) causes to a leakage term 𝑟(𝑛). If there is a leakage term 

𝑟(𝑛) ≠ 0, which leaks to the adaptive filter output as given in (25), the measurement noise 

cannot be close to the error signal, i.e., 𝑒(𝑛) ≠ 𝑣(𝑛), and thus, an accurate result cannot be 

obtained by solving the normal equation. The leakage signal is affected from low 𝜆 values, and 

higher values of 𝑀 (Ciochină et al., 2009, Ahmad et al., 2011b). If no leakage occurs, then the 

system identification process works properly, thereby letting 𝑟(𝑛) = 0. 

 

2.3. Analysis of The Leakage Signal for The RSOR Algorithm 

Taking statistical expectation of the normal equation (27), the following is written  

 

𝐸{𝐑(𝑛)𝐰̂(𝑛)} = 𝐸{𝐑(𝑛)𝐰} + 𝐸 {∑ 𝜆𝑛−𝑖𝐱(𝑖)𝑣(𝑖)

𝑛

𝑖=1

} (31) 

 

and using the assumption in (28), this equation can be reduced to  

 

𝐸{𝐑(𝑛)𝐰̂(𝑛)} = 𝐸{𝐑(𝑛)𝐰} . (32) 

 

Based on the independence assumption, which considers adaptive parameters are statistically 

independent from the input signal (Haykin, 2002), the following approximation can be written  

 

𝐸{𝐑(𝑛)} 𝐸{𝐰̂(𝑛)} = 𝐸{𝐑(𝑛)} 𝐰 . (33) 

 

By performing a statistical expectation analysis, it can also be shown that the RSOR algorithm 

produces 𝐸{𝐰̂(𝑛)} = 𝐰 as 𝑛 → ∞, asymptotically. Taking statistical expectation of (20), the 

parameter error iteration for the RSOR algorithm can be written as 

 

 

𝐰̃(𝑛 + 1) = 𝐸{𝐈 − 𝜔[𝐑𝐿(𝑛) + 𝜔𝐑𝐷(𝑛)]−1𝐑(𝑛)} 𝐸{𝐰̃(𝑛)}  
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                                + 𝐸 {𝜔[𝐑𝐿(𝑛) + 𝜔𝐑𝐷(𝑛)]−1 ∑ 𝜆𝑛−𝑖𝐱(𝑖)𝑣(𝑖)

𝑛

𝑖=1

} 

 

(34) 

 

Assuming the expected value of the correlation matrix estimation converges to its deterministic 

value at steady-state: 

 

𝐑 = 𝐸{𝐑(𝑛)} ≅ lim
𝑛→∞

1

 𝑛 
∑ 𝜆𝑛−𝑖𝐱(𝑖)𝐱𝑇(𝑖)

𝑛

𝑖=1

 (35) 

 

the following approximations can be written 

 

𝐸{𝐈 − 𝜔[𝐑𝐿(𝑛) + 𝜔𝐑𝐷(𝑛)]−1𝐑(𝑛)} ≅ 𝐈 − 𝜔[𝐑𝐿 + 𝜔𝐑𝐷]−1𝐑 

𝐸{𝜔[𝐑𝐿(𝑛) + 𝜔𝐑𝐷(𝑛)]−1} ≅ 𝜔[𝐑𝐿 + 𝜔𝐑𝐷]−1 . 
(36) 

 

Using these approximations in (34), the following result is obtained. 

 

𝐰̃(𝑛 + 1) ≅ 𝐸{𝐈 − 𝜔[𝐑𝐿 + 𝜔𝐑𝐷]−1𝐑} 𝐸{𝐰̃(𝑛)} 

                       + 𝜔[𝐑𝐿 + 𝜔𝐑𝐷]−1𝐸 {∑ 𝜆𝑛−𝑖𝐱(𝑖)𝑣(𝑖)

𝑛

𝑖=1

} 

 

 

(37) 

 

Under the assumption in (28), and considering the input signal 𝑥(𝑛) is uncorrelated with the 

measurement noise 𝑣(𝑛), the iteration (33) is reduced to 

 

𝐰̃(𝑛 + 1) ≅ 𝐸{𝐈 − 𝜔[𝐑𝐿 + 𝜔𝐑𝐷]−1𝐑} 𝐸{𝐰̃(𝑛)} . (38) 

 

If all eigenvalues of the RSOR algorithm are smaller than 1, this iteration converges to zero 

vector asymptotically as 𝑛 → ∞ (Hatun and Koçal, 2012, 2017). Thus, the expected value of the 

parameter estimates for the RSOR algorithm converges to the correct parameter vector (3), 

namely, 𝐸{𝐰̂(𝑛)} = 𝐰 as 𝑛 → ∞, asymptotically. 

A stochastic convergence analysis of the leakage signal can be performed by taking 

statistical expectation of the leakage term in (24). Considering the independence assumption, 

i.e., the adaptive parameters are statistically independent form the input signal, the following 

approximation can be written 

 

𝐸{𝑟(𝑛)} = 𝐸{𝒙𝑇(𝑛)𝐰̃(𝑛)} ≅ 𝐸{𝒙𝑇(𝑛)} 𝐸{𝐰̃(𝑛)} (39) 

 

Because of the input signal is zero mean, the leakage term converges to zero if the parameter 

error vector convergences to zero vector or not zero vector.  

A more complicated noise sequence can be also considered as the measurement noise 𝑣(𝑛), 

for example a contaminated Gaussian noise with its mean 𝑣𝑚 as 

 

𝑣(𝑛) = 𝑣𝑚 + 𝑣𝑔(𝑛) + 𝑣𝑖𝑚𝑝(𝑛) = 𝑣𝑚 + 𝑣𝑔(𝑛) + 𝑏(𝑛)𝑣𝑤(𝑛) (40) 
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where 𝑣𝑖𝑚𝑝(𝑛) is known as Bernoulli-Gaussian impulsive noise sequence, the 𝑣𝑔(𝑛) and 𝑣𝑤(𝑛) 

are independent Gaussian noise sequences with zero means and variances 𝜎𝑔
2 and 𝜎𝑤

2 , 

respectively. The 𝑏(𝑛) is a switching sequence which has zeros and ones, and modelled by 

Bernoulli random process with probability 𝑃𝑟[𝑏(𝑛) = 1] = 𝑝𝑟 and 𝑃𝑟[𝑏(𝑛) = 0] = 1 − 𝑝𝑟. 

The variance of 𝑣(𝑛) is 𝜎𝑣
2 = 𝜎𝑔

2 + 𝜎𝑖𝑚𝑝
2 = 𝜎𝑔

2 + 𝑝𝑟𝜎𝑤
2 , and the ratio  r = 𝜎𝑖𝑚𝑝

2 𝜎𝑔
2⁄ = 𝑝𝑟𝜎𝑤

2 𝜎𝑔
2⁄  

determines the impulsive behavior of 𝑣(𝑛) by taking 𝜎𝑤
2 > 𝜎𝑔

2 (Chan and Zou, 2004). The 

following equation can be written for the following correlation vector in (37) 

 

𝐸 {∑ 𝜆𝑛−𝑖𝐱(𝑖)𝑣(𝑖)

𝑛

𝑖=1

} = 𝐸 {∑ 𝜆𝑛−𝑖𝐱(𝑖)

𝑛

𝑖=1

[𝑣𝑚 + 𝑣𝑔(𝑖) + 𝑣𝑖𝑚𝑝(𝑖)]} 

= 𝑣𝑚𝐸 {∑ 𝜆𝑛−𝑖𝐱(𝑖)

𝑛

𝑖=1

} + 𝐸 {∑ 𝜆𝑛−𝑖𝐱(𝑖)

𝑛

𝑖=1

𝑣𝑔(𝑖)} + 𝐸 {∑ 𝜆𝑛−𝑖𝐱(𝑖)

𝑛

𝑖=1

𝑣𝑖𝑚𝑝(𝑖)} = 𝟎𝑀𝗑1 

 

 

 

(41) 

 

The expected values of the second and third sums in (41) become zero vector because of the 

input signal 𝑥(𝑛) is independent with the measurement noises 𝑣𝑔(𝑛) and 𝑣𝑤(𝑛). The first term 

is also becomes zero vector if the input signal 𝑥(𝑛) is a zero mean sequence. Consequently, 

according to (39), the expected value of the leakage term becomes zero, i.e., 𝐸{𝑟(𝑛)} = 0, as 𝑛
→ ∞, asymptotically. Thus, taking expected value of (23), the following result is obtained: 

 

𝐸{𝑒(𝑛)} = 𝐸{𝑣(𝑛)} − 𝐸{𝑟(𝑛)} = 𝑣𝑚 + 𝐸{𝑣𝑔(𝑛)} + 𝐸{𝑣𝑖𝑚𝑝(𝑛)} − 𝐸{𝑟(𝑛)} = 𝑣𝑚 (42) 

 

This result shows that 𝐸{𝑟(𝑛)} = 0 and 𝐸{𝑒(𝑛)} = 𝐸{𝑣(𝑛)} = 𝑣𝑚 in the mean sense, and 

verified in the following section by computer simulations. 

 

3. SIMULATION RESULTS 

In this section, adaptive filtering algorithms were used to identify the impulse response of a 

sample system defined by the correct parameter vector (Diniz, 2013, page 111): 

 

𝐰 = [ 0.1 0.3 0.0 −0.2 −0.4 −0.7 −0.4 −0.2]𝑇 ,  

  

where the filter length 𝑀 = 8. The parameter estimations vector 𝐰̂(𝑛) and the data vector 𝐱(𝑛) 

can be formed as follows, respectively: 

 

𝐰̂(𝑛) = [𝑤̂0(𝑛) 𝑤̂1(𝑛) 𝑤̂2(𝑛) 𝑤̂3(𝑛) 𝑤̂4(𝑛) 𝑤̂5(𝑛) 𝑤̂6(𝑛) 𝑤̂7(𝑛)]𝑇,  

 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) 𝑥(𝑛 − 2) 𝑥(𝑛 − 3) 𝑥(𝑛 − 4) 𝑥(𝑛 − 5) 𝑥(𝑛 − 6) 𝑥(𝑛 − 7)]𝑇. 
 

A low frequency sine wave, 𝑣(𝑛) = 0.5 sin(0.01𝜋𝑛𝑇𝑠) with a sampling interval 𝑇𝑠 = 1 sec., 

was added to the output signal measurements in the first three simulations to see if the 

measurement noise can be recovered from the estimation error and to observe the leakage 

signal. Thus, it can be observed whether the error is close to the noise. In the simulations, the 

RSOR algorithm was compared with the RLS and RI algorithms. The following initial values 

were used for initial phase of the algorithms: RLS: 𝐑−1(0) = 𝐈; RSOR: 𝐑(0) = 𝐈, 𝐩(0) = 𝟎, 

𝜔 = 1.5; RI:, 𝐑(0) = 𝐈, 𝐩(0) = 𝟎 and 𝜇(𝑛) = 𝜇0 (1 − 𝜆𝑛)⁄  with different 𝜇0 values. The initial 

parameter estimates were taken as zero for all algorithms. In order to demonstrate and compare 

the leakage phenomenon for the used algorithms, the error signal 𝑒(𝑛) and the residual errors 

𝑒𝑟(𝑛) = 𝑒(𝑛) − 𝑣(𝑛) = −𝑟(𝑛) are plotted in time domain.  
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In the first simulation, the effect of the leakage phenomenon were analyzed and compared 

for the RLS, RSOR and RI algorithms with different forgetting factors and constant filter length 

(𝑀 = 8). The obtained results were given in Figure 2 for the RLS algorithm, in Figure 3 for the 

RSOR algorithm, and in Figure 4 for the RI algorithm. The leakage values of the used 

algorithms for different 𝜆 values (with 𝑀 = 8) were compared in Table 1. The leakage values in 

all the tables were computed by averaging the last 2000 values of |𝑟(𝑛)| = |𝒙𝑇(𝑛)𝐰̃(𝑛)| 
obtained in the simulations.  

In the second simulation, the effect of the leakage phenomenon were analyzed and 

compared for the RLS, RSOR and RI algorithms with different filter lengths and constant 

forgetting factor (𝜆 = 0.96). The obtained results were given in Figure 5 for the RLS algorithm, 

in Figure 6 for the RSOR algorithm, and in Figure 7 for the RI algorithm. The leakage values of 

the used algorithms for different 𝑀 values (with 𝜆 = 0.96) were given in Table 2.  

In the third simulation, the effect of the leakage phenomenon were analyzed and compared 

for the RSOR algorithm with different values of relaxation parameter 𝜔 with constant filter 

length (𝑀 = 8) and constant forgetting factor (𝜆 = 0.9). The obtained results were given in 

Figure 8. The leakage values of the used algorithms for different 𝜔 values (with 𝜆 = 0.9 
and 𝑀 = 8) were presented in Table 3.  

 

 

Table 1. The leakage values of the used algorithms for several 𝜆 values ( 𝑀 = 8 ) 

Algorithm: 𝜆 = 0.999 𝜆 = 0.99 𝜆 = 0.9 𝜆 = 0.8 

RLS  0.015041    0.047036    0.164015    0.227187 

RSOR  0.015063    0.046385    0.150525 0.197423 

RI  0.015018    0.045671    0.110981    0.115101 

   

 

Table 2. The leakage values of the used algorithms for several 𝑀 values ( 𝜆 = 0.96 ) 

Algorithm: 𝑀 = 8 𝑀 = 16 𝑀 = 32 𝑀 = 64 

RLS  0.101257    0.148180    0.237372    0.347601 

RSOR  0.099850    0.143821    0.226781    0.322038 

RI  0.088250    0.126342    0.186874    0.243867 

 

 

Table 3. The leakage values of the RSOR algorithm for several 𝜔 values  

( = 8 and 𝜆 = 0.96 ) 

Algorithm: 𝜔 = 0.7 𝜔 = 1.0 𝜔 = 1.3 𝜔 = 1.7 

RSOR  0.191218    0.166343    0.154733    0.147789 
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Figure 2: 

The leakage effect of the RLS algorithm for several 𝜆 values ( 𝑀 = 8 ) 
 

 

 
Figure 3: 

The leakage effect of the RSOR algorithm for several 𝜆 values ( 𝑀 = 8 ) 
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Figure 4: 

The leakage effect of the RI algorithm for several 𝜆 values ( 𝑀 = 8 ) 
 

 

 

 
Figure 5: 

The leakage effect of the RLS algorithm for several 𝑀 values ( 𝜆 = 0.96 ) 
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Figure 6: 

The leakage effect of the RSOR algorithm for several 𝑀 values ( 𝜆 = 0.96 ) 
 

 

 

 
Figure 7: 

The leakage effect of the RI algorithm for several 𝑀 values ( 𝜆 = 0.96 ) 
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Figure 8: 

The leakage effect of the RSOR algorithm for several 𝜔 values ( = 0.9 and 𝑀 = 8 ) 
 

 

In the fourth simulation, a zero mean Gaussian noise 𝑣(𝑛) = 𝑣𝑔(𝑛) with variance 𝜎𝑔
2 =

0.25 was added to the output signal measurements, and the RSOR algorithm was compared 

with the RLS and RI algorithms. The following initial values were used: RLS: 𝐑−1(0) = 𝐈; 
RSOR: 𝐑(0) = 𝐈, 𝐩(0) = 𝟎, 𝜔 = 1.2; RI:, 𝐑(0) = 𝐈, 𝐩(0) = 𝟎 and 𝜇(𝑛) = 𝜇0 (1 − 𝜆𝑛)⁄  with 

different 𝜇0 values. The initial parameter estimates were taken as zero, and the filter length was 

taken as 𝑀 = 8 for all algorithms. The error signal 𝑒(𝑛) and the leakage signal 𝑟(𝑛) = 𝑣(𝑛) −
𝑒(𝑛) were given in Figure 9 for the RLS algorithm, in Figure 10 for the RSOR algorithm, and in 

Figure 11 for the RI algorithm. The leakage values of the algorithms for different   values were 

compared in Table 4.  

 

 

Table 4. The leakage values of the used algorithms for several 𝜆 values and 𝑣(𝑛) is  

a zero mean Gaussian noise sequence with variance 𝜎𝑣
2 = 0.25 

Algorithm: 𝜆 = 0.999 𝜆 = 0.99 𝜆 = 0.9 𝜆 = 0.8 

RLS  0.030298    0.072645    0.255265    0.392667 

RSOR  0.030310    0.072518    0.247006    0.371958 

RI  0.030228    0.068678    0.146084    0.164779 

 

 



Hatun M.:Leakage Analysis of The RSOR Algorithm 

 

338 

 
Figure 9: 

The leakage analysis of the RLS algorithm for several 𝜆 values and  

𝑣(𝑛) is a zero mean Gaussian noise sequence with variance 𝜎𝑣
2 = 0.25 

 

 

 

 
Figure 10: 

The leakage analysis of the RSOR algorithm for several 𝜆 values and 

𝑣(𝑛) is a zero mean Gaussian noise sequence with variance 𝜎𝑣
2 = 0.25 
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Figure 11: 

The leakage analysis of the RI algorithm for several 𝜆 values and  

𝑣(𝑛) is a zero mean Gaussian noise sequence with variance 𝜎𝑣
2 = 0.25 

 

In the fifth simulation, a Gaussian noise 𝑣(𝑛) = 𝑣𝑚 + 𝑣𝑔(𝑛) with mean 𝑣𝑚 = 1 and 

variance 𝜎𝑔
2 = 0.25 was added to the output signal measurements. The same initial values were 

used with the previous simulation. The error signal 𝑒(𝑛) and the leakage signal 𝑟(𝑛) = 𝑣(𝑛) −
𝑒(𝑛) were given in Figure 12 for the RLS algorithm, in Figure 13 for the RSOR algorithm, and 

in Figure 14 for the RI algorithm. The obtained leakage values of the algorithms for different 𝜆 
values were compared in Table 5.  

 

 

Table 5. The leakage values of the used algorithms for several 𝜆 values and 𝑣(𝑛) is a 

Gaussian noise sequence with mean 𝑣𝑚 = 1 and variance 𝜎𝑣
2 = 0.25 

Algorithm: 𝜆 = 0.999 𝜆 = 0.99 𝜆 = 0.9 𝜆 = 0.8 

RLS  0.065357    0.219315    0.580859    0.820238 

RSOR  0.065446    0.219234    0.567595    0.793798 

RI  0.065289    0.214251    0.449477    0.507706 
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Figure 12: 

The leakage analysis of the RLS algorithm for several 𝜆 values and  

𝑣(𝑛) is a Gaussian noise sequence with mean 𝑣𝑚 = 1 and variance 𝜎𝑣
2 = 0.25 

 

 

 

 
Figure 13: 

The leakage analysis of the RSOR algorithm for several 𝜆 values and  

𝑣(𝑛) is a Gaussian noise sequence with mean 𝑣𝑚 = 1 and variance 𝜎𝑣
2 = 0.25 
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Figure 14: 

The leakage analysis of the RI algorithm for several 𝜆 values and  

𝑣(𝑛) is a Gaussian noise sequence with mean 𝑣𝑚 = 1 and variance 𝜎𝑣
2 = 0.25 

 

In the sixth simulation, a zero mean impulsive noise formed by 𝑣(𝑛) = 𝑣𝑔(𝑛) + 𝑏(𝑛)𝑣𝑤(𝑛) 

was added to the output signal measurements. The 𝑣𝑔(𝑛)  and 𝑣𝑤(𝑛) are independent zero mean 

Gaussian noise sequences with variances 𝜎𝑔
2 = 0.25  and  𝜎𝑤

2 = 1.0, and thus, the variance of 

the measurement noise is 𝜎𝑣
2 = 𝜎𝑔

2 + 𝑝𝑟𝜎𝑤
2 = 0.55. A switching sequence 𝑏(𝑛), which is 

modelled by Bernoulli random process with probability 𝑃𝑟[𝑏(𝑛) = 1] = 𝑝𝑟 = 0.3 and 

𝑃𝑟[𝑏(𝑛) = 1] = 1 − 𝑝𝑟 = 0.7, was used. The same initial values were used in the simulation. 

The obtained results for the error signal 𝑒(𝑛) and the leakage signal 𝑟(𝑛) = 𝑣(𝑛) − 𝑒(𝑛) were 

given in Figure 15 for the RLS algorithm, in Figure 16 for the RSOR algorithm, and in Figure 

17 for the RI algorithm. The leakage values of the algorithms for different 𝜆 values were given 

in Table 6.  

 

Table 6. The leakage values of the used algorithms for several 𝜆 values and 𝑣(𝑛) is  

a zero mean impulsive noise sequence with variance 𝜎𝑣
2 = 0.55 

Algorithm: 𝜆 = 0.999 𝜆 = 0.99 𝜆 = 0.9 𝜆 = 0.8 

RLS  0.038638 0.109522 0.387810    0.586417 

RSOR  0.038479 0.108594 0.375635    0.542810 

RI  0.038167 0.100655 0.225300 0.257336 
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Figure 15: 

The leakage analysis of the RLS algorithm for several 𝜆 values and 

𝑣(𝑛) is a zero mean impulsive noise sequence with variance 𝜎𝑣
2 = 0.55 

 

 

 

 
Figure 16: 

The leakage analysis of the RSOR algorithm for several 𝜆 values and 

𝑣(𝑛) is a zero mean impulsive noise sequence with variance 𝜎𝑣
2 = 0.55 
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Figure 17: 

The leakage analysis of the RI algorithm for several 𝜆 values and 

𝑣(𝑛) is a zero mean impulsive noise sequence with variance 𝜎𝑣
2 = 0.55 

 

The following findings were obtained from the simulation results for the RSOR algorithm: 

 

- A sine wave is used as the measurement noise in the first three simulations, and it was 

observed that the measurement noise can be recovered from the estimation error when the 

variance of the leakage signal is low.  

- The value of leakage increases if the forgetting factor and the filter length are increase. 

- The value of leakage decreases if the relaxation parameter is increases. 

- The leakage value of the RSOR algorithm is lower than the RLS algorithm and higher than 

the RI algorithm. The RI algorithm has a decreasing step size parameter and therefore 

produces a lower leakage value in steady state.  

- A zero mean Gaussian noise sequence was used as the measurement noise in the fourth 

simulation and similar results were obtained. 

- In the fifth simulation, a non-zero mean Gaussian noise was used as the measurement noise 

and similar results were obtained. However, higher leakage values were obtained in all 

algorithms used compared to the fourth simulation. 

- A zero mean impulsive noise sequence was used as the measurement noise in the sixth 

simulation and similar results were obtained. But, although a measurement noise with a 

higher variance was used, lower leakage values were obtained in all algorithms compared to 

the fifth simulation. 

 

4. CONCLUSIONS 

In this paper, a quantitative representation for the estimation of the leakage phenomenon in 

the RSOR algorithm was presented. The leakage analysis was performed in the system 

identification setup. It was shown that the quantity of the leakage is proportional to the 

forgetting factor, the filter length, and the relaxation parameter. The theoretical results were 

verified by computer simulations. The obtained results have shown that the forgetting factor 
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should be chosen close to 1 to avoid leakage phenomenon in all the algorithms used. In general, 

the leakage quantity has increased when the filter length was increased. In the RSOR algorithm, 

increasing of the relaxation parameter reduced the amount of leakage. Comparative simulations 

have shown that the RSOR algorithm have produced lower leakage value than RLS algorithm, 

but higher than RI algorithm.  
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