
  
Int. J. Pure Appl. Sci. 6(2):107-117 (2020) 

 

  

Research article/Araştırma makalesi 

DOI: 10.29132/ijpas.811402                          
 

 

107 

 

Hybrid Multiattribute Decision Method for Material Selection 
 

Mehmet Şahin 
Iskenderun Technical University, Department of Industrial Engineering, 31200 Iskenderun, Turkey 

mehmet.sahin@simon.rochester.edu  

Received date: 16.10.2020, Accepted date: 26.12.2020 

 

 
Abstract 

Material selection is crucial in product design. The appropriate material selection for a specific product is an essential 

task for engineers. The triggering reasons for the appropriate material selection are often to minimize cost and improve 

performance. However, depending on the area where the material is used, the scope and importance of the attributes vary. 

The availability of numerous materials with various features complicate the material selection process. In this regard, to 

choose the best alternative material for a particular application, an efficient, systematic approach to material selection is 
required. In this study, a hybrid multicriteria decision approach is proposed for material selection. The importance of 

attributes (weight) is determined through the standard deviation and criteria importance through intercriteria correlation 

methods. Considering the fact that the outcome of multiple attribute decision-making (MADM) methods is dependent on 

the weights of the criteria, the objective weighting methods are preferred to avoid subjective assessments. The ranking of 

alternative materials is achieved through grey relational analysis, technique for order performance by similarity to ideal 

solution, and organization rangement et synthese de donnes relationnelles (ORESTE). The main reason for utilizing 

several MADM methods is the fact that any of them does not guarantee the right choice. Therefore, the ranks provided 

six models are integrated via the Copeland method to reveal a final consensus ranking. The weighting methods' results 

indicate that the weight of an attribute can be the highest and lowest depending on what weighting method is preferred. 

The result of the Copeland method reveals that the final consensus rank of materials can be different from the rank of the 

models. Thus, considering and integrating of multiple models is essential. 
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Malzeme Seçimi için Hibrit Çok Kriterli Karar Yöntemi 

 
Öz 

Ürün tasarımında malzeme seçimi oldukça önemlidir. Belirli bir ürün için uygun malzeme seçimi, mühendisler için 

temel bir görevdir. Uygun malzeme seçimi için temel hedefler genellikle maliyeti en aza indirmek ve performansı 

iyileştirmektir. Bununla birlikte, malzemenin kullanıldığı alana bağlı olarak, özelliklerin kapsamı ve önemi değişir. Çeşitli 

özelliklere sahip çok sayıda malzemenin mevcudiyeti, malzeme seçim sürecini zorlaştırmaktadır. Bu bağlamda, belirli bir 

uygulamaya yönelik en iyi alternatif malzemeyi seçmek için verimli ve sistematik bir yaklaşım gerekmektedir. Bu 

çalışmada, malzeme seçimi için hibrit çok kriterli bir karar yaklaşımı önerilmiştir. Niteliklerin önemi (ağırlıkları), standart 

sapma ve kriterler arası korelasyon yöntemleri ile kriter önemi ile belirlenir. Çok kriterli karar verme yöntemlerinin 
sonucunun kriterlerin ağırlıklarına bağlı olduğu gerçeği dikkate alındığında, öznel değerlendirmelerden kaçınmak için 

nesnel ağırlıklandırma yöntemleri tercih edilmiştir. Alternatif malzemelerin sıralaması, gri ilişkisel analiz, ideal çözüme 

benzerlik yoluyla sipariş performansı için teknik ve organization rangement et synthese de donnes relationnelles 

(ORESTE) yoluyla elde edilir. Birkaç çok kriterli karar verme yönteminin kullanılmasının ana nedeni, bunlardan herhangi 

birinin doğru seçimi garanti etmemesidir. Bu nedenle, nihai bir fikir birliği sıralamasını ortaya çıkarmak için altı modelin 

Copeland yöntemiyle entegre edildiği sıralamalar elde edilmektedir. Ağırlıklandırma yöntemlerinin sonuçları, bir kriterin 

ağırlığının, hangi ağırlıklandırma yönteminin tercih edildiğine bağlı olarak en yüksek ve en düşük olabileceğini 

göstermektedir. Copeland yönteminin sonucu, malzemelerin nihai konsensüs sıralamasının modellerin sıralamasından 

farklı olabileceğini ortaya koymaktadır. Bu nedenle, birden fazla modelin dikkate alınması ve entegre edilmesi oldukça 

önemlidir.  

 
Anahtar Kelimeler: Copeland, gri ilişkisel analiz, malzeme seçimi, çok kriterli karar verme 
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INTRODUCTION 

The availability of a wide variety of materials 

and their critical role in designing, manufacturing, 

and marketing a product make the material selection 
decision vital (Chatterjee et al., 2011). This selection 

decision involves numerous conflicting attributes 

(Emovon et al., 2020). Depending on the application 
area's priorities and requirements, the scope and 

significance level of attributes may vary. Although 

cost is generally one of the essential criteria 

(attributes) in material selection, compulsory trade-
offs such as quality being more critical than cost may 

cause differences in the criteria' importance level. 

The possible consequences of choosing 
inappropriate material can have devastating effects 

(Kumar et al., 2014). For example, short- and long-

term impacts of customers whose expectations are not 
met, high cost, low productivity, damage or failure of 

an assembly, and poor performance can be a short and 

clear explanation of some possible results. Since 

these concepts directly affect businesses' continuity, 
there is no need to specify these concepts' importance. 

Therefore, material selection and determining a 

practical solution approach for this problem are 
among the essential topics in the literature.  

Multiple attribute decision making (MADM) 

methods have been frequently applied for such 
problems. Jahan et al. (2011) used vise kriterijumska 

optimizacija ikompromisno resenje (VIKOR) to rank 

and chose the best material. Jeya Girubha et al. (2012) 

implemented fuzzy VIKOR to the material selection 
of an automotive component and found that 

Polypropylene could be an alternative material for the 

instrument panel. Dev et al. (2020) adopted the 
entropy method to determine attribute weights and the 

VIKOR method to select optimal material for the 

automotive piston component. Shanian et al. (2006) 

used elimination and choice expressing the reality 
(ELECTRE) to determine the ranking of materials for 

a loaded thermal conductor's specific application. 

Maity et al. (2015) proposed an approach based on the 
preference ranking organization method for 

enrichment evaluation (PROMETHEE II) to 

determine the best and worst material alternatives for 
the tool material selection problem. Maity et al. 

(2013) implemented a fuzzy technique for order 

performance by similarity to ideal solution (TOPSIS) 

to solve the grinding wheel abrasive material 
selection problem. Chan et al. (2007) used grey 

relational analysis (GRA) to rank the materials.  

In addition, more than one MADM method was 

used in some studies. Yazdani et al. (2016) used 

stepwise weight assessment ratio analysis (SWARA), 

multi-objective optimization on the basis of ratio 
analysis (MOORA), and weighted aggregated sum 

product assessment (WASPAS) methods and 

examined their ranking results. Madhu et al. (2020) 
used fuzzy AHP, TOPSIS, VIKOR, evaluation based 

on distance from average solution (EDAS), and 

PROMETHEE II to determine optimal biomass 

material. Dhanalakshmi et al. (2020) implemented 
fuzzy AHP, TOPSIS, and EDAS methods for 

pyrolysis material selection. Niu et al. (2020) adopted 

AHP, entropy, and complex proportional assessment 
(COPRAS) to select cutting tool material. 

The literature review reveals that the MADM 

methods have been successfully implemented for 
solving material selection problems in different 

application areas. The majority of the studies 

included one MADM method. However, the number 

of hybrid approaches has been increasing recently. 
Depending on the result of one MADM method can 

be misleading as the MADM method's rank is 

sensitive to the attribute weights. Therefore, adopting 
multiple MADM methods improves the exactness of 

the ranking result (Şahin, 2020b). Also, entropy is 

preferred mostly as the weighting method for material 
selection problems. Unlike other studies, this study 

proposes a hybrid MADM approach based on criteria 

importance through intercriteria correlation 

(CRITIC), standard deviation (SD), GRA, TOPSIS, 
organization rangement et synthese de donnes 

relationnelles (ORESTE), Kendall's correlation 

coefficient, and the Copeland method.  
In the proposed integrated approach, SD and 

CRITIC methods provide the attribute weight sets. 

The importance of each attribute is determined based 

on the SD and CRITIC algorithms. Thus, the impact 
of attribute weights on the ranking of alternatives can 

be detected. Also, three different MADM – GRA, 

ORESTE, and TOPSIS methods from different 
MADM categories are implemented to rank 

alternative materials. Thus, the differences between 

ranks provided by each method are revealed to allow 
comparisons and provide ranks through different 

models. Then, correlations between each model are 

examined. Finally, six models' rankings are integrated 

using the Copeland method to suggest a final 
consensus ranking considered to be more precise than 

a model. 
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The contributions of the present study can be 

summarized as follows. It is not to mention again that 

this study presents a unique hybrid approach 

involving various methods for solving material 
selection problems. The outcomes of different 

method pairs (models) are examined to reveal the 

correlations between models. Last, the final 
consensus ranking is achieved based on integrating 

several methods through the Copeland method, 

meaning that the rank's accuracy is higher than one 

method implemented in most other related studies. 
The remainder of the study is organized as 

follows: The following section presents the methods 

used, proposed methodology, and details of the 
problem. Section 3 then provides the results and 

related discussions. Finally, Section 4 concludes the 

study, along with the study's limitations and 
recommendations for future studies.  

 

MATERIAL AND METHODS 

This section describes the weighting and 
MADM methods used in the present study initially. 

As explained earlier, CRITIC and SD are 

implemented to obtain the attribute weights. The 
reasons for choosing these weighting methods are to 

reveal the impact of attribute weights on ranking 

results, and unlike other studies using the entropy 
method, to utilize the CRITIC and SD methods to 

allow comparisons. Besides, GRA, ORESTE, and 

TOPSIS are implemented to rank alternative 

materials. The reasons for choosing these methods are 
to use methods from different categories, utilize 

methods proven successful in solving problems in 

various fields and reveal potential ranking 
differences. The reasons for choosing multiple 

weighting and MADM methods are to allow 

comparisons, obtain rankings from different models, 

and integrate them to determine the final ranking 
based on a final consensus. In this regard, the 

Copeland method is implemented. Subsequently, the 

details of the proposed approach and the 
implementation of the approach to the material 

selection problem is explained.  

 

CRITIC 

The weights are calculated through the contrast 

intensity and conflict assessment. This method 

assigns high importance to the responses with high 
standard deviation and low correlation with other 

responses. The procedure of the method can be 

described, as follows (Diakoulaki et al., 1995): 

i. The normalization of the decision matrix is 

performed through Equation 1. 

 
𝑎𝑖𝑗
+ =

𝑎𝑖𝑗 − 𝑎𝑗
𝑤𝑜𝑟𝑠𝑡

𝑎𝑗
𝑏𝑒𝑠𝑡 − 𝑎𝑗

𝑤𝑜𝑟𝑠𝑡
 

(1) 

where 𝑎𝑖𝑗
+  represents the normalized value of the 

ith design on the jth response. 

ii. The information amount contained in the jth 

response is calculated through the following 

multiplicative aggregation equation. 

 
𝐶𝑗 = 𝜎𝑗∑(1 − 𝑟𝑗𝑘)

𝑛

𝑘=1

 
 
(2) 

 

where 𝜎𝑗 represents the standard deviation of the 

jth response and 𝑟𝑗𝑘 denotes the correlation 

coefficient between two different responses.  

iii. Attribute weights (wj) are calculated through 

Equation 3. 

 
𝑤𝑗 =

𝐶𝑗
∑ 𝐶𝑘
𝑚
𝑘=1

 
(3) 

SD 

SD assigns the weights of criteria according to 

their standard deviations via Equation 4 (H. Deng et 

al., 2000). 
 

 𝑤𝑗 =
𝜎𝑗

∑ 𝜎𝑘
𝑚
𝑘=1

, 𝑗 = 1,2, … , 𝑚 (4) 

 

GRA 
J.-L. Deng (1982) introduced the GRA. The 

GRA examines the uncertain relationships between a 

major factor and all other factors in a system (Liang, 

1999). GRA's main advantages include its robustness, 
practicality, objectivity, computational efficiency, 

and simplicity (Wei, 2011; Wu, 2002). Assuming that 

there are m alternatives and n attributes and the vector 
of the reference sequence and comparability 

sequences are denoted by 𝑋0 = (𝑥01, 𝑥02 , … , 𝑥0𝑛) 
and 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛), respectively. Yi represents 

the original vector for the value of attributes of each 
alternative and converted to the comparability 

sequence after the normalization process. The steps 

for grey relational analysis are as follows: 
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Step 1. The data is normalized in the context of 

data preprocessing to eliminate different intervals and 

units in the dataset. The normalization of the data for 

beneficial and nonbeneficial attributes is conducted 

based on the following equations:   

 

𝑥𝑖𝑗 =
𝑦𝑖𝑗−min(𝑦𝑖𝑗)

max(𝑦𝑖𝑗)−min(𝑦𝑖𝑗)
 , 𝑓𝑜𝑟 𝑖 =

1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛  

 

(5) 

 

𝑥𝑖𝑗 =
max(𝑦𝑖𝑗)−𝑦𝑖𝑗

max(𝑦𝑖𝑗)−min(𝑦𝑖𝑗)
, 𝑓𝑜𝑟 𝑖 =

1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛  
 

(6) 

yij represents the jth attribute's numerical value 

for the ith alternative, and xij is the normalized value.  
Step 2. The grey relational coefficient 

calculation, which indicates the relationship between 

the reference sequence and comparability sequence, 

is performed using the following equation. 
 

 
𝛾(𝑥0𝑗 , 𝑥𝑖𝑗) =

∆𝑚𝑖𝑛 + 𝜉∆𝑚𝑎𝑥
∆𝑖𝑗 + 𝜉∆𝑚𝑎𝑥

 

 

(7) 

where 𝑥0𝑗  represents the reference sequence and 

𝑥𝑖𝑗 is the comparative sequence, 

 ∆𝑖𝑗= |𝑥0𝑗 − 𝑥𝑖𝑗| (8) 

 
∆min= Min{∆𝑖𝑗, 𝑖 = 1,2, … , 𝑚; 𝑗

= 1,2, … , 𝑛} 
(9) 

 
∆max= Max{∆𝑖𝑗, 𝑖 = 1,2, … ,𝑚; 𝑗

= 1,2, … , 𝑛} 
(10) 

 
𝜉 denotes the distinguishing coefficient and 𝜉 ∈

(0,1). In this study, it is taken as 0.5 as commonly 

used in the literature. 
Step 3. The calculation of grey rational grade is 

performed through the following equation. Here, 

𝛤(𝑋0, 𝑋𝑖) denotes the correlation level between the 

reference sequence and comparability sequence. The 
higher value of the gray rational grade indicates the 

optimum alternative. 

 

 

𝛤(𝑋0, 𝑋𝑖) =∑𝑤𝑗𝛾(𝑥0𝑗 , 𝑥𝑖𝑗)

𝑛

𝑗=1

 𝑓𝑜𝑟 𝑖

= 1,2, … ,𝑚 
 

(11) 

where wj represents the weighting coefficient of 

factors and ∑ 𝑤𝑗 = 1
𝑛
𝑗=1 . 

 

ORESTE 

The algorithm of ORESTE is described in the 

following steps (Roubens, 1982). 

1. The global preference score �̃�(𝑎𝑖𝑗) is 

determined based on the following equation. 

 

 �̃�(𝑎𝑖𝑗)

= √𝜍(𝑟𝑗)2 + (1 − 𝜍)(𝑟𝑗(𝐴𝑖))2 
(12) 

where 𝛓 is a coefficient reflecting the ranking 

importance of attribute and alternative, and it is 

assigned by the decision-maker.  

2. The global weak ranking 𝑟(𝑎𝑖𝑗) is determined. 

The Besson's rank 𝑟(𝑎𝑖𝑗) is obtained through the 

values of �̃�(𝑎𝑖𝑗) (𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛) in 

descending order. 

3. The weak rank 𝑅(𝐴𝑖) is determined based on 

the following equation. 

 

𝑅(𝐴𝑖) =∑𝑟(𝑎𝑖𝑗)

𝑛

𝑗=1

 (13) 

4. The preference intensities are obtained. The 

mean preference intensity between 𝐴𝑖 and 𝐴𝑘 is 
calculated based on the following equation. 

 

 �̃�(𝐴𝑖 , 𝐴𝑘)

=
∑ 𝑚𝑎𝑥[(𝑟(𝑎𝑘𝑗) − 𝑟(𝑎𝑖𝑗)),0]
𝑛
𝑗=1

(𝑚 − 1)𝑛2
 

(14) 

 

The net preference intensity between 𝐴𝑖 and 𝐴𝑘 

is expressed as: 
 

 ∆�̃�(𝐴𝑖 , 𝐴𝑘) = �̃�(𝐴𝑖 , 𝐴𝑘)

− �̃�(𝐴𝑘 , 𝐴𝑖) 

(15) 

5. PIR structure (preference (P), indifference (I), 

and incomparability (R)) is designed. The concept of 

the indifference and incomparability test (conflict 
analysis) is: 

 

a) If |∆�̃�(𝐴𝑖 , 𝐴𝑘)| ≤ �̃� then 
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{
𝐴𝑖  𝐼 𝐴𝑘 ,   𝑖𝑓 |�̃�(𝐴𝑖 , 𝐴𝑘)|  ≤ 𝜉  𝑎𝑛𝑑 |�̃�(𝐴𝑘 , 𝐴𝑖)|  ≤ 𝜉 

𝐴𝑖  𝑅 𝐴𝑘 ,   𝑖𝑓 |�̃�(𝐴𝑖 , 𝐴𝑘)|  > 𝜉   𝑜𝑟 |�̃�(𝐴𝑘 , 𝐴𝑖)| > 𝜉
 

 

b) If |∆�̃�(𝐴𝑖 , 𝐴𝑘)| > �̃� then 

 

{
 
 
 
 
 

 
 
 
 
 𝐴𝑖  𝑅 𝐴𝑘 , 𝑖𝑓 min

�̃�(𝐴𝑖 , 𝐴𝑘), �̃�(𝐴𝑘 , 𝐴𝑖)

|∆�̃�(𝐴𝑖 , 𝐴𝑘)|
 ≥ �̃�      

                                         

𝐴𝑖  𝑃 𝐴𝑘 ,              𝑖𝑓 min
�̃�(𝐴𝑖 , 𝐴𝑘), �̃�(𝐴𝑘 , 𝐴𝑖)

|∆�̃�(𝐴𝑖 , 𝐴𝑘)|
< �̃� 

                  𝑎𝑛𝑑 �̃�(𝐴𝑖 , 𝐴𝑘) > �̃�(𝐴𝑘 , 𝐴𝑖)

𝐴𝑘 𝑃 𝐴𝑖 ,              𝑖𝑓 min
�̃�(𝐴𝑖 , 𝐴𝑘), �̃�(𝐴𝑘 , 𝐴𝑖)

|∆�̃�(𝐴𝑖 , 𝐴𝑘)|
< �̃� 

                  𝑎𝑛𝑑 �̃�(𝐴𝑖 , 𝐴𝑘) < �̃�(𝐴𝑘 , 𝐴𝑖)

 

 

where �̃�, 𝜉, and �̃� denote thresholds.  

6. A strong ranking is obtained. The outcome is 

the combination of the weak ranking and the PIR 
structure. 

 

TOPSIS 

TOPSIS was presented by Hwang et al. (1981). 
The algorithm of TOPSIS is described in the 

following steps: 

Step 1. The decision matrix is constructed as 
represented as follows: 

 

[

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑛
] (16) 

where aij represents the numerical value of the 

jth attribute for ith alternative. 

Step 2. The decision matrix is normalized 
through the following equation. 

 

 𝑟𝑖𝑗 =
𝑎𝑖𝑗

√∑ 𝑎𝑖𝑗
2𝑚

𝑖=1

         𝑓𝑜𝑟 𝑖

= 1,2, … ,𝑚;   𝑗
= 1,2, … , 𝑛 

(17) 

Step 3. The weighted normalized decision 

matrix is obtained via the following equation. 

 

 𝑣𝑖𝑗 = 𝑤𝑗 ∗ 𝑟𝑖𝑗     𝑓𝑜𝑟 𝑖

= 1,2, … ,𝑚;   𝑗
= 1,2, … , 𝑛 

(18) 

Step 4. The positive ideal solution (PIS) and 

negative ideal solution (NIS) for each criterion are 

determined via the following equations. 

 

 𝑃𝐼𝑆

= {(max
𝑖
𝑣𝑖𝑗 | 𝑗 ∈ 𝐽1) , (min

𝑖
𝑣𝑖𝑗 | 𝑗 ∈ 𝐽2) | 𝑖

= 1,2, … ,𝑚} = {𝑣1
+, 𝑣2

+, … , 𝑣𝑗
+, … , 𝑣𝑛

+} 

(19) 

 𝑁𝐼𝑆

= {(min
𝑖
𝑣𝑖𝑗 | 𝑗 ∈ 𝐽1) , (max

𝑖
𝑣𝑖𝑗 | 𝑗 ∈ 𝐽2) | 𝑖

= 1,2, … ,𝑚} = {𝑣1
−, 𝑣2

−, … , 𝑣𝑗
−, … , 𝑣𝑛

−} 

(20) 

 

in which 𝐽1 and 𝐽2 are the benefit and cost 

indicators, respectively. 

Step 5. Each alternative's geometric distance 

from the positive and negative ideal solution is 

calculated through the following equations, 

respectively. 

 

 

𝑆𝑖
+ = √∑(𝑣𝑖𝑗 − 𝑣𝑗

+)
2

𝑛

𝑗=1

      𝑓𝑜𝑟 𝑖

= 1,2, … , 𝑚 

(21) 

 

𝑆𝑖
− = √∑(𝑣𝑖𝑗 − 𝑣𝑗

−)
2

𝑛

𝑗=1

     𝑓𝑜𝑟 𝑖

= 1,2, … ,𝑚 
 

(22) 

Step 6. The relative closeness to the ideal 

solution is obtained via the following equation. 
 

 
𝐶𝑖 =

𝑆𝑖
−

𝑆𝑖
− + 𝑆𝑖

+    𝑓𝑜𝑟 𝑖

= 1,2, … ,𝑚;   0 
<  𝐶𝑖  <  1       

(23) 

 

The rank of alternatives is determined by 
comparing Ci values. The alternative having the 

highest relative closeness is chosen as the best.  
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Implementation of the Proposed Approach to the 

Selection of Material 

 The application of the proposed approach is 

summarized in Figure 1.  
 

 
 
Figure 1. The steps of the proposed approach 

 

First, the decision problem is defined. In this 

context, material selection for a flywheel is 

considered in the present study. A flywheel is a 

material to store kinetic energy in vehicles, including 
subway trains, cars, mass transit buses, and wind-

power generators (Jee et al., 2000). Then, ten 

alternative materials and four evaluation attributes are 
determined, as presented in Table 1. Here, σlimit 

represents the fatigue limit, ρ denotes the density, and 

KIC represents the fracture toughness of the material. 

To form the decision matrix (Table 1), regarding data 
is collected. In this context, the raw data is obtained 

from Jee et al. (2000) to evaluate the proposed model 

against the obtained results.  
Next, the weighting methods - CRITIC and SD 

are implemented. While applying the weighting 

methods, the data needs to be normalized. The 
normalized data for the CRITIC method are presented 

as an example in Table 2. Once the attribute weight 

sets are obtained, they are used as input for each 

MADM method, namely GRA, ORESTE, and 
TOPSIS. After obtaining the materials' ranking from 

each model, the correlation between models is 

examined based on Kendall's correlation coefficients. 
Finally, all models' rank is integrated through the 

Copeland method to reach a final consensus ranking. 

Thus, the final ranking of alternatives reflects the 
results of six models believed to be more reliable than 

many other related studies that rely on a single model. 

 

RESULTS AND DISCUSSION 
The attribute weights provided by SD and 

CRITIC are presented in Table 3. Based on the SD 

method, the most critical attribute is fragmentability, 
followed by σlimit/ρ, KIC/ρ, and price/mass. However, 

according to the CRITIC method, price/mass is the 

most crucial attribute, followed by fragmentability, 

σlimit/ρ, and KIC/ρ. It can be seen that price/mass is the 
most essential, and fracture toughness (KIC)/density is 

the least essential attribute, according to the CRITIC 

method. However, the most critical criterion is 
fragmentability and the least essential is price/mass, 

according to the SD method. This outcome reveals 

that an attribute can be the most and least essential, 
depending on a weighting method. Therefore, 

utilizing more than one weighting method can be 

crucial. Otherwise, being dependent on a weighting 

method can be misleading. 
 

 

Determining the optimal decision

Integrating the ranks provided by all models through 
the Copeland method 

Ranking the alternatives and examining the 
correlations between MADM methods through 

Kendall's correlation analysis

Using the outcome of each weighting method as the 
input of the MADM methods (GRA, ORESTE and 

TOPSIS) and implementing each 

Applying the weighting methods (CRITIC and SD) 
to obtain objective attribute weights

Forming the decision matrix

Collecting regarding data to form the decision 
matrix

Determining the alternatives and evaluation 
attributes

Defining the decision problem
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Table 1. The decision matrix for the material selection problem (Jee et al., 2000) 

 
Materials σlimit /ρ KIC/ρ Price/mass (US$/ton) Fragmentability 

300M (M1) 100.000 8.613 4200 3 

2024-T3 (M2) 49.645 13.475 2100 3 

7050-T73651 (M3) 78.014 12.553 2100 3 

Ti-6Al-4V (M4) 108.879 26.004 10500 3 

E glass–epoxy FRP (M5) 70.000 10.000 2735 9 

S glass–epoxy FRP (M6) 165.000 25.000 4095 9 

Carbon–epoxy FRP (M7) 440.252 22.013 35470 7 

Kevlar 29-epoxy FRP (M8) 242.857 28.571 11000 7 

Kevlar 49-epoxy FRP (M9) 616.438 34.247 25000 7 

Boron–epoxy FRP (M10) 500.000 23.000 315000 5 

 
Table 2. The normalized data for the CRITIC method 

 
Materials σlimit /ρ KIC/ρ Price/mass (US$/ton) Fragmentability 

M1 0.089 0.000 0.993 0.000 

M2 0.000 0.190 1.000 0.000 

M3 0.050 0.154 1.000 0.000 

M4 0.105 0.678 0.973 0.000 

M5 0.036 0.054 0.998 1.000 

M6 0.204 0.639 0.994 1.000 

M7 0.689 0.523 0.893 0.667 

M8 0.341 0.779 0.972 0.667 

M9 1.000 1.000 0.927 0.667 

M10 0.795 0.561 0.000 0.333 

 
Table 3. The attribute weights provided by SD and CRITIC 

 
Method σlimit/ρ KIC/ρ Price/mass Fragmentability 

SD 0.255 0.237 0.217 0.292 

CRITIC 0.247 0.194 0.303 0.257 

 

Utilizing the weighting set of each weighting 

method as input, the MADM methods (GRA, 

ORESTE, and TOPSIS) are implemented. The utility 
values and rank obtained from each are presented in 

Table 4.  

The results in Table 4 indicate that M9 is the best 
material based on CRITIC-GRA, SD-GRA, SD-

ORESTE, CRITIC-TOPSIS, and SD-TOPSIS models. 

However, M6 is an optimal material according to the 
CRITIC-ORESTE model. Besides, the worst choice is 

M10 based on the CRITIC-GRA, CRITIC-TOPSIS, and 

SD-TOPSIS models. M1 is the least preferable, 

according to the SD-GRA, CRITIC-ORESTE, and SD-

ORESTE models. In addition, the results reveal that the 

ranks provided by each model indicate that the ranking 
of materials varies depending on the weighting and 

MADM method adopted in general. However, the 

rankings provided by CRITIC-TOPSIS and SD-TOPSIS 
models are the same. This may be an indication that 

TOPSIS is less susceptible to attribute weights and more 

robust compared to GRA and ORESTE for the problem 
considered. In this regard, to examine the correlation 

between models, Kendall's correlation coefficients are 

obtained, as presented in Table 5. Kendall's correlation 
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coefficients (Kendall, 1948) are to analyze the 

correlations between the models. The degree of 

similarity between two rank sets for the same set of 

alternatives is evaluated. The results indicate that the 
correlations between CRITIC-GRA and SD-GRA, 

CRITIC-GRA and CRITIC-ORESTE, CRITIC-GRA 

and SD-ORESTE, CRITIC-GRA and  CRITIC-
TOPSIS, CRITIC-GRA and SD-TOPSIS, SD-GRA and 

CRITIC-ORESTE, SD-GRA and SD-ORESTE, 

CRITIC-ORESTE and SD-ORESTE are significant. 

Also, there is a perfect correlation between CRITIC-
TOPSIS and SD-TOPSIS. In other words, the strong 

correlation indicates that the ranks provided by models 

are similar to some extent. 
To reach a final consensus on the ranking of 

alternative materials, the Copeland method is 

implemented. In the Copeland method, it is 

considered how many times an alternative is 

dominant over others in the ranking of alternatives. In 

this context, pairwise comparison matrices are 
constructed for each model. To obtain the score of the 

alternatives in the matrices, a value of one is given for 

all other alternatives that rank below the selected 
alternative; otherwise, a zero value is given to the 

corresponding matrix value. After obtaining all 

values for matrices, the column sum and row sum for 

each alternative are computed. The Copeland value of 
an alternative is determined by taking the difference 

between the row and column sums (Dortaj et al., 

2020; Şahin, 2020a). Hence, the rankings provided by 
six models are integrated.  

 

Table 4. Utility and ranking values provided by models 

 
Alternatives Models 

CRITIC-GRA SD-GRA CRITIC-ORESTE SD-ORESTE CRITIC-TOPSIS SD-TOPSIS 

Utility Rank Utility Rank Utility Rank Utility Rank Utility Rank Utility Rank 

M1 0.134 9 0.120 10 115.5 10 116.5 10 0.636 8 0.534 8 

M2 0.136 8 0.122 9 100 9 109 9 0.631 9 0.532 9 

M3 0.136 7 0.122 8 93 8 102 8 0.637 7 0.538 7 

M4 0.145 6 0.135 6 92 7 86.5 6 0.657 6 0.569 6 

M5 0.177 3 0.169 3 82 5 88 7 0.666 5 0.583 5 

M6 0.191 2 0.185 2 50 1 52 2 0.726 4 0.661 4 

M7 0.164 5 0.158 5 79.5 4 76.5 4 0.806 2 0.759 2 

M8 0.170 4 0.164 4 65.5 3 57.5 3 0.752 3 0.689 3 

M9 0.215 1 0.214 1 55.5 2 48 1 0.904 1 0.887 1 

M10 0.122 10 0.126 7 87 6 84 5 0.289 10 0.367 10 

 
Table 5. Kendall's correlation coefficients of models 

 
Models CRITIC-

GRA 

SD-

GRA 

CRITIC-

ORESTE 

SD-

ORESTE 

CRITIC-

TOPSIS 

SD-

TOPSIS 

CRITIC-GRA 1.000 0.867** 0.689** 0.644** 0.733** 0.733** 

SD-GRA  1.000 0.822** 0.778** 0.600* 0.600* 

CRITIC-ORESTE   1.000 0.867** 0.600* 0.600* 

SD-ORESTE    1.000 0.556* 0.556* 

CRITIC-TOPSIS     1.000 1.000** 

SD-TOPSIS      1.000 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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Table 6. Calculations for the Copeland method 

 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Row Sum Difference 

M1 0 0 0 0 0 0 0 0 0 0 0 -9 

M2 1 0 0 0 0 0 0 0 0 0 1 -7 

M3 1 1 0 0 0 0 0 0 0 0 2 -5 

M4 1 1 1 0 0 0 0 0 0 1 4 -1 

M5 1 1 1 1 0 0 0 0 0 1 5 1 

M6 1 1 1 1 1 0 1 1 0 1 8 7 

M7 1 1 1 1 1 0 0 0 0 1 6 3 

M8 1 1 1 1 1 0 1 0 0 1 7 5 

M9 1 1 1 1 1 1 1 1 0 1 9 9 

M10 1 1 1 0 0 0 0 0 0 0 3 -3 

Column Sum 9 8 7 5 4 1 3 2 0 6 
  

 

The final calculations for the Copeland method 

are given in Table 6. Here, the row sum of the 
alternatives was determined based on six pairwise 

comparison matrices. For instance, the row sum of 

M9 equals 9, meaning that M9 dominated all other 
alternatives in most models.   The column sum of M9 

is equal to 0, which means other alternatives in most 

models could not subordinate M9. As stated earlier, 

the difference values corresponding to the alternative 
are the difference between the row sum and column 

sum values of each alternative. 

Based on the difference values in Table 6, the 
final consensus ranking of the materials is obtained, 

as presented in Table 7.  

 
Table 7. Final consensus ranking based on the Copeland 

method 

 
Material Rank based on Copeland 

M1 10 

M2 9 

M3 8 

M4 6 

M5 5 

M6 2 

M7 4 

M8 3 

M9 1 

M10 7 

 

The Copeland method's outcome reveals that the 

best material is M9, followed by M6, M8, M7, M5, 
M4, M10, M3, M2, and M1. To compare the final 

consensus ranking based on the Copeland method, the 

study conducted by Jee et al. (2000) is considered. 
They examined different cases, in some where M9 

was chosen as the best material, and in others M6 was 

recommended as the optimum material along with 

M1 and M3. In their study, subjective weights and 
objective weights provided by the entropy method 

were considered, and TOPSIS was adopted to rank 

the alternative materials. The ranking result in the 
present study is consistent with their cases, in which 

M9 was found to be the optimum material. M6 was 

ranked second in the present study meaning that this 
material can be substitution material to M9. 

The results reveal that the best alternative varies 

depending on what weighting method and MADM 

method are preferred. Therefore, recommending the 
best material based on a single model may be 

misleading. Instead, applying multiple methods and 

considering all models' results can increase the 
accuracy of the alternatives' ranking. Still, there are 

some limitations to this study. The number of 

weighting and MADM methods might be higher to 

increase the accuracy of the result further. Also, the 
scope and number of evaluation attributes might be 

expanded to cover further aspects. Finally, all 

possible alternative materials might increase the 
possibility of the proposed approach applicability in 

practice. However, it is a fact that the proposed 

approach is proven to be a practical approach by 
implementing the illustrative example and comparing 
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the results with the previous ones. The proposed 

approach has also brought a hybrid method, which 

provides a higher accurate ranking compared to other 

related studies, for the material selection problems.    

 

CONCLUSIONS 

The present study has presented a hybrid 
approach to solve the problem of material selection 

involving various conflicting attributes and 

alternative materials in practice. It was often 

emphasized that adopting a single model and making 
decisions depending on the model could be 

misleading, as they might yield different outcomes 

for the same decision problem. Accordingly, two 
objective weighting methods (CRITIC and SD) and 

three MADM methods (GRA, ORESTE, and 

TOPSIS) were adopted and integrated through the 
Copeland method in this study. The proposed 

approach was implemented to the material selection 

for a flywheel.  

The results indicated that all models except the 
CRITIC-ORESTE model recommended M9 as the 

best material. Similarly, the integrated ranking 

through the Copeland method revealed that M9 was 
the optimal material. However, the final rank based 

on the Copeland method is different from some 

models. This outcome is consistent with the claim that 
relying on one model may be deceptive. In this 

regard, if one has to choose one model for the 

problem considered, CRITIC-ORESTE is 

recommended to be avoided as it suggested a 
different material (M6) as the best from the Copeland 

method. Instead, CRITIC-GRA, SD-GRA or SD-

ORESTE may be preferred as they offer M9 as the 
best material followed by M6, similar to the Copeland 

method. In addition, the results provided by Kendall's 

correlation coefficients revealed that the outcome of 

most models was strongly correlated. CRITIC-
TOPSIS and SD-TOPSIS provided the same rankings 

that might indicate that TOPSIS was the most robust 

method for the problem considered compared to the 
ORESTE and GRA methods. The ranking provided 

by TOPSIS was not altered by the weighting method.   

Future studies may consider using further 
weighting and MADM methods and integrate their 

results. Experts' subjective evaluations can also be 

included through subjective weighting methods such 

as AHP and the best-worst method. Finally, the 
number of evaluation criteria and alternative 

materials can be expanded.  
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