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Abstract

In this paper, we define the recurrence sequences by using the Hurwitz matrices which are obtained from the characteristic polynomials
of the Padovan, the Pell-Padovan and the Jacobsthal-Padovan sequences and then, we give miscellaneous properties of these sequences.
Also, we study these sequences modulo 7 and we obtain the cyclic groups which are generated by the generating matrices when read
modulo 7. Then, we derive the relationships among the orders of the obtained cyclic groups and the periods of the defined sequences
according to modulo 7. Furthermore, we extend the Padovan-Hurwitz and the Pell-Padovan-Hurwitz sequences to groups. Finally,
we obtain the lengths of the periods of the extended sequences in the semihedral SD,, and the modular maximal-cyclic group M_m(2)
for m = 4 as applications of the results obtained.
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Oz

Bu makalede, Padovan, Pell-Padovan ve Jacobsthal-Padovan dizilerinin karakteristik polinomlarindan elde edilen Hurwitz matrisleri
kullanilarak indirgemeli dizler tanimlanmis ve bu dizilerin ¢esitli 6zellikleri verilmistir. Ayrica, bu diziler 7 modilinde ¢aligilmig
ve dizilerin lirete¢ matrisleri 7 modiiliine indirgenerek devirli gruplarin Uretegleri olarak kabul edilip devirli gruplar elde edilmigtir.
Bunun sonucu olarak, elde edilen devirli gruplarin mertebeleri ile tanimlanan dizilerin 7 modiiliine gore periyotlar: arasinda bagintilar
tretilmigtir. Buna ek olarak, Padovan-Hurwitz ve Pell-Padovan-Hurwitz dizileri gruplara genisletilmistir. En sonunda, elde edilen
sonuglarin uygulamas olarak, 7 > 4 i¢in SD,, semidihedral grup ve M_m(2) modular maximal-cyclic grubun genisletilmis dizilerinin

periyotlarinin uzunluklari elde edilmisitir.

Anahtar Kelimeler: Hurwitz matrisi, Dizi, Grup, Uzunluk

1. Introduction

Number theoretic properties such as these obtained from
homogeneous linear recurrence relations relevant to this
paper have been studied by many authors (Coxeter and
Gereitzer 1967, Deveci and Akiiziim 2015, Falcon and Plaza
2009, Freyy Sellers 2000, Gogin and Myllari 2007, Kalman
1982, Kilic and Tasci 2006, Stakhov and Rozin 2006, Yilmaz
and Bozkurt, 2009). In this paper, we develop properties
of the Padovan-Hurwitz, the Pell-Padovan-Hurwitz and
the Jacobsthal-Padovan-Hurwitz sequences which are
obtained from the Hurwitz matrices of the characteristic
polynomials of the Padovan, the Pell-Padovan and the
Jacobsthal-Padovan sequences.
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In (Deveci 2015, Deveci and Akiizim 2015, Deveci and
Akiizim 2014, Deveci and Avci 2015, Deveci and Karadu-
man 2012, Li and Wang 2007, Tas and Karaduman 2014),
the authors obtained the cyclic groups via some special
matrices. In this paper, we consider the multiplicative orders
of the matrices M, M,and M, working modulo 7 and then,
we obtain the cyclic groups. Also, we study the Padovan-
Hurwitz, the Pell-Padovan-Hurwitz and the Jacobsthal-
Padovan-Hurwitz sequences modulo 7. Then we derive the
relationships among the orders of the obtained cyclic groups
and the periods of the Padovan-Hurwitz, the Pell-Padovan-
Hurwitz and the Jacobsthal-Padovan-Hurwitz sequences
according to modulo 7.

The study of recurrence sequences in groups began with
the earlier work of Wall (Wall, 1960) where the ordinary
Fibonacci sequences in cyclic groups were investigated.
The theory was expanded to some special linear recurrence
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sequences by several authors; see for example, (Aydin and
Smith 1994, Campbell and Campbell 2009, Deveci 2015,
Deveci and Akiiziim 2015, Deveci and Avci 2015, Doostie
and Hashemi 2006, Dikici and Smith 1997, Knox 1992,
Ozkan et.al 2003, Tas and Karaduman 2014). In this paper,
we define the Padovan-Hurwitz and the Pell-Padovan-
Hurwitz orbits of groups then we study these sequences in
finite groups. Also, we obtain the lengths of the periods of
the Padovan-Hurwitz and the Pell-Padovan-Hurwitz orbits
of the semidihedral group SD,,, and the modular maximal-
cyclic group M_m(2) for m > 4 as applications of the results.

2. Material and Methods
Let Pbe a nth degree real polynomial given by
P(x)=ap"+ ax™ +.+a_x+a .

In (Hurwitz 1895), the Hurwitz matrix / = [hij]m associated
to Pwas defined as follows:

>a1 as as -+ - - 0 0 0l
Ao A2 Ay : : :
O a, as
: Ao A2 O
H.=|: 0 a an
: : Qo An-1 0
0 An-2 Qn
: . An-3 An-1 0
[0 0 O © Un-g Qn-y @]

The Padovan sequence {P(n)} is defined by a third-order

recurrence equation:
P(n+3) = P(n+1) + P(n)
for n > 0, where P(0) = P(1) = P(2) = 1.

For more information on this sequence, see (http://
mathworld.wolfram.com/Padovan Sequence.html)

The Pell-Padovan sequence {Pp (n)} is defined (Shannon et
al. 2006a, Shannon et. A12006b) by a third-order recurrence

equation:
Pp(n+3) = 2PP(n+1) + PP(n)
for n = 0, where PP(O) = Pp(l) = PP(2) =1.

'The Jacobsthal-Padovan sequence { / (n)} is defined (Deveci
2015) by a third-order recurrence equation:

J(n+2) = ] (n) + 2] (n-1)
for n > 0, where J(-1) =0 and J(0) =7 (1) = 1.

It is easy to see that the characteristic polynomials of the
Padovan, the Pell-Padovan and the Jacobsthal-Padovan

sequences are as follows, respectively:
fi(%) = w*-x-1,

fo(x) = *-20-1

and

fi(x) = 2*-x-2.

For a given matrix A4 = [aij] of integers, A (mod m)
means that the entries of A4 are reduced modulo m. Let
(A), ={(Q)"(modm) | n>0}.1f(detA,m) =1,{A) .,
is a cyclic group. We denote cardinal of the set (A), by

(4D wl.

A sequence is periodic if, after a certain point, it consists only of
repetitions of a fixed subsequence. The number of elements
in the shortest repeating subsequence is called the period of
the sequence. For example, the sequence ,4,¢,d,6,¢,d,b,¢,d,...
is periodic after the initial element 4 and has period 3. 4
sequence is simply periodic with period k if the first £ elements
in the sequence form a repeating subsequence. For example,
the sequence a,6,¢,d,a,b,c,d,a,,¢,d,... is simply periodic with
period 4.

The groups SD,mand M_m(2) are defined as follows:
SDy»=(z,ylz" =y =ecyzy=12"")

and

M m2)=(zylz” =y’ =eyry=2>""")
where 7 is an integer such that 7 > 4.

For more information on these groups see (Dummit and

Foote 2004, Gorenstein 1980, Huppert 1967).
3. Results

3.1. Padovan-Hurwitz, Pell-Padovan-Hurwitz and
Jacobsthal-Padovan-Hurwitz Numbers

We can write the following Hurwitz matrices for the
polynomials £, £, and f;, respectively:

0-1 0
P=11-1 0|

0 0 —1

0—-1 0
P,=(1 -2 0

0 0 —1
and
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0-2 0
J=1 -1 0
0 0 -2

Let the notation 4" denote the transpose of the matrix 4.
Now we define the Padovan-Hurwitz, the Pell-Padovan-
Hurwitz and the Jacobsthal-Padovan-Hurwitz sequences
by using the matrices P7, PPTand J"as follows, respectively:

Tn =—Tn-3— Tus, (1)
xi :_2.%3:*3_1'3,,—4 )
and

Ty =—Th3— 2T0-s (3)

forn>4,where 2t =25 =25 =0and 2 = 1 for£=1,2,3.

Note that the generating functions of the Padovan-Hurwitz,
the Pell-Padovan-Hurwitz and the Jacobsthal-Padovan-
Hurwitz sequences are as follows, respectively:

3

(1) — iy
1) = sras T
'+ 220+ 1

and
3

(3) — x
f) = 2+t + 1

By (1), (2) and (3), we can write the following companion
matrices, respectively:

00 —1 —1]
100 o0
M1_0100’
00 1 0
00 —2 —1
1o 0 o0
M2_0100
00 1 0]
and
00 —1 —2
{10 0 o0
M3_0100
00 1 0

The matrices M,, M, and M, are said to be the Padovan-
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Hurwitz, the Pell-Padovan-Hurwitz and the Jacobsthal-
Padovan-Hurwitz matrices, respectively. Note that det M,
= det M, =1 and det M,= 2.

By an inductive argument, we may write
i i i i
Tn+a Tn+s Tp+e — Ln+3

Tn+3 Ln+sa Tn+s —La+2

(M)n = i i i i ) (4)
Tn+2 Tn+3 Ln+a —Ta+1
Tot1 Tuts Ttz —Tn
fori=1,2 and
Tntd Tnts Tnie —2Tnss
x3 3 xS 4 .TS 5 _2373 9
nta n+ n+ n+
(M;)" = : ©)

xiﬂ x§z+3 -T:,+4 _inﬂ
xiﬂ l’iﬂ I:,ﬂ _21‘2

It is well-known that the Simpson formula for a recurrence
sequence can be obtained from the determinant of its
generating matrix, so that we can write the Simpson formulas
for the Padovan-Hurwitz, the Pell-Padovan-Hurwitz and
the Jacobsthal-Padovan-Hurwitz sequences

as:
i i i i ( i )2+ 27 i i
i xn+2xn+4xn+6 xn+2 xn+5 xn+3xn+4xn+5
" i 2, i i 3 +
(xn+3) Tn+6 — (x'n+4)
. ) ; ) ) 9 . ) )
; —XLn1XLn+4Lnr6 T Tnt1 (ﬂfiﬁs) - 21';4-2!1);4—437;4—5 +
xn+1 . . . . . . .
i 2 i 2
242X n+3Tn+6 T 2T s (IL’;+4) -2 (1177n+3) Tn+s
; . . : : 4 ) 9
; 2x2+2x2+3x2+5 + 1‘%2 (.T;,+4) - (l';ﬂ) .Tiwﬁ -
Lo+ io\2,.. +
3(1'n+3) Tp+4a

(xﬁLJrS) ! = 1
fori=1,2 and

3 3 3 3 3 2 3 3 3
Tn+2Tn+4Ln+6 — Ln+2 (xn+5) + 2xn+3xn+4xn+5 -

3
i I ‘ +
3 2,..3 3 3
(xn+3) Tn+6 — (x'n+4)
3 3 3 3 3 2 3 3 3
3 _xn+lxn+4xn+6 + xn+1 (z‘n+5) - 2xn+2xn+4xn+5 +
xn+1 :
2.1‘24—21‘2-#3];?;4—6 + 2&7?&3 (l‘iﬂ) P — 2 (.’173+3) 2$i+5
3 2$i+2l’i+3$2+5 + Ijﬂ (xi+4) ?— (l'j,ﬂ) inm -
I n+2 3 9 3 +
3(1'n+3) Tn+4a

(.’L’iu) = 271_1

For more information on the Simpson formula of a

recurrence sequence, see (Coxeter and Greitzer 1967).

1 1 1 1 2 2 2 2
Let {a",al,al’,aV} {a?, a?, a? a?’} and
{a?,a¥ af, a?’} be the sets of the eingevalues of the

matrices M,, M, and M, respectively and let /¥ be a 4x4
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Vandermonde matrix as follows:
(a,gk)):s (aé’“))3 (agk))3 (a/ff))S
(@) (a¥)* (a¥) (
(V) (af) (&) (ab)
1 1 1 1

where £ =1,2,3. Suppose now that

V(k) —

and V" is a 4x4 matrix obtained from V% by replacing the
Jjth column of ¥ by W

We can now the Binet-type formulas for the Padovan-
Hurwitz, the Pell-Padovan-Hurwitz and the Jacobsthal-
Padovan-Hurwitz sequences with the following Theorem.
Theorem 3.1.1. Let (M) " = [mlf" | for & =1,2,3. Then
m(k ) — det Vy“)

! “det V'
Proof. Since the eigenvalues of the matrices M,, M, and M,
are distinct, the matrices M|, M, and M, are diagonalizable.
Let
D% = diag(a?,a¥,af,al),
then it is readily seen that M V™ = VWD® for % = 1,2,3.
Since the matrix V™ is invertible,
(VE)IM V™ = DY,
Thus, the matrix M, is similar to D for £ = 1,2,3. So we get
for n 21 that
(MW )y = o (DO ).
Then we can write the following linear system of equations
fornz1:

k u (k

'(at)’ +mt @) +mi” (V) + mi = (al)

mE (@)? + >(a§k>)z +m (@) + mbn = ()

m (@9)° + mE? (@®)? + m& (@¥) + mbn = (@)
ku)(aik)) +mz§") (@¥)? + m& (aP) +mn = (@)=

from which we obtain

o det Vi
myY = ——1— dor 0 fork=1.23andij=1,234.

Theorem 3.1.1 gives immediately:

Corollary 3.1.1. Let x; be the uth term of the sequence
{z"} for £=1,2,3.Then

(k,4)
xﬁ:% fork=1,2
and
xg — det V 34

b 2det V<3 '

3.2.The Cyclic Groups via The Matrices M,, M,and M,

Since det M, = detM, = 1, it is clear that the sets (M),
and (M. ) . are cyclic groups for every positive integer 2.
Moreover, the set (M3 ) ,, is a cyclic group for every positive
odd integer .

We next consider the orders of the cyclic groups which are
generated by the matrices M,, M, and M.,.

Theorem 3.2.1. Let M be any of the matrices M,, M, and
M. Suppose also that « is the largest positive integer and p
is a prime such that (det M, p) = 1 and | (M), | =] (M), |
VThen [{(M ), |=p . |{M), ’foreveryfuz u.

Proof. Let us consider the cyclic group (M*) .-, then p =

2. Suppose also that a. is a positive integer and (M), i
denoted by £(p). If (M)**") = I(mod p*'), then (M) =
I(mod p*), where I is the 4x4 identity matrix. Thus we get
k(p?) that divides £(p"). Also, writing (M)’ =1 + (ml.j.(“).
#*) we obtain

y4

=2 (5 )i )=

=

(Mg) = (I‘l‘ mZ] D
I(mod p**")

by the binomial expansion. This yields that Z(p*!) divides
k(p").p. Thus k(p=1)= k(p*) or k(p*)= k(p*).p. It is clear that
k(p™1)= k(p*).p holds if and only if there exists an integer

m (@ which is not divisible by p. Since u is the largest positive
1nteger such that £(p)= &(p"), k(p*)= k(p**7). There is an m, ()
which is not divisible by p. So we get that £(p*/)= k(pu*z) To

complete the proof we may use an inductive method on .

There are similar proofs for the cyclic groups (M, ), and
<M 2 > P’

Theorem 3.2.2. Let (G ). be any of the cyclic groups
(M, ), { M), , and (My) . Suppose also that 7 has
[ 9 (k = 1). Then [ (G) .
equals to the least common nultiple of the| (G ) i 's

the prime factorization m =

Proof. Let us consider the cyclic group (M ) ., then 7 is
a positive integer. Let | (M) 5 |= A for1<i</kandlet
’ (M, ). |= A.Then by (4), we have

Karaelmas Fen Miih. Derg., 2016; 6(1):1-8
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Zh+s = 1modpy,

—z} = 1modp},

Zh+e = 0mod pf fora =1,2,3,5,6

and

Zhvs = 1mod m,

—z; = 1 mod m,

Zive = 0mod m fora =1,2,3,5,6.

Which implies that Zis = a.Z i+, (@ €N), for 0 < B

< 6, that is, (M)" is of the form a.(M,)" for all values of i.
Thus it is verified that

|<M1 >m‘: lcm[(MQp‘i‘, <M1 >p§2,..., <M1>p?]

There are similar proofs for the cyclic groups (M5 ), and
(Ms) .

Reducing the Padovan-Hurwitz, the Pell-Padovan-
Hurwitz and the Jacobsthal-Padovan-Hurwitz sequences
by a modulus 7z, we can get a repeating sequences, denoted

by

{2 (m)} ={zi(m), 25 (m), 25 (m),..xt (m),...},
where % = 1,2,3 and 2% (m) = zF (mod m). They have the
same recurrences relation as in (1), (2) and (3), respectively.

Theorem 3.2.3. The cases of the

{zt(m) },{zi(m)} and {z:(m)}, are:

* The sequences {x}l (m)} and {xi(m)} are simply

periodic for every positive integer 7.

sequences

* The sequence {x}(m)} is periodic for every positive
integer m. In particular, if 7 is a positive odd integer, then

the sequence {z? (m)} will be simply periodic.

Proof. Letus consider the sequence {:L‘fl (m)} asan example.
Suppose also that X = {(xl,xé,x3,x4) |23 23, 23,23 are
<zlrdxdxl <m—1}, then we
m". Since there are m* distinct 4- tuples of

integers such that 0 <
have |X | =
elements of Z , at least one of the 4-tuples appears twice
in the sequence {22 (m) }. Thus, the subsequence following
this 4-tuple repeats; that is the sequence is periodic. So if
Tia (m) = T (m) T (m) = x7+1( ) and 7>/, then
i =7 mod 4. From (2), we can easily derive that

To o =—x2— 21 ;.

Thus we obtain

zi(m) =zi(m), i (m) = 231 (m),..
xi(m)

..T?—]'Jrl (m) =

Karaelmas Fen Miih. Derg., 2016; 6(1):1-8

which implies that the {z2(m)} is a simply periodic
sequence.

There are similar proofs for the sequences {xi (m)} and
{a2(m)}.
next denote the periods of the sequences

We

{z:(m)}{zi(m)} and {z2(m)} by P(m), P(m)
and P, (m), respectively, and we present the relationships
among the periods P,(m), P/(m) and P(m) and the

orders | (M, ) .|| <Mz> LI{My) .|, respectively, in the

following result.

Corollary 3.2.1-(i). If p is a prime, then P, (p) =1{(M,),|
for k=1,2.

(ii). If p is a prime such that p = 2, then P; (p) =| (M), .
Proof. This follows directly from (4) and (5).

3.3. The Padovan-Hurwitz and The Pell-Padovan-

Hurwitz Sequences in Groups

Let G be a finite j-generator group and let
X={(z1,25,...,07)) EGXGX..XG| <
_
J
{x1,x2,...,.'17]‘} >= G}

We call (21, 2o, ...,

Definition 3.3.1. Let G =(X ) be a finitely generated
group such that X = {xl,xz, ...,1‘_7}. Then we denote the
Padovan-Hurwitz orbit by means of: 2 =(a )" (, )"

;) a generating j-tuple for .

for n > 5, with initial conditions

a = (21) 7, a2 = 12,05 = 13,0 = T4 if j=4
a) = T1,Ar = (-'131) 1, = 22,4 = X3 Zf j =3
= () a=,0:= () ai=z i j=2

For a j-tuple (x,,x,,.. ,x) € X, the Padovan-Hurwitz orbit is
denoted by Of,,.,...) (G)

Definition 3.3.2. Let G =(X ) be a finitely generated
group such that X = {xl,x2,...,xj}. Then we denote the Pell-
Padovan-Hurwitz orbit by means of:

bnz(bn»zt)_l (bn»s)_z

for n > 5, with initial conditions

bl: (wl)_lvbz_x27b3_x3vb4: ZfJ:4>
b, = (1'1) 2,b2 ( ) b3 l‘z,b4 Z:f ]': 3
b1: (1'1)_4,b2—( 1) 7b3 ( ) b4 ZTo ’Lf]:2

5
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For a j-tuple (x,x,,...,%/) € X, the Pell-Padovan-Hurwitz
orbit is denoted by Otrzy (G)

Theorem 3.3.1. The Pell-
Padovan-Hurwitz orbits of a finite group are simply

Padovan-Hurwitz and the

periodic.

Proof. Let us consider the Padovan- Hurwitz orbit
O(ll-hl-z‘zzi‘m)(G) and let # be the order of G. Since there
n* distinct 4-tuples of elements of G, at least one of the
4-tuples appears twice in the sequence O ;.00 (G). Thus,
consider the subsequence following this 4-tuple. Because
of the repetition, the sequence is periodic. Since the orbit
Olronasay (G) is periodic, there exist natural numbers z and
o, with # > o, such that

Aut1 = Qor1y Qurs = Qor2,Qur3 = Qors and Qura = Qpra.
By Definition 3.3.1, we know that

Qs = (@n-s) " (a,) .

Therefore, we obtain 4, = 4 , and hence,

Ay—(v—14) — Qy—(v—1) — a//l, Ay—(v-3) — Av—(v-3) — a/3, Ay—(v-2) —

Ay—(v—2) — A2
and
a/u*(v*l) - a/lw*(v*l) - CL1,

which implies that the sequence O{s, 0000 (@) is a simply
periodic.

The proofs for other orbits are similar to the above are
omitted.

We denote the lengths of the periods of the orbits
Olisniy(G) and Olso) (G) by Liss.)(G) and
Live ) (G), respectively. From the definitions of the
Padovan-Hurwitz and the Pell-Padovan-Hurwitz orbits it
is clear that the periods of these sequences in a finite group
depend on the chosen generating set and the order in which
the assignments of X5 pee0pX, ATE made.

We will now address the lengths of the periods of the
Padovan-Hurwitz and the Pell-Padovan-Hurwitz orbits
of the semidihedral group SD,, and the modular maximal-
cyclic group M _ m(2) which are metacyclic groups of order
2,

Theorem 3.3.2. For generating pairs (x,y) and (yx), the
lengths the periods of the Padovan-Hurwitz and the Pell-
Padovan-Hurwitz orbits of the semidihedral group §D,, and
the modular maximal-cyclic group M _ m(2) are as follows:

L(lzu) (SDZ’”) = L(l?/,x) (SDQ'") = L%x,y) (M_m (2)) =
Liy (M_m(2)) =P (2")

and

L(Zmy) (SDT”) = L(Zy‘r) (SDQ‘) = L%Iy) (M_m (2)) =
Lt (M_m(2)) =P,(2")

Proof. We first note that P,(2)=15 and P,(2)=4. Let us
consider the Padovan-Hurwitz orbit O, (SDzm). Then we
have the sequence

-1 -1 -1 ,,—2" %41 2 -1
x 7‘1.71. 7y7676;xy7y76ayx 71‘ 7y7xy7x y’yxVT )

"1 2T 2" =2 242 -2 2 -52" 7245 2’
xr 7'/1; 7x y7x 7‘1' 7y'7; 7y7'r Y
_9m—dypom=2_g _9m—dypom=2_g5 —gm=2 3 92m=3_10.9" 248
x y? x 7y'r ? yx Y yx ?
9m=4_gm g
Y,...

Using the above, the sequence becomes:

6= ,0:=2,a; =2 ,a1=1Y,...,

a5 =20 =203 = 2", = yz°, ...,

e =206 = 2,063 = 2,060 = yx", ...,

= 2" @i = T Qa0ies = T @a0iea = Yy
where 7 > 1. So we need the smallest integer 7 such that 4i

=271 k for £ € N. If we choose i = 2”3, then we obtain
L(lw) (SDQ'") =P (27"71),

Now we consider the Pell-Padovan-Hurwitz orbit

Ol (M_m (2)) Since the sequence Ol (M_m (2)) is

2m-3 Am-1_pm
x—SJxZ +2M7-2"-12

A 30i+1

-1 -2 a1 4 4 -6 415
€,€,y )x)e)e)yx X 56X )x_y)x) )_y)x 3X ey

we obtain
Z’1 = e,b2 = e,éa =y—1,é4 = Xy,
b =x%b =ux8b

_ .8 _
1601 = X 1602 =Xy, = Koy

16i+3

where i > 1. Thus we need the smallest integer i such that
8i =21k for £ € N.If we choose i = 2 then we obtain
Lo (M_m(2)) = P,(2").

'The proofs for other orbits are similar to the above and are
omitted.

4. Discussion

Since (M, ) ,« (£ = 1,2,3) is an element of sthe general
linear group GL(4,Z ) and | GL (4,Zp“) | T H (104 _p7)
it is readily seen that T (M) | is a factor H G;“ —p').

i=0
Conjecture 4.1.If p > 5 is a prime, then for % = 1,2,3, there
exists an i with 0 < i < 3 such that | (M, ) ,«| divides (p*-p).

Table 1-3 list some primes for which the conjecture is true.

Karaelmas Fen Miih. Derg., 2016; 6(1):1-8
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Table 1. The order of <M1 > »

Table 2. The order of <M2 > »

P (M), result p (M), | result
(M), llp'—p (M), llp'—p
5 124 (MYl pt—1 11 110 (M), llp'—p

23 528 (M), llp'—p 37 938 (M), lp'—1

83 571786 (MY, p'—p 79 780 (M), || pt—p?
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193 192 VPP 631 265862 SEHEE
3719 3674095997 (M)l p'=p 1009 1018080 (M) llp = p
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i | sa50000 Ol e | onses || el

M 4_ 2 M 4 __ 1
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215459 | 476295677797320 WM. 2,11’ 331147 | 73105777838 (M), [[p*=p
652541 | 12903325960 (M) llp' =1 611411 | 747648044666 (M), llp'—p
‘<M1>p|‘p4_p2 ’<M2>p|p4_p
Table 3. The order of <M3 > ) Campbell, CM., Campbell, PP. 2009. The Fibonacci lengths of
| | binary polyhedral groups and related groups. Congr. Numer.,
P (M), result 194: 95-102.
(M)l pt—1 Coxeter, HSM., Greitzer, SL., 1967. Geometry revisited,
t .\ Washington, DC: Math. Assoc. Amer., 41 pp.
4 1200 M) llp'=p Deveci, O.,2015. The Pell-Pad d the Jacobsthal
17 4912 )l — eveci, O., . The Pell-Padovan sequences and the Jacobsthal-
53 148876 s/011P TP Padovan sequences in finite groups, Util. Math., 98: 257-270.
3

449 448 : 2%3 ; » :pj :pz De\;ci, (?., Aku.zum, Y.'., 2015. The recyl)lrren.ce se(.]uf-:nces via
2459 6046680 3)p11D —D urwitz matrices, Sci. Ann. 4l I. Cuza’. Univ. Iasi, (in press).
4111 285620833002720 (M), | pt—p? Deveci, O., Akuzum, Y., 2014. The cycylic groups via
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20173 203474964 (M), pt—1 20
31237 10159836009684 |<M3> | pt— Deveci, O., Avci, M., 2015. Fibonacci p-sequences in groups,
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(M), || p'—p’ Algebra Appl., 437: 2538-2545.

Doostie, H., Hashemi, M., 2006. Fibonacci lengths involving the

5. Acknowledgment

This Project was supported by the Commission for the
Scientific Research Projects of Kafkas University. The
Project number. 2014-FEF-34.

6. References

Aydin, H., Smith, GC. 1994. Finite p-quotients of some cyclically
presented groups, J. London Math. Soc.,49: 83-92.

Karaelmas Fen Miih. Derg., 2016; 6(1):1-8

Wall number 4(n), J. Appl. Math. Compu., 20: 171-180.

Dikici, R., Smith, GC., 1997. Fibonacci sequences in finite
nilpotent groups, Turkish J. Math., 21: 133-142.

Dummit, DS., Foote, R.,2004. Abstract algebra 3st Edn., Wiley,
71 pp.

Falcon, S., Plaza, A., 2009. 4-Fibonacci sequences modulo m,
Chaos Solitons Fractals, 41: 497-504.

Frey, DD., Sellers, JA., 2000. Jacobsthal numbers and alternating
sign matrices, J. Integer Seq., 3: Article 00.2.3.



Deveci / Padovan-Type Sequences via The Hurwitz Matrices

Gogin, ND., Myllari, AA., 2007. 'The Fibonacci-Padovan
sequence and MacWilliams transform matrices, Program.
Comput. Softw., published in Programmirovanie, 33: 74-79.

Gorenstein, D., 1980. Finite groups, Chelsea, 188 pp.

Huppert, B.,1967. Endliche gruppen, Springer, 90 pp.

Hurwitz, A., 1895. Ueber die Bedingungen unter welchen eine
gleichung nur Wurzeln mit negative reellen teilen besitzt,
Math. Ann., 46: 273-284.

http://mathworld.wolfram.com/Padovan Sequence.html.

Kalman, D., 1982. Generalized Fibonacci numbers by matrix
methods, Fibonacci Quart., 20: 73-76.

Kilic, E., Tasci, D., 2006. The generalized Binet formula,
representation and sums of the generalized order-£ Pell

numbers, Taiwanese J. Math., 10: 1661-1670.

Knox, SW., 1992. Fibonacci sequences in finite groups, Fibonacci
Quart.,30: 116-120.

Li, K., Wang,J.,2007. %-step Fibonacci sequence modulo 7, Uzil.
Math.,71: 169-178.

Ozkan, E., Aydin, H., Dikici, R., 2003. 3-step Fibonacci series
modulo m, Appl. Math. Comput., 143: 165-172.

Shannon,AG.,Anderson, PG.,Horadam, AF.,2006a. Properties
of cordonnier Perrin and Van der Lan numbers, Inz. J. Math.
Educ. Sci. Technol., 37: 825-831.

Shannon, AG., Horadam, AF., Anderson, PG., 2006b. The
auxiliary equation associated with plastic number, Nofes
Number Theory Disc. Math.,12: 1-12.

Stakhov, AP., Rozin, B., 2006. Theory of Binet formulas for
Fibonacci and Lucas p-numbers, Chaos Solitons Fractals, 27:
1162-1177.

Tas, S., Karaduman, E., 2014. The Padovan sequences in finite
groups, Chaing Mai J. Sci., 41: 456-462.

Wall, DD., 1960. Fibonacci series modulo m, Amer. Math.
Monthly, 67: 525-532.

Yilmaz, F., Bozkurt, D.,2009. The generalized order-k Jacobsthal
numbers, Int. J. Contemp. Math. Sci., 4: 1685-1694.

Karaelmas Fen Miih. Derg., 2016; 6(1):1-8



