https://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 70, Number 2, Pages 910-[923] (2021)
DOI:10.31801 /cfsuasmas.808319

ISSN 1303-5991 E-ISSN 2618-6470

COMMUNICATIONS

Research Article; Received: October 9, 2020; Accepted: May 16, 2021 SERIES Al

LOGARITHMIC COEFFICIENTS OF STARLIKE FUNCTIONS
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ABSTRACT. Let A denote the class of analytic functions f in the open unit disc
U normalized by f(0) = f/(0) — 1 = 0, and let S be the class of all functions
f € A which are univalent in U. For a function f € S, the logarithmic
coefficients §,, (n =1,2,3,...) are defined by

log@:QZtsnz" (z€ )
n=1

and it is known that |§1] < 1 and |62] < 1 (1+2e72) = 0,635+ . The
problem of the best upper bounds for |§,| of univalent functions for n > 3 is

still open. Let S£* denote the class of functions f € A such that
Zf'(Z)_< 1+7322 E—Vk2+4
I T =
f(2) 1— kTpz — 7222 k 2
In the present paper, we determine the sharp upper bound for |§1], |d2| and |d3]

for functions f belong to the class SL£* which is a subclass of S. Furthermore,
a general formula is given for |0,| (n € N) as a conjecture.

(z€U).

1. INTRODUCTION

Let C be the set of complex numbers and N = {1,2,3,...} be the set of positive
integers. Assume that H is the class of analytic functions in the open unit disc
U={z€C:|z] <1}, and let the class P be defined by

P={peH:p(0)=1 and R(p(z)) >0 (2 € V)}.

For two functions f,g € H, we say that the function f is subordinate to g in U,
and write

f(z)=g(z)  (z€0),

Keywords. Analytic function, univalent function, shell-like function, logarithmic coefficients,
k-Fibonacci number, subordination.
& serap.bulut@kocaeli.edu.tr
0000-0002-6506-4588.

©?2021 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

910



APPLICATIONS OF FIBONACCI NUMBERS 911

if there exists a Schwarz function
weN={weH:w0)=0 and |w(2)|<1 (z€U)},
such that
fZ)=gw(z) (z€l).
Indeed, it is known that
f(z)=g() (zeU)=f(0)=g(0) and f(U)cCg(U).

Furthermore, if the function ¢ is univalent in U, then we have the following equiv-
alence

f(z)<g(z) (z€U)« f(0)=g(0) and f(U)cCg(U).
Let A denote the subclass of H consisting of functions f normalized by

f0)=f'(0)—1=0.

Each function f € A can be expressed as
fz)=2z+ Z anz" (z €U). (1)
n=2

We also denote by S the class of all functions in the normalized analytic function
class A which are univalent in U.
A function f € A is said to be starlike of order o (0 < o < 1), if it satisfies the

inequality
2f'(2)
§R<f(z))>a (z€).
We denote the class which consists of all functions f € A that are starlike of order
a by §*(a). It is well-known that $*(a) C $*(0) = §* C S.

By means of the principle of subordination, Yilmaz Ozgiir and Sokdél [13] defined
the following class SLF of functions f € S, connected with a shell-like region
described by a function pj with coefficients depicted in terms of the k-Fibonacci
numbers where k is a positive real number. The name attributed to the class S£*
is motivated by the shape of the curve

I = {pr (e“") cpef0,2m)\ {m}}.
The curve I' has a shell-like shape and it is symmetric with respect to the real axis.
For more details about the class S£*, please refer to [11,[13].

Definition 1. [13] Let k be any positive real number. The function f € S belongs
to the class SCF if it satisfies the condition that
2f' (2)
f(z)
- 1+ 7222 1+ 7222

= = 3
Pi (2) 1—krpz—7322 1— (12 —1)2— 1222 (3)

< i (%) (€U, (2)

where
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with
k—Vk%2+4
Tk = 72 . (4)

For k = 1, the class SLF reduces to the class S£ which consists of functions
f € A defined by satisfying

5
where 14 7222
ﬁ(z)izﬁl():m (5)
with
S— _2‘/5. (6)

This class was introduced by Sokdl [10].

Definition 2. [5] For any positive real number k, the k-Fibonacci sequence { Fy, » }
is defined recurrently by

Fypny1 = kFypn+ Frpn_1 (neN)

with initial conditions

neNy

Frpo=0, Fpi1=1.
Furthermore n*" k-Fibonacci number is given by
(k—1i)" =17
Fk,n = T =
VEk2+4

where T is given by .

For k = 1, we obtain the classic Fibonacci sequence {F’ﬂ}nGNg :

F():O, F =1, and Fn+1 =F,+F,1 (TLGN)

For more details about the k-Fibonacci sequences please refer to [7,94[12}14].

Yilmaz Ozgiir and Sokdl [13] showed that the coefficients of the function py, (2)
defined by are connected with k-Fibonacci numbers. This connection is pointed
out in the following theorem.

Theorem 1. [15] Let {Fy n}
in Definition 2l If

nen, b€ the sequence of k-Fibonacci numbers defined

- 1+ Ti,zQ >
= fF .= nZ", 8
Pk (2) 1 — kTz — 7322 + T;pk’ = )

then we have
Pra =kti, Pr2= (K> +2)7%  Dron = Fen-1+ Frns1) T4 (neN). (9)

It can be found the more results related to Fibonacci numbers in [7,[12,/14].
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Remark 1. [13] For each k > 0,
B k
2VEk? + 4

that is, f € SLF is a starlike function of order ay, and so is univalent.

SckcS (), ax

For a function f € S, the logarithmic coefficients d,, (n € N) are defined by
f(z) c-
log —= =2 Op2" U), 10
o8 S =2) 0 (D) (10)

and play a central role in the theory of univalent functions. The idea of studying
the logarithmic coefficients helped Kayumov [8] to solve Brennan’s conjecture for
conformal mappings. If f € S, then it is known that

|01] <1
and )
02| < 5 (14+2¢7%)=0,635---

(see |2]). The problem of the best upper bounds for |d,,| of univalent functions for
n > 3 is still open.

The main purpose of this paper is to determine the upper bound for |d1],|d2]
and |d5| for functions f belong to the univalent function class SL*. To prove our
main results we need the following lemmas.

Lemma 1. [11] Ifp(2) =1+ piz+p2z°2+--- (2 € U) and

14 7722 k—Vk2+4

2 Tk 2

PR <Pk (2) = T e
k

22’
then we have
pl<klrl  and  lpal < (K +2) 73

The above estimates are sharp.
Lemma 2. [5] If p(2) =1+ p1z+p2z2+--- (z € U) and
L4722 k- VEETd

2 Tk

<p =k _
p(2) <P (2) = y —pL 5

then we have
pa| < (K* +3k) |71’
The result is sharp.

Lemma 3. [1] Ifp(2) =1+ p1z+p2z®+--- (2 €U) and
_ 1+ 732° _k—Vk2+4

p(2) < pi(2) = 1—krpz — 1322 Tk 2
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then we have
P2 —wi| < k|l maX{L |k? + 2 — k2| lTkk}

for all v € C. The above estimates are sharp.
Lemma 4. [9] Let p(z) =1+ c12 +caz? +--- € P. Then

len] <2 (neN).
Lemma 5. [/] Let p(z) =1+ c12+caz? +--- € P. Then

2co :c%—i—x(él—c?)
for some z, |z| < 1, and

deg=c}+2c (4—c)z—c(4—c)z* +2(4—c}) (1— |x|2)z

for some z, |z] < 1.

Lemma 6. [1] If the function f given by is in the class SCF, then we have

9 (1.9 9 2(K*+1) i +k
Tk (k +1- Ak ) ) A S 2k2T
2 k 2(k24+1) T +k 2(k?4+1) 1 —k
lag — Aa3| < —‘;’“‘ , 2K 7tk ka)T:k <A< 2R )7k 2k-2)fzk

2 —
T% )\k2—k2—1) 7 )\22(1@ +1)rk k

2](,‘27')C
2(k2+1)7k+k k2+1
IwaAS 52 7th€n
2(k2+ 1) 1+ k k|r
|a3—)\a§|—|— (/\— ( 2k523’k \GQ\QS |2k|.
24 1) —
Furthermore, if % <A< %, then
2(k2+1)1p — k s k|kl
|a3_m§|+< o, el =T

Each of these results is sharp.
Lemma 7. [6] If the function | given by is in the class SCF, then
|a2a4 — a§| < Ti.
The bound is sharp.
Lemma 8. [6] If the function f given by is in the class SCF, then
lasaz — as| < k|

The bound s sharp.
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2. THE COEFFICIENTS OF log (f(2)/z)

Theorem 2. Let f € SL* be given by and the coefficients of log (f(z)/z) be
given by . Then

k k% +2 K3 k
Gl < Shnd, 1l < -3

Tk |53| <

Il (11)

where T is defined by . Each of these results is sharp. The equalities are attained
by the function py given by .
Proof. Firstly, by differentiating and equating coefficients, we have

1

01 = 5925

1 1
62 = 5 <a3 — 2@3) ;
1 1
(53 = 5 (a4 — ag0a3 + 3@%) .

If f € SC*, then by the principle of subordination, there exists a Schwarz function
w € () such that

2f'(z) _
=Pk (w(z zel), 12)
T = h @) e (
where the function py is given by . Therefore, the function
1
g(z)::li—:EZ:1+c1z+02z2+--- (z€U) (13)
is in the class P. Now, defining the function p(z) by
zf' (2) 2
p(z) = =14piz+pez°+---, (14)
=0
it follows from and that
_(g(z) - 1>
= . 15
oo = (29 (15)
Note that
c1 1 c 9 c 3
w(z):§z+§ 25 )2 + = 0370102+Z 27+
and so
. Dk 1C 1 A 1,5
Pr(w(2) =1+ pk; Sz [2 <02 - 21) Dk + 40%]11@,2} 22
Jr1 +cif - +1c . 2\ +cif~ n
—le3—cieo+ — = - = - e
B 3 1C2 4 Pk B 1| C2 B) DPk,2 3 DPE,3

(16)
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Thus, by using in (15), and considering the values py ; (j = 1,2,3) given in

, we obtain
_ ke
p1 = 2 C1,
kT c? k*+2) 713
p= g (0= F) - 2
kT 3 (k2 + 2) T% c (k3 + 3/€) T
p3—2(63—01c2+4 +fc1 22— 5 +T

On the other hand, a simple calculation shows that

zf' (2) _ 2\ 2 . 3\ .3
) =14+agz+ (2@3 a2) 25+ (3a4 3asasz + a2) z20 4
which, in view of (14)), yields
B _ pitpe P+ 3p1p2 + 2ps3
az = Pi1, az = ——5— a4 = .
2 6
Substituting for as, az and a4 from (20)), we obtain
1 1 1
0 == 0p = = 03 = =ps.
1 2p13 2 4p27 3 6p3

3
e,

(17)
(18)

(19)

(20)

(21)

Using Lemma [T and Lemma 2] we get the desired results. This completes the proof

of theorem.

(]

Conjecture. Let f € SL* be given by and the coefficients of log (f(2)/2)

be given by . Then

Fk,nfl + Fk,nJrl

S| <
6] < ntE Tkt

7" (neN),

where {F}, ,} is the Fibonacci sequence given by (7)) .

neNy

This conjecture has been verified for the values n = 1,2,3 by the Theorem

Letting £ = 1 in Theorem [2| we obtain the following consequence.

Corollary 1. Let f € SL be given by and the coefficients of log (f(z)/z) be

given by . Then

1 3 2
A R A

where T is defined by @ Each of these results is sharp. The equalities are attained

by the function p given by .
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Theorem 3. Let f € SL* be given by and the coefficients of log (f(2)/z) be
given by . Then for any v € C, we have

4
Proof. By using , the desired result is obtained from the equality

155 — 487 < FlTe max{l, K2 42 — k2| |Tk"}

1
62—7ﬁ=21&w—7ﬁ) (yeC)

and Lemma 3 O

Letting £ = 1 in Theorem [3| we obtain the following consequence.

Corollary 2. Let f € SL be given by and the coefficients of log (f(z)/z) be
given by . Then for any v € C, we have

)
162 =983 < T amax {1, (3 - ) 7

If we take v = 1 in Theorem [3} then we obtain the following result.

Corollary 3. Let f € SL* be given by and the coefficients of log (f(z)/z) be
given by . Then

2
2
E , 0<k<

S

|62 — 5?! <

|7 2
R

Letting £ = 1 in Corollary [3} we obtain the following consequence.

Corollary 4. Let f € SL be given by and the coefficients of log (f(z)/z) be

given by . Then

72

?.

|02 — 03] <

3. THE COEFFICIENTS OF THE INVERSE FUNCTION

Since univalent functions are one-to-one, they are invertible and the inverse func-
tions need not be defined on the entire unit disk U. In fact, the Koebe one-quarter
theorem [2] ensures that the image of U under every univalent function f € S con-
tains a disk of radius 1/4. Thus every function f € A has an inverse f~!, which is
defined by

@) =2 (z€0)

and

FU ) = w <|w| <ro(f): ro(f) > i)
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In fact, for a function f € A given by the inverse function f~! is given by

fH(w) = w—asw?+ (243 — az) w* — (5a3 — 5asaz + as) wh+- -+ = w—l—z Ajw”.
(22)
Since SLF C 8, the functions f belonging to the class SC* are invertible.

Theorem 4. Let f € SL* be given by 7 and f~1 be the inverse function of f
defined by . Then we have

[Az| < k|7k]

\A|<M’“| {1,2]1—#“2’“'}.

FEach of these results is sharp.

Proof. Let the function f € A given by be in the class SL¥, and f~! be the
inverse function of f defined by . Then using 7 we obtain

Ay = —az = —p1 (23)

and

and )
As =203 —a3 = —3 (p2 — 3p7) .

The upper bound for |As| is clear from Lemma [l Furthermore by considering
Lemma we obtain the upper bound of | 43| as

\A3|<k‘ LI {1,2]1—k2||Tk’€|}.

Finally, for the sharpness, we have by that

Pr(z)=1+krpz+ (K> +2) 152 +
and

Pe (2%) =1+ km2 + (K +2) izt +- .

From this equalities, we obtain

p1 = kT and pe = (kK> +2) 7}
and

p1=0 and p2 = kT,

respectively. Thus, it is clear that the equality for |As| is attained for the function
Pr(2); and the equality for the first value of |A3| is attained for the function py,(22),

for the second value of |As| is attained for the function pg(z). This evidently
completes the proof of theorem. O

Remark 2. [t is worthy to note that the coefficient bound obtained for |As| in
Theorem [4] is the improvement of [11, Corollary 2.4].
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Theorem 5. Let f € SL be given by , and f~1 be the inverse function of f
defined by . Then we have

As| < |7, Aggm and A4§273.
2
Fach of these results is sharp.

Proof. Let f € SL be given by , and f~! be the inverse function of f defined
by (22) . Then the upper bounds for |As| and |As| are obtained as a consequence
of Theorem (4| when k& = 1. From , we have

—Ay= 5a§ — Basasz + ay.

By using (20) in the above equality, we obtain
8 1
—Ay=-p3 -2 —p3.
4= 3P~ 2pip2 + 33
By (17)-(19)), this equality gives

T 1—672
A4 = _8 (Cg — C1Co + 4C?> .

By means of Lemma [5] we get

T(1 1 372
Ay = 5 {401 (4—cf)a® — 3 (4—¢}) (1 - \m|2> zZ+ 2011)’}

= 27—4 [67'20:;’ +(4—cf) {01:172 -2 (1 - |:c|2> ZH .

As per Lemma it is clear that |¢1| < 2. Therefore letting ¢; = ¢, we may assume
without loss of generality that ¢ € [0,2]. Hence, by using the triangle inequality, it
is obtained that

44| < % (672 + (4= ) {elol +2 (1- o) }] -
Thus, for p = |z| < 1, we have
|Asq| < % [67203 + (4- 02) {ch +2(1- u2)}} =F(c,p).
Now, we need to find the maximum value of F(c, i) over the rectangle II,

MI={(c,p):0<e<2, 0< <1},
For this, first differentiating the function F' with respect to ¢ and u, we get

8F(07M)_m 2 2 2 2 2
9% =51 [187‘0 +(4 c){cu —|—2(1 ,u)}]
and
OF (c,p) ||

a‘u 19 (4_02) (6_2),“7



920 S. BULUT

respectively. The condition %

=0 gives ¢ = 2 or p = 0, and such points (e, )
are not interior point of II. So the maximum cannot attain in the interior of II.
Now to see on the boundary, by elementary calculus one can verify the following:

_ _ 7| . . 3
OggglF(O,u) =F(0,0) =7, 0213§1F(2’ p) =F(2,0) =2|r|
_ o3 _ o3
o??é{zF(C’ 0) = F(2,0)=2|7]", [hax F(e,1) = F(2,1)=2]7|".

Comparing these results, we get
ml_?xF(c, w) =2\
(see Figure 1). Also note that
P(2)=1+72+37%2% 44323 + ...
by with & = 1. From this equality, we obtain
p1L=T, pa =372 and p3 = 475,

On the other hand, the sharpness of the upper bounds of |As| and |A3| is known
from Theorem [4] and it is seen that the equality for |A4| is attained for the function
p(2). This evidently completes the proof of theorem. O

Theorem 6. Let f € SL* be given by , and f=1 be the inverse function of f
defined by . Then for any v € C, we have

k
7+ max{l, 2[1—(1—7) 4| 7}:'} .
Proof. By using , the desired result is obtained from the equality

1
Ag=A5=—5[p-B-29)p1] (€0
and Lemma [3 O

|A3 *’YA§| <

Letting k¥ = 1 in Theorem [6] we obtain following consequence.

Corollary 5. Let f € SL be given by , and f~1 be the inverse function of f
defined by . Then for any v € C, we have

‘A3 — 'yA%| < % max {1, 2 |y7|}.
If we take v = 1 in Theorem [6] then we obtain the following result.

Corollary 6. Let f € SL* be given by , and =% be the inverse function of f
defined by . Then

2 2
T , O<k§7§
|As — A3| <
k|7‘k‘ 2
2 ) kZ \/g
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FIGURE 1. Mapping of F (¢, u) over IT

Letting & = 1 in Corollary [6] we obtain the following consequence.

Corollary 7. Let f € SL be given by , and f~1 be the inverse function of f

defined by . Then
|A3 - A§| S ’7'2.

Theorem 7. Let f € SL* be given by , and f~1 be the inverse function of f
defined by . Then

V3
Ay A, — A2) < .
T}‘C—i-—l—k |;’° , k> \/lg
and
ak |7 , 0<k< X
|Ag Az — Ay| < ,
kl'rk;|3 + 3k27'k , k Z \/ig
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Proof. Let f € SC* be of the form (I) and its inverse f~! be given by (22). Then
we obtain

|A2A4 — A§| = |a§ (a% —as) + (azas — a§)|
and
|AsAs — Ay| = ‘3@2 (a% - ag) — (agas — a4)’ .
Hence, applying triangle inequality, we have
|A2A4 - Ag} < \a2|2 |a3 — a%’ + |a2a4 - a§|
and
|A2As — Ay| < 3as] |a3 — a§| + |agas — a4,

respectively. On the other hand, from Lemma [6] we obtain

T2 , 0<k< %
las — a3| < . : (24)
B kz
Furhermore, we get
|laz| < k|74l (25)
by using together with Lemma |l Now, by considering Lemma m and Lemma
[8) we get the desired estimates. O

Letting & = 1 in Theorem [7] we obtain the following consequence.

Corollary 8. Let f € SL be given by , and f~1 be the inverse function of f

defined by . Then
|A2A4 - A§| S 27’4

and
|ApAs — Ayl < 4|7,
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