https://communications.science.ankara.edu.tr
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 70, Number 2, Pages 910-923 (2021)
DOI:10.31801/cfsuasmas. 808319
ISSN 1303-5991 E-ISSN 2618-6470
Research Article; Received: October 9, 2020; Accepted: May 16, 2021

LOGARITHMIC COEFFICIENTS OF STARLIKE FUNCTIONS CONNECTED WITH k-FIBONACCI NUMBERS

Serap BULUT
Faculty of Aviation and Space Science, Arslanbey Campus, Kocaeli University, 41285 Kartepe-Kocaeli, TURKEY

Abstract. Let \mathcal{A} denote the class of analytic functions f in the open unit disc \mathbb{U} normalized by $f(0)=f^{\prime}(0)-1=0$, and let \mathcal{S} be the class of all functions $f \in \mathcal{A}$ which are univalent in \mathbb{U}. For a function $f \in \mathcal{S}$, the logarithmic coefficients $\delta_{n}(n=1,2,3, \ldots)$ are defined by

$$
\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \delta_{n} z^{n} \quad(z \in \mathbb{U})
$$

and it is known that $\left|\delta_{1}\right| \leq 1$ and $\left|\delta_{2}\right| \leq \frac{1}{2}\left(1+2 e^{-2}\right)=0,635 \cdots$. The problem of the best upper bounds for $\left|\delta_{n}\right|$ of univalent functions for $n \geq 3$ is still open. Let $\mathcal{S} \mathcal{L}^{k}$ denote the class of functions $f \in \mathcal{A}$ such that

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}, \quad \tau_{k}=\frac{k-\sqrt{k^{2}+4}}{2} \quad(z \in \mathbb{U}) .
$$

In the present paper, we determine the sharp upper bound for $\left|\delta_{1}\right|,\left|\delta_{2}\right|$ and $\left|\delta_{3}\right|$ for functions f belong to the class $\mathcal{S} \mathcal{L}^{k}$ which is a subclass of \mathcal{S}. Furthermore, a general formula is given for $\left|\delta_{n}\right|(n \in \mathbb{N})$ as a conjecture.

1. Introduction

Let \mathbb{C} be the set of complex numbers and $\mathbb{N}=\{1,2,3, \ldots\}$ be the set of positive integers. Assume that \mathcal{H} is the class of analytic functions in the open unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$, and let the class \mathcal{P} be defined by

$$
\mathcal{P}=\{p \in \mathcal{H}: p(0)=1 \quad \text { and } \quad \Re(p(z))>0(z \in \mathbb{U})\}
$$

For two functions $f, g \in \mathcal{H}$, we say that the function f is subordinate to g in \mathbb{U}, and write

$$
f(z) \prec g(z) \quad(z \in \mathbb{U})
$$

[^0]if there exists a Schwarz function
$$
\omega \in \Omega:=\{\omega \in \mathcal{H}: \omega(0)=0 \quad \text { and } \quad|\omega(z)|<1(z \in \mathbb{U})\}
$$
such that
$$
f(z)=g(\omega(z)) \quad(z \in \mathbb{U})
$$

Indeed, it is known that

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Rightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

Furthermore, if the function g is univalent in \mathbb{U}, then we have the following equivalence

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Leftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

Let \mathcal{A} denote the subclass of \mathcal{H} consisting of functions f normalized by

$$
f(0)=f^{\prime}(0)-1=0
$$

Each function $f \in \mathcal{A}$ can be expressed as

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{U}) \tag{1}
\end{equation*}
$$

We also denote by \mathcal{S} the class of all functions in the normalized analytic function class \mathcal{A} which are univalent in \mathbb{U}.

A function $f \in \mathcal{A}$ is said to be starlike of order $\alpha(0 \leq \alpha<1)$, if it satisfies the inequality

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U})
$$

We denote the class which consists of all functions $f \in \mathcal{A}$ that are starlike of order α by $\mathcal{S}^{*}(\alpha)$. It is well-known that $\mathcal{S}^{*}(\alpha) \subset \mathcal{S}^{*}(0)=\mathcal{S}^{*} \subset \mathcal{S}$.

By means of the principle of subordination, Yılmaz Özgür and Sokól 13 defined the following class $\mathcal{S} \mathcal{L}^{k}$ of functions $f \in \mathcal{S}$, connected with a shell-like region described by a function \tilde{p}_{k} with coefficients depicted in terms of the k-Fibonacci numbers where k is a positive real number. The name attributed to the class $\mathcal{S} \mathcal{L}^{k}$ is motivated by the shape of the curve

$$
\Gamma=\left\{\tilde{p}_{k}\left(e^{i \varphi}\right): \varphi \in[0,2 \pi) \backslash\{\pi\}\right\}
$$

The curve Γ has a shell-like shape and it is symmetric with respect to the real axis. For more details about the class $\mathcal{S} \mathcal{L}^{k}$, please refer to 11,13 .
Definition 1. [13] Let k be any positive real number. The function $f \in \mathcal{S}$ belongs to the class $\mathcal{S} \mathcal{L}^{k}$ if it satisfies the condition that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec \tilde{p}_{k}(z) \quad(z \in \mathbb{U}) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}=\frac{1+\tau_{k}^{2} z^{2}}{1-\left(\tau_{k}^{2}-1\right) z-\tau_{k}^{2} z^{2}} \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\tau_{k}=\frac{k-\sqrt{k^{2}+4}}{2} \tag{4}
\end{equation*}
$$

For $k=1$, the class $\mathcal{S} \mathcal{L}^{k}$ reduces to the class $\mathcal{S} \mathcal{L}$ which consists of functions $f \in \mathcal{A}$ defined by (1) satisfying

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \tilde{p}(z)
$$

where

$$
\begin{equation*}
\tilde{p}(z):=\tilde{p}_{1}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\tau:=\tau_{1}=\frac{1-\sqrt{5}}{2} \tag{6}
\end{equation*}
$$

This class was introduced by Sokól 10].
Definition 2. [3] For any positive real number k, the k-Fibonacci sequence $\left\{F_{k, n}\right\}_{n \in \mathbb{N}_{0}}$ is defined recurrently by

$$
F_{k, n+1}=k F_{k, n}+F_{k, n-1} \quad(n \in \mathbb{N})
$$

with initial conditions

$$
F_{k, 0}=0, \quad F_{k, 1}=1
$$

Furthermore $n^{\text {th }} k$-Fibonacci number is given by

$$
\begin{equation*}
F_{k, n}=\frac{\left(k-\tau_{k}\right)^{n}-\tau_{k}^{n}}{\sqrt{k^{2}+4}} \tag{7}
\end{equation*}
$$

where τ_{k} is given by (4).
For $k=1$, we obtain the classic Fibonacci sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}_{0}}$:

$$
F_{0}=0, \quad F_{1}=1, \quad \text { and } \quad F_{n+1}=F_{n}+F_{n-1} \quad(n \in \mathbb{N})
$$

For more details about the k-Fibonacci sequences please refer to $7,9,12,14$.
Yılmaz Özgür and Sokól 13 showed that the coefficients of the function $\tilde{p}_{k}(z)$ defined by (3) are connected with k-Fibonacci numbers. This connection is pointed out in the following theorem.
Theorem 1. [13] Let $\left\{F_{k, n}\right\}_{n \in \mathbb{N}_{0}}$ be the sequence of k-Fibonacci numbers defined in Definition 2. If

$$
\begin{equation*}
\tilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}:=1+\sum_{n=1}^{\infty} \tilde{p}_{k, n} z^{n} \tag{8}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\tilde{p}_{k, 1}=k \tau_{k}, \quad \tilde{p}_{k, 2}=\left(k^{2}+2\right) \tau_{k}^{2}, \quad \tilde{p}_{k, n}=\left(F_{k, n-1}+F_{k, n+1}\right) \tau_{k}^{n} \quad(n \in \mathbb{N}) \tag{9}
\end{equation*}
$$

It can be found the more results related to Fibonacci numbers in $7,12,14$.

Remark 1. 13] For each $k>0$,

$$
\mathcal{S} \mathcal{L}^{k} \subset \mathcal{S}^{*}\left(\alpha_{k}\right), \quad \alpha_{k}=\frac{k}{2 \sqrt{k^{2}+4}}
$$

that is, $f \in \mathcal{S} \mathcal{L}^{k}$ is a starlike function of order α_{k}, and so is univalent.
For a function $f \in \mathcal{S}$, the logarithmic coefficients $\delta_{n}(n \in \mathbb{N})$ are defined by

$$
\begin{equation*}
\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \delta_{n} z^{n} \quad(z \in \mathbb{U}) \tag{10}
\end{equation*}
$$

and play a central role in the theory of univalent functions. The idea of studying the logarithmic coefficients helped Kayumov [8] to solve Brennan's conjecture for conformal mappings. If $f \in \mathcal{S}$, then it is known that

$$
\left|\delta_{1}\right| \leq 1
$$

and

$$
\left|\delta_{2}\right| \leq \frac{1}{2}\left(1+2 e^{-2}\right)=0,635 \cdots
$$

(see [2]). The problem of the best upper bounds for $\left|\delta_{n}\right|$ of univalent functions for $n \geq 3$ is still open.

The main purpose of this paper is to determine the upper bound for $\left|\delta_{1}\right|,\left|\delta_{2}\right|$ and $\left|\delta_{3}\right|$ for functions f belong to the univalent function class $\mathcal{S} \mathcal{L}^{k}$. To prove our main results we need the following lemmas.

Lemma 1. 11] If $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots \quad(z \in \mathbb{U})$ and

$$
p(z) \prec \tilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}, \quad \tau_{k}=\frac{k-\sqrt{k^{2}+4}}{2},
$$

then we have

$$
\left|p_{1}\right| \leq k\left|\tau_{k}\right| \quad \text { and } \quad\left|p_{2}\right| \leq\left(k^{2}+2\right) \tau_{k}^{2}
$$

The above estimates are sharp.
Lemma 2. [5] If $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots(z \in \mathbb{U})$ and

$$
p(z) \prec \tilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}, \quad \tau_{k}=\frac{k-\sqrt{k^{2}+4}}{2},
$$

then we have

$$
\left|p_{3}\right| \leq\left(k^{3}+3 k\right)\left|\tau_{k}\right|^{3} .
$$

The result is sharp.
Lemma 3. 1 If $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots(z \in \mathbb{U})$ and

$$
p(z) \prec \tilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}, \quad \tau_{k}=\frac{k-\sqrt{k^{2}+4}}{2},
$$

then we have

$$
\left|p_{2}-\gamma p_{1}^{2}\right| \leq k\left|\tau_{k}\right| \max \left\{1,\left|k^{2}+2-\gamma k^{2}\right| \frac{\left|\tau_{k}\right|}{k}\right\}
$$

for all $\gamma \in \mathbb{C}$. The above estimates are sharp.
Lemma 4. 2R Let $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \in \mathcal{P}$. Then

$$
\left|c_{n}\right| \leq 2 \quad(n \in \mathbb{N})
$$

Lemma 5. 4] Let $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \in \mathcal{P}$. Then

$$
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right)
$$

for some $x,|x| \leq 1$, and

$$
4 c_{3}=c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z
$$

for some $z,|z| \leq 1$.
Lemma 6. [1] If the function f given by (1) is in the class $\mathcal{S} \mathcal{L}^{k}$, then we have

$$
\begin{aligned}
& \quad\left|a_{3}-\lambda a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\tau_{k}^{2}\left(k^{2}+1-\lambda k^{2}\right) \quad, \quad \lambda \leq \frac{2\left(k^{2}+1\right) \tau_{k}+k}{2 k^{2} \tau_{k}} \\
\frac{k\left|\tau_{k}\right|}{2} \\
\tau_{k}^{2}\left(\lambda k^{2}-k^{2}-1\right) \quad, \quad \lambda \geq \frac{2\left(k^{2}+1\right) \tau_{k}+k}{2 k^{2} \tau_{k}} \leq \lambda \leq \frac{2\left(k^{2}+1\right) \tau_{k}-k}{2 k^{2} \tau_{k}} \\
\text { If } \frac{2\left(k^{2}+1\right) \tau_{k}+k}{2 k^{2} \tau_{k}} \leq \lambda \leq \frac{k^{2}+1}{k^{2}}, \text { then }
\end{array}\right. \\
& \\
& \left|a_{3}-\lambda a_{2}^{2}\right|+\left(\lambda-\frac{2\left(k^{2}+1\right) \tau_{k}+k}{2 k^{2} \tau_{k}}\right)\left|a_{2}\right|^{2} \leq \frac{k\left|\tau_{k}\right|}{2}
\end{aligned}
$$

Furthermore, if $\frac{k^{2}+1}{k^{2}} \leq \lambda \leq \frac{2\left(k^{2}+1\right) \tau_{k}-k}{2 k^{2} \tau_{k}}$, then

$$
\left|a_{3}-\lambda a_{2}^{2}\right|+\left(\frac{2\left(k^{2}+1\right) \tau_{k}-k}{2 k^{2} \tau_{k}}-\lambda\right)\left|a_{2}\right|^{2} \leq \frac{k\left|\tau_{k}\right|}{2}
$$

Each of these results is sharp.
Lemma 7. [6] If the function f given by (1) is in the class $\mathcal{S L}^{k}$, then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \tau_{k}^{4}
$$

The bound is sharp.
Lemma 8. [6] If the function f given by (1) is in the class $\mathcal{S L}^{k}$, then

$$
\left|a_{2} a_{3}-a_{4}\right| \leq k\left|\tau_{k}\right|^{3}
$$

The bound is sharp.
2. The coefficients of $\log (f(z) / z)$

Theorem 2. Let $f \in \mathcal{S} \mathcal{L}^{k}$ be given by (1) and the coefficients of $\log (f(z) / z)$ be given by 10) Then

$$
\begin{equation*}
\left|\delta_{1}\right| \leq \frac{k}{2}\left|\tau_{k}\right|, \quad\left|\delta_{2}\right| \leq \frac{k^{2}+2}{4} \tau_{k}^{2}, \quad\left|\delta_{3}\right| \leq \frac{k^{3}+3 k}{6}\left|\tau_{k}\right|^{3} \tag{11}
\end{equation*}
$$

where τ_{k} is defined by (4). Each of these results is sharp. The equalities are attained by the function \tilde{p}_{k} given by (3).
Proof. Firstly, by differentiating (10) and equating coefficients, we have

$$
\begin{gathered}
\delta_{1}=\frac{1}{2} a_{2} \\
\delta_{2}=\frac{1}{2}\left(a_{3}-\frac{1}{2} a_{2}^{2}\right), \\
\delta_{3}=\frac{1}{2}\left(a_{4}-a_{2} a_{3}+\frac{1}{3} a_{2}^{3}\right) .
\end{gathered}
$$

If $f \in \mathcal{S} \mathcal{L}^{k}$, then by the principle of subordination, there exists a Schwarz function $\omega \in \Omega$ such that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\tilde{p}_{k}(\omega(z)) \quad(z \in \mathbb{U}) \tag{12}
\end{equation*}
$$

where the function \tilde{p}_{k} is given by (8). Therefore, the function

$$
\begin{equation*}
g(z):=\frac{1+\omega(z)}{1-\omega(z)}=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) \tag{13}
\end{equation*}
$$

is in the class \mathcal{P}. Now, defining the function $p(z)$ by

$$
\begin{equation*}
p(z)=\frac{z f^{\prime}(z)}{f(z)}=1+p_{1} z+p_{2} z^{2}+\cdots \tag{14}
\end{equation*}
$$

it follows from $\sqrt[12]{ }$ and $\sqrt[13]{ }$ that

$$
\begin{equation*}
p(z)=\tilde{p}_{k}\left(\frac{g(z)-1}{g(z)+1}\right) . \tag{15}
\end{equation*}
$$

Note that

$$
\omega(z)=\frac{c_{1}}{2} z+\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\frac{1}{2}\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right) z^{3}+\cdots
$$

and so

$$
\begin{align*}
\tilde{p}_{k}(\omega(z)) & =1+\frac{\tilde{p}_{k, 1} c_{1}}{2} z+\left[\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \tilde{p}_{k, 1}+\frac{1}{4} c_{1}^{2} \tilde{p}_{k, 2}\right] z^{2} \\
& +\left[\frac{1}{2}\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right) \tilde{p}_{k, 1}+\frac{1}{2} c_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \tilde{p}_{k, 2}+\frac{c_{1}^{3}}{8} \tilde{p}_{k, 3}\right] z^{3}+\cdots \tag{16}
\end{align*}
$$

Thus, by using (13) in (15), and considering the values $\tilde{p}_{k, j}(j=1,2,3)$ given in (9), we obtain

$$
\begin{align*}
& p_{1}=\frac{k \tau_{k}}{2} c_{1}, \tag{17}\\
& p_{2}=\frac{k \tau_{k}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{\left(k^{2}+2\right) \tau_{k}^{2}}{4} c_{1}^{2}, \tag{18}\\
& p_{3}=\frac{k \tau_{k}}{2}\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right)+\frac{\left(k^{2}+2\right) \tau_{k}^{2}}{2} c_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{\left(k^{3}+3 k\right) \tau_{k}^{3}}{8} c_{1}^{3} . \tag{19}
\end{align*}
$$

On the other hand, a simple calculation shows that

$$
\frac{z f^{\prime}(z)}{f(z)}=1+a_{2} z+\left(2 a_{3}-a_{2}^{2}\right) z^{2}+\left(3 a_{4}-3 a_{2} a_{3}+a_{2}^{3}\right) z^{3}+\cdots
$$

which, in view of (14), yields

$$
\begin{equation*}
a_{2}=p_{1}, \quad a_{3}=\frac{p_{1}^{2}+p_{2}}{2}, \quad a_{4}=\frac{p_{1}^{3}+3 p_{1} p_{2}+2 p_{3}}{6} \tag{20}
\end{equation*}
$$

Substituting for a_{2}, a_{3} and a_{4} from 20, we obtain

$$
\begin{equation*}
\delta_{1}=\frac{1}{2} p_{1}, \quad \delta_{2}=\frac{1}{4} p_{2}, \quad \delta_{3}=\frac{1}{6} p_{3} \tag{21}
\end{equation*}
$$

Using Lemma 1 and Lemma 2, we get the desired results. This completes the proof of theorem.

Conjecture. Let $f \in \mathcal{S} \mathcal{L}^{k}$ be given by (11) and the coefficients of $\log (f(z) / z)$ be given by 10 . Then

$$
\left|\delta_{n}\right| \leq \frac{F_{k, n-1}+F_{k, n+1}}{2 n}\left|\tau_{k}\right|^{n} \quad(n \in \mathbb{N})
$$

where $\left\{F_{k, n}\right\}_{n \in \mathbb{N}_{0}}$ is the Fibonacci sequence given by (7).
This conjecture has been verified for the values $n=1,2,3$ by the Theorem 2 .
Letting $k=1$ in Theorem 2, we obtain the following consequence.
Corollary 1. Let $f \in \mathcal{S L}$ be given by (1) and the coefficients of $\log (f(z) / z)$ be given by (10). Then

$$
\left|\delta_{1}\right| \leq \frac{1}{2}|\tau|, \quad\left|\delta_{2}\right| \leq \frac{3}{4} \tau^{2}, \quad\left|\delta_{3}\right| \leq \frac{2}{3}|\tau|^{3}
$$

where τ is defined by (6). Each of these results is sharp. The equalities are attained by the function \tilde{p} given by (5).

Theorem 3. Let $f \in \mathcal{S} \mathcal{L}^{k}$ be given by (1) and the coefficients of $\log (f(z) / z)$ be given by 10. Then for any $\gamma \in \mathbb{C}$, we have

$$
\left|\delta_{2}-\gamma \delta_{1}^{2}\right| \leq \frac{k\left|\tau_{k}\right|}{4} \max \left\{1,\left|k^{2}+2-\gamma k^{2}\right| \frac{\left|\tau_{k}\right|}{k}\right\}
$$

Proof. By using (21), the desired result is obtained from the equality

$$
\delta_{2}-\gamma \delta_{1}^{2}=\frac{1}{4}\left(p_{2}-\gamma p_{1}^{2}\right) \quad(\gamma \in \mathbb{C})
$$

and Lemma 3 .
Letting $k=1$ in Theorem 3, we obtain the following consequence.
Corollary 2. Let $f \in \mathcal{S} \mathcal{L}$ be given by (1) and the coefficients of $\log (f(z) / z)$ be given by 10 . Then for any $\gamma \in \mathbb{C}$, we have

$$
\left|\delta_{2}-\gamma \delta_{1}^{2}\right| \leq \frac{|\tau|}{4} \max \{1,|(3-\gamma) \tau|\}
$$

If we take $\gamma=1$ in Theorem 3, then we obtain the following result.
Corollary 3. Let $f \in \mathcal{S} \mathcal{L}^{k}$ be given by (1) and the coefficients of $\log (f(z) / z)$ be given by 10. Then

$$
\left|\delta_{2}-\delta_{1}^{2}\right| \leq \begin{cases}\frac{\tau_{k}^{2}}{2} & , \quad 0<k \leq \frac{2}{\sqrt{3}} \\ \frac{k\left|\tau_{k}\right|}{4} & k \geq \frac{2}{\sqrt{3}}\end{cases}
$$

Letting $k=1$ in Corollary 3, we obtain the following consequence.
Corollary 4. Let $f \in \mathcal{S L}$ be given by (1) and the coefficients of $\log (f(z) / z)$ be given by 10. Then

$$
\left|\delta_{2}-\delta_{1}^{2}\right| \leq \frac{\tau^{2}}{2}
$$

3. The coefficients of the inverse function

Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk \mathbb{U}. In fact, the Koebe one-quarter theorem 2 ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $1 / 4$. Thus every function $f \in \mathcal{A}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

In fact, for a function $f \in \mathcal{A}$ given by (1) the inverse function f^{-1} is given by

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots=: w+\sum_{n=2}^{\infty} A_{n} w^{n} . \tag{22}
\end{equation*}
$$

Since $\mathcal{S} \mathcal{L}^{k} \subset \mathcal{S}$, the functions f belonging to the class $\mathcal{S} \mathcal{L}^{k}$ are invertible.
Theorem 4. Let $f \in \mathcal{S} \mathcal{L}^{k}$ be given by (1), and f^{-1} be the inverse function of f defined by 22). Then we have

$$
\left|A_{2}\right| \leq k\left|\tau_{k}\right|
$$

and

$$
\left|A_{3}\right| \leq \frac{k\left|\tau_{k}\right|}{2} \max \left\{1,2\left|1-k^{2}\right| \frac{\left|\tau_{k}\right|}{k}\right\}
$$

Each of these results is sharp.
Proof. Let the function $f \in \mathcal{A}$ given by (1) be in the class $\mathcal{S} \mathcal{L}^{k}$, and f^{-1} be the inverse function of f defined by 22 . Then using 20), we obtain

$$
\begin{equation*}
A_{2}=-a_{2}=-p_{1} \tag{23}
\end{equation*}
$$

and

$$
A_{3}=2 a_{2}^{2}-a_{3}=-\frac{1}{2}\left(p_{2}-3 p_{1}^{2}\right)
$$

The upper bound for $\left|A_{2}\right|$ is clear from Lemma 1 . Furthermore by considering Lemma 3 we obtain the upper bound of $\left|A_{3}\right|$ as

$$
\left|A_{3}\right| \leq \frac{k\left|\tau_{k}\right|}{2} \max \left\{1,2\left|1-k^{2}\right| \frac{\left|\tau_{k}\right|}{k}\right\}
$$

Finally, for the sharpness, we have by (8) that

$$
\tilde{p}_{k}(z)=1+k \tau_{k} z+\left(k^{2}+2\right) \tau_{k}^{2} z^{2}+\cdots
$$

and

$$
\tilde{p}_{k}\left(z^{2}\right)=1+k \tau_{k} z^{2}+\left(k^{2}+2\right) \tau_{k}^{2} z^{4}+\cdots
$$

From this equalities, we obtain

$$
p_{1}=k \tau_{k} \quad \text { and } \quad p_{2}=\left(k^{2}+2\right) \tau_{k}^{2}
$$

and

$$
p_{1}=0 \quad \text { and } \quad p_{2}=k \tau_{k},
$$

respectively. Thus, it is clear that the equality for $\left|A_{2}\right|$ is attained for the function $\tilde{p}_{k}(z)$; and the equality for the first value of $\left|A_{3}\right|$ is attained for the function $\tilde{p}_{k}\left(z^{2}\right)$, for the second value of $\left|A_{3}\right|$ is attained for the function $\tilde{p}_{k}(z)$. This evidently completes the proof of theorem.

Remark 2. It is worthy to note that the coefficient bound obtained for $\left|A_{3}\right|$ in Theorem 4 is the improvement of [11, Corollary 2.4].

Theorem 5. Let $f \in \mathcal{S L}$ be given by (1), and f^{-1} be the inverse function of f defined by 22. Then we have

$$
\left|A_{2}\right| \leq|\tau|, \quad\left|A_{3}\right| \leq \frac{|\tau|}{2} \quad \text { and } \quad\left|A_{4}\right| \leq 2|\tau|^{3}
$$

Each of these results is sharp.
Proof. Let $f \in \mathcal{S} \mathcal{L}$ be given by (1), and f^{-1} be the inverse function of f defined by (22). Then the upper bounds for $\left|A_{2}\right|$ and $\left|A_{3}\right|$ are obtained as a consequence of Theorem 4 when $k=1$. From (22), we have

$$
-A_{4}=5 a_{2}^{3}-5 a_{2} a_{3}+a_{4} .
$$

By using 20 in the above equality, we obtain

$$
-A_{4}=\frac{8}{3} p_{1}^{3}-2 p_{1} p_{2}+\frac{1}{3} p_{3}
$$

By (17)-(19), this equality gives

$$
A_{4}=-\frac{\tau}{6}\left(c_{3}-c_{1} c_{2}+\frac{1-6 \tau^{2}}{4} c_{1}^{3}\right)
$$

By means of Lemma 5, we get

$$
\begin{aligned}
A_{4} & =\frac{\tau}{6}\left[\frac{1}{4} c_{1}\left(4-c_{1}^{2}\right) x^{2}-\frac{1}{2}\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z+\frac{3 \tau^{2}}{2} c_{1}^{3}\right] \\
& =\frac{\tau}{24}\left[6 \tau^{2} c_{1}^{3}+\left(4-c_{1}^{2}\right)\left\{c_{1} x^{2}-2\left(1-|x|^{2}\right) z\right\}\right] .
\end{aligned}
$$

As per Lemma 4, it is clear that $\left|c_{1}\right| \leq 2$. Therefore letting $c_{1}=c$, we may assume without loss of generality that $c \in[0,2]$. Hence, by using the triangle inequality, it is obtained that

$$
\left|A_{4}\right| \leq \frac{|\tau|}{24}\left[6 \tau^{2} c^{3}+\left(4-c^{2}\right)\left\{c|x|^{2}+2\left(1-|x|^{2}\right)\right\}\right] .
$$

Thus, for $\mu=|x| \leq 1$, we have

$$
\left|A_{4}\right| \leq \frac{|\tau|}{24}\left[6 \tau^{2} c^{3}+\left(4-c^{2}\right)\left\{c \mu^{2}+2\left(1-\mu^{2}\right)\right\}\right]:=F(c, \mu) .
$$

Now, we need to find the maximum value of $F(c, \mu)$ over the rectangle Π,

$$
\Pi=\{(c, \mu): 0 \leq c \leq 2,0 \leq \mu \leq 1\}
$$

For this, first differentiating the function F with respect to c and μ, we get

$$
\frac{\partial F(c, \mu)}{\partial c}=\frac{|\tau|}{24}\left[18 \tau^{2} c^{2}+\left(4-c^{2}\right)\left\{c \mu^{2}+2\left(1-\mu^{2}\right)\right\}\right]
$$

and

$$
\frac{\partial F(c, \mu)}{\partial \mu}=\frac{|\tau|}{12}\left(4-c^{2}\right)(c-2) \mu
$$

respectively. The condition $\frac{\partial F(c, \mu)}{\partial \mu}=0$ gives $c=2$ or $\mu=0$, and such points (c, μ) are not interior point of Π. So the maximum cannot attain in the interior of Π. Now to see on the boundary, by elementary calculus one can verify the following:

$$
\begin{array}{cc}
\max _{0 \leq \mu \leq 1} F(0, \mu)=F(0,0)=\frac{|\tau|}{3}, & \max _{0 \leq \mu \leq 1} F(2, \mu)=F(2,0)=2|\tau|^{3} \\
\max _{0 \leq c \leq 2} F(c, 0)=F(2,0)=2|\tau|^{3}, & \max _{0 \leq c \leq 2} F(c, 1)=F(2,1)=2|\tau|^{3}
\end{array}
$$

Comparing these results, we get

$$
\max _{\Pi} F(c, \mu)=2|\tau|^{3}
$$

(see Figure 1). Also note that

$$
\tilde{p}(z)=1+\tau z+3 \tau^{2} z^{2}+4 \tau^{3} z^{3}+\cdots
$$

by (8) with $k=1$. From this equality, we obtain

$$
p_{1}=\tau, \quad p_{2}=3 \tau^{2} \quad \text { and } \quad p_{3}=4 \tau^{3} .
$$

On the other hand, the sharpness of the upper bounds of $\left|A_{2}\right|$ and $\left|A_{3}\right|$ is known from Theorem 4 and it is seen that the equality for $\left|A_{4}\right|$ is attained for the function $\tilde{p}(z)$. This evidently completes the proof of theorem.

Theorem 6. Let $f \in \mathcal{S} \mathcal{L}^{k}$ be given by (1), and f^{-1} be the inverse function of f defined by 22 . Then for any $\gamma \in \mathbb{C}$, we have

$$
\left|A_{3}-\gamma A_{2}^{2}\right| \leq \frac{k\left|\tau_{k}\right|}{2} \max \left\{1,2\left|1-(1-\gamma) k^{2}\right| \frac{\left|\tau_{k}\right|}{k}\right\}
$$

Proof. By using (20), the desired result is obtained from the equality

$$
A_{3}-\gamma A_{2}^{2}=-\frac{1}{2}\left[p_{2}-(3-2 \gamma) p_{1}^{2}\right] \quad(\gamma \in \mathbb{C})
$$

and Lemma 3.
Letting $k=1$ in Theorem 6, we obtain following consequence.
Corollary 5. Let $f \in \mathcal{S L}$ be given by (1), and f^{-1} be the inverse function of f defined by 22 . Then for any $\gamma \in \mathbb{C}$, we have

$$
\left|A_{3}-\gamma A_{2}^{2}\right| \leq \frac{|\tau|}{2} \max \{1,2|\gamma \tau|\}
$$

If we take $\gamma=1$ in Theorem 66 then we obtain the following result.
Corollary 6. Let $f \in \mathcal{S} \mathcal{L}^{k}$ be given by (1), and f^{-1} be the inverse function of f defined by 22). Then

$$
\left|A_{3}-A_{2}^{2}\right| \leq \begin{cases}\tau_{k}^{2} & , \quad 0<k \leq \frac{2}{\sqrt{3}} \\ \frac{k\left|\tau_{k}\right|}{2} & , \quad k \geq \frac{2}{\sqrt{3}}\end{cases}
$$

Figure 1. Mapping of $F(c, \mu)$ over Π
Letting $k=1$ in Corollary 6. we obtain the following consequence.
Corollary 7. Let $f \in \mathcal{S} \mathcal{L}$ be given by $\mathbb{1}$, and f^{-1} be the inverse function of f defined by (22). Then

$$
\left|A_{3}-A_{2}^{2}\right| \leq \tau^{2} .
$$

Theorem 7. Let $f \in \mathcal{S} \mathcal{L}^{k}$ be given by (11), and f^{-1} be the inverse function of f defined by (22). Then

$$
\left|A_{2} A_{4}-A_{3}^{2}\right| \leq \begin{cases}\left(1+k^{2}\right) \tau_{k}^{4} & , \quad 0<k \leq \frac{2}{\sqrt{3}} \\ \tau_{k}^{4}+\frac{k^{3}\left|\tau_{k}\right|^{3}}{2} & , \quad k \geq \frac{2}{\sqrt{3}}\end{cases}
$$

and

$$
\left|A_{2} A_{3}-A_{4}\right| \leq\left\{\begin{array}{ll}
4 k\left|\tau_{k}\right|^{3} & 0<k \leq \frac{2}{\sqrt{3}} \\
k\left|\tau_{k}\right|^{3}+\frac{3 k^{2} \tau_{k}^{2}}{2} & , \quad k \geq \frac{2}{\sqrt{3}}
\end{array} .\right.
$$

Proof. Let $f \in \mathcal{S} \mathcal{L}^{k}$ be of the form (1) and its inverse f^{-1} be given by 22 . Then we obtain

$$
\left|A_{2} A_{4}-A_{3}^{2}\right|=\left|a_{2}^{2}\left(a_{2}^{2}-a_{3}\right)+\left(a_{2} a_{4}-a_{3}^{2}\right)\right|
$$

and

$$
\left|A_{2} A_{3}-A_{4}\right|=\left|3 a_{2}\left(a_{2}^{2}-a_{3}\right)-\left(a_{2} a_{3}-a_{4}\right)\right| .
$$

Hence, applying triangle inequality, we have

$$
\left|A_{2} A_{4}-A_{3}^{2}\right| \leq\left|a_{2}\right|^{2}\left|a_{3}-a_{2}^{2}\right|+\left|a_{2} a_{4}-a_{3}^{2}\right|
$$

and

$$
\left|A_{2} A_{3}-A_{4}\right| \leq 3\left|a_{2}\right|\left|a_{3}-a_{2}^{2}\right|+\left|a_{2} a_{3}-a_{4}\right|
$$

respectively. On the other hand, from Lemma 6] we obtain

$$
\left|a_{3}-a_{2}^{2}\right| \leq \begin{cases}\tau_{k}^{2} & , \quad 0<k \leq \frac{2}{\sqrt{3}} \tag{24}\\ \frac{k\left|\tau_{k}\right|}{2} & , \quad k \geq \frac{2}{\sqrt{3}}\end{cases}
$$

Furhermore, we get

$$
\begin{equation*}
\left|a_{2}\right| \leq k\left|\tau_{k}\right| \tag{25}
\end{equation*}
$$

by using (23) together with Lemma 1. Now, by considering Lemma 7 and Lemma 8, we get the desired estimates.

Letting $k=1$ in Theorem 7, we obtain the following consequence.
Corollary 8. Let $f \in \mathcal{S L}$ be given by (1), and f^{-1} be the inverse function of f defined by 22. Then

$$
\left|A_{2} A_{4}-A_{3}^{2}\right| \leq 2 \tau^{4}
$$

and

$$
\left|A_{2} A_{3}-A_{4}\right| \leq 4|\tau|^{3}
$$

Declaration of Competing Interests The author declare that there is no competing interest.

References

[1] Bulut, S., Fekete-Szegö problem for starlike functions connected with k-Fibonacci numbers, Math. Slovaca, 71 (4) (2021), 823-830. doi: $10.1515 / \mathrm{ms}-2021-0023$
[2] Duren, P. L., Univalent Functions, Grundlehren der Mathematics. Wissenschaften, Bd, Springer-Verlag, NewYork, 1983.
[3] Falcón, S., Plaza, A., The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals, 33 (1) (2007), 38-49. doi: 10.1016/j.chaos.2006.10.022
[4] Grenander, U., Szegö, G., Toeplitz forms and their applications, Univ. of California Press, Berkeley, Los Angeles, 1958.
[5] Güney, H. Ö., Sokół, J., İlhan, S., Second Hankel determinant problem for some analytic function classes with connected k-Fibonacci numbers, Acta Univ. Apulensis Math. Inform., 54 (2018), 161-174. doi: 10.17114/j.aua.2018.54.11
[6] Güney, H. Ö., İlhan, S., Sokół, J., An upper bound for third Hankel determinant of starlike functions connected with k-Fibonacci numbers, Bol. Soc. Mat. Mex. (3), 25 (1) (2019), 117129. doi: $10.1007 / \mathrm{s} 40590-017-0190-6$
[7] Kalman, D., Mena, R., The Fibonacci numbers-exposed, Math. Mag., 76 (3) (2003), 167-181. doi: $10.2307 / 3219318$.
[8] Kayumov, I. R., On Brennan's conjecture for a special class of functions, Math. Notes, 78 (2005), 498-502. doi: 10.1007/s11006-005-0149-1
[9] Raina, R. K., Sokół, J., Fekete-Szegö problem for some starlike functions related to shell-like curves, Math. Slovaca, 66 (1) (2016), 135-140. doi: 10.1515/ms-2015-0123
[10] Sokól, J., On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, 175 (23) (1999), 111-116.
[11] Sokól, J., Raina, R. K., Yılmaz Özgür, N., Applications of k-Fibonacci numbers for the starlike analytic functions, Hacettepe J. Math. Stat., 44 (1) (2015), 121-127. doi: 10.15672/HJMS. 2015449091
[12] Şiar, Z., Keskin, R., Some new identities concerning generalized Fibonacci and Lucas numbers, Hacet. J. Math. Stat., 42 (3) (2013), 211-222.
[13] Yılmaz Özgür, N., Sokól, J., On starlike functions connected with k-Fibonacci numbers, Bull. Malays. Math. Sci. Soc., 38 (1) (2015), 249-258. doi: 10.1007/s40840-014-0016-x.
[14] Yılmaz Özgür, N., Uçar, S., Öztunç, Ö., Complex factorizations of the k-Fibonacci and k-Lucas numbers, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 62 (1) (2016), 13-20.

[^0]: Keywords. Analytic function, univalent function, shell-like function, logarithmic coefficients, k-Fibonacci number, subordination.

 - serap.bulut@kocaeli.edu.tr
 (D) 0000-0002-6506-4588.

