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Abstract. In hydrologic risk analysis, the use of exceedance statistics are
very important. In this sense, we construct a random threshold model based
on bivariate order statistics. The exact distribution of exceedance statistics
is calculated under some well-known copulas such as independent and Farlie-
Gumbel-Morgenstern (FGM) copulas. Furthermore, numerical results are pro-
vided for expected value and variance of exceedance statistics under indepen-
dent and Farlie-Gumbel-Morgenstern copulas. The application of the model
in hydrology is also discussed.

1. Introduction

Exceedance statistics and random threshold models are very useful tools in real
life applications. There have been many studies about the applications of ex-
ceedances in di¤erent areas such as hydrology, actuarial sciences and medicine,
see [13,15,12] and [19], respectively.
Eryilmaz [11], construct a random threshold model by using univariate order

statistics. The distribution of the longest run statistics are derived. Then the use
of the model in hydrology is discussed. For univariate random threshold models we
refer to [6, 2, 21,17,18] and [4].
Theoretical properties and application areas of bivariate random threshold mod-

els have been discussed in many publications. In [10], marginal distribution and
joint distribution of the new sample rank of rth order statistics and its concomi-
tant are obtained. The application of the model in hydorology is discussed based
on numerical results. Bayramoglu and Giner [5], construct a random threshold
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model based on order statistics from independent but not necessarily identically
distributed (INID) random variables. Asymptotic distributions of exceedance sta-
tistic is derived based on hypergeometric function and incomplete beta functions.
Bayramoglu and Eryilmaz [4], compose a random threshold model based on two
sets of exchangeable random vectors. The reliability applications of the model are
discussed under the FGM distribution. In [7] and [9] bivariate random threshold
models are composed based on concomitants of order statistics. Then the exact
and asymptotic distribution of exceedance statistics are obtained. Applications in
medicine, economics and air pollution are discussed. In [8], a statistical test is
introduced for checking the equality of two copulas based on a bivariate random
threshold model.
In hydrological analysis, if the �ood peak and �ood volume exceed critical val-

ues within a certain period, they create a risky situation. Therefore, the use of
exceedance statistics and random thresholds in calculating these risk probabilities
is quite important. In this study, a bivariate random threshold model based on
bivariate order statistics is considered. Here we have a training sample which con-
sists of bivariate random variables that represent �ood peak and �ood volume of
n hydrological stations in a certain location, in the past year. We also have a bi-
variate control sample which consists of bivariate random variables that represent
�ood peak and �ood volume of m hydrological stations in the same location, in the
coming year. Then by using the minimum �ood peak and minimum �ood volume in
training sample, the random threshold model is constructed. The use of the model
in hydrological risk analysis is also discussed.
This paper is organized as follows: In section 2, the problem statement is pro-

vided. Then the exact distribution of exceedance statistics are obtained in terms of
copula functions. Expected value and variance of exceedance statistics are provided
as numerically for independent and Farlie-Gumbel -Morgenstern copulas. Lastly,
Section 3 concludes the paper.

2. Model Description

Let T1 = f(Xk; Yk) ; k = 1; 2; :::; ng be a sequence of independent random vari-
ables with joint cumulative distribution function (CDF) F (x; y) = C1 (FX (x) ; FY (y)) ;
where C1(u; v); (u; v) 2 [0; 1]

2 is a connecting copula and FX(x); FY (y) are the
marginal CDF�s of X and Y; respectively. Furthermore, let T2 = f(X 0

k; Y
0

k ); k =
1; 2; :::;mg be another sequence of independent random variables with joint CDF
G (x; y) = C2 (FX (x) ; FY (y)) ; where C2(u; v); (u; v) 2 [0; 1]2 is a connecting cop-
ula and FX(x); FY (y) are the marginal CDF� s of X and Y; respectively. Let

f (x; y) = @2F (x;y)
@x@y ; g (x; y) = @2G(x;y)

@x@y ; fX(x) =
dFX(x)
dx , fY (y) =

dFY (y)
dy ; FX(x) =

1 � FX(x); and FY (y) = 1 � FY (y): Here Xk and Yk denote �ood peak and �ood
volume of n stations in past for a certain location, respectively. Furthermore, X

0

k
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and Y
0

k denote �ood peak and �ood volume of the future m stations in the same
location, respectively. Here we call T1 as training sample and T2 as control sample.
We de�ne the rth bivariate order statistics of T1 as (Xr:n; Yr:n), where 1 � r � n;

X1:n � X2:n � � � � � Xn:n and Y1:n � Y2:n � � � � � Yn:n are the order statistics of
fXk; k = 1; 2; :::; ng and fYk; k = 1; 2; :::; ng; respectively. For r = 1, (X1:n; Y1:n)
denotes the smallest �ood peak and �ood volume in the past, respectively. Then
the exceedance statistic Mm (1) is de�ned as follows

Mm (1) =
mX
k=1

�k;

where

�k =

(
1; if

�
X

0

k; Y
0

k

�
2 A1

0; otherwise

and A1 = (�1; X1:n]� (�1; Y1:n] : The set A1 is constructed from training sample
T1:
Here Mm (1) denotes the number of nonhazardous stations in the future obser-

vations. For example, if Mm (1) = 4 it means that there can be 4 nonhazardous
stations in the future observations.
In Corollary 1, the probability mass function (PMF) of Mm (1) is given by using

the distribution of bivariate order statistics, see [3] and [14]. For 1 � r; s � n, the
joint probability density function (PDF) of Xr:n and Ys:n is

fXr:n;Ys:n(t; s) =

a2X
t1=a1

p1 [F (t; s)]
t1 [(FX (t)� F (t; s))]r�1�t1 [FY (s)� F (t; s)]s�1�t1

�
�
F (t; s)

�n�r�s+t1+1
f (t; s) +

d2X
t4=d1

c2X
t2=c1

b2X
t1=b1

p2 [F (t; s)]
t1

� [(FX (t)� F (t; s))]r�1�t1�t2 [(FY (s)� F (t; s))]s�1�t1�t4

�
�
F (t; s)

�n�r�s+t1+t2+t4 �
F :;1 (t; s)

�t2 �
fY (s)� F :;1 (t; s)

�1�t2
�
�
F 1;: (t; s)

�t4 �
fX (t)� F 1;: (t; s)

�1�t4
; (1)

where a1 = max(0; r+s�n�1); a2 = min(r�1; s�1); b1 = max(0; r+s�n�t2�t4);
b2 = min(r � t2 � 1; s � t4 � 1); c1 = max(0; r � n + 1); c2 = min(1; r � 1); d1 =
max(0; s� n+ 1); d2 = min(1; s� 1)

F (t; s) = 1� FX(t)� FY (s) + F (t; s)

F 1;: (t; s) =
@F (t; s)

@t

F :;1 (t; s) =
@F (t; s)

@s
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and the constants p1 and p2 are

p1 =
n!

t1! (r � 1� t1)! (s� 1� t1)! (n� r � s+ t1 � 1)!
;

p2 =
n!

t1! (r � 1� t1 � t2)! (s� 1� t1 � t4)! (n� r � s+ t1 + t2 + t4)!
:

Corollary 1. The PMF of Mk (1) is

P fMm (1) = lg =
�
m

l

�
G (x; y)

l
(1�G (x; y))m�l fX1:n;Y1:n (x; y) dxdy (2)

where fX1:n;Y1:n (x; y) is the PDF of X1:n and Y1:n in training sample T1:

Then by using the formula of bivariate order statistics, Equation (2) can be
written as follows

P fMm (1) = lg =

�
m

l

�Z 1

�1

Z 1

�1
G (x; y)

l
(1�G (x; y))m�l fn

�
F (x; y)

�n�1
�f (x; y) + n (n� 1)

�
F (x; y)

�n�2
(fY (y)

�F :;1 (x; y))
�
fX (x)� F 1;: (x; y)

�
gdxdy (3)

Proof. The proof of Corollary 1 is similar to proof of Theorem 1, in [7].

P fMm (1) = lg = P fl of the sample values in T2 are in (�1; X1:n]� (�1; Y1:n]g
De�ne the events Eij and E

c
ij
as follows

Eij = fXij < X1:n; Yij < Y1:ng and Ecij = fXij < X1:n; Yij > Y1:ng [ fXij >
X1:n; Yij < Y1:ng [ fXij > X1:n; Yij > Y1:ng; 1 � i; j � m: Then

P fMm (1) = lg =
X

i1;i2;:::;im

P (Ei1Ei2 :::EilE
c
il+1
:::Ecim) (4)

By conditioning of the integral on X = x and Y = y in Equation (4) and using the
distribution of bivariate order statistics, the proof is completed. �

When we apply the probability integral transformation F (t) = u; F (s) = v and
F (t; s) = C1

�
F�1 (t) ; F�1 (s)

�
and G(t; s) = C2

�
F�1 (t) ; F�1 (s)

�
in Equation

(3), we have

P fMm (1) = lg =

�
m

l

�Z 1

0

Z 1

0

C2 (u; v)
l
(1� C2 (u; v))m�l

�fn( bC1 (1� u; 1� v))n�1c1 (u; v)
+n (n� 1)

� bC1 (1� u; 1� v)�n�2
� (1� C �1 (u; v)) (1� C ��1 (u; v))gdudv; (5)

where bC1 (1� u; 1� v) = 1� u� v + C1 (u; v)
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C ��1 (u; v) =
@C1 (u; v)

@u

C �1 (u; v) =
@C1 (u; v)

@v

c1 (u; v) =
@2C1 (u; v)

@u@v
:

Let C1(u; v) = C2(u; v); then

P fMm (1) = lg =

�
m

l

�Z 1

0

Z 1

0

C1 (u; v)
l
(1� C1 (u; v))m�l

�fn
� bC1 (1� u; 1� v)�n�1 c1 (u; v)

+n (n� 1)
� bC1 (1� u; 1� v)�n�2

� (1� C �1 (u; v)) (1� C ��1 (u; v))gdudv: (6)

For the ease of the calculations we �rstly consider the case C1 (u; v) = C2 (u; v) =
uv: Then we have

P fMm (1) = lg =
�
m

l

�Z 1

0

Z 1

0

(uv)
l
(1� uv)m�l

n
n (1� u� v + uv)n�1

+ n (n� 1) (1� u� v + uv)n�2 (1� u) (1� v)
o
dudv; (7)

In Table 1, the numerical values of P fMm (1) = lg are provided for C1 (u; v) =
C2 (u; v) = uv by using Equations (6) and (7).

Table 1. Numerical values of P fMm (1) = lg for di¤erent values
of n and m = 5:

(m;n) l 0 1 2 3 4 5
(5; 5) P fMm (1) = lg 0:88 0:1 0:015 0:0021 0:00024 0:000016
(5; 10) P fMm (1) = lg 0:96 0:037 0:002 0:0001 4:4� 10�6 1:1� 10�6
(5; 20) P fMm (1) = lg 0:989 0:0110 0:000178 3:01� 10�6 4:25� 10�8 3:54� 10�10

We can interpret Table 1, as follows. For example if there have been 10 stations
in a certain region in the past, after a couple of years at the same location we can
observe 5 stations. So under C1 (u; v) = C2 (u; v) = uv, the probability of observing
1 nonhazardous station in the coming years is 0.037. In other words, the probability
that only 1 station will be less than the minimum �ood peak and minimum �ood
volume observed in the past year is 0.037, in the coming years.
In Table 2, the numerical values of P fMm (1) = lg are provided under C1 (u; v) =

C2 (u; v) = uv for m = 10 and some values of n. Similar to Table 1, we can do
the same interpretations with Table 2. When m = 10 and n = 5; probability of
observing 0 nonhazardous stations in the coming years is 0:796.
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In Tables 1 and 2, it can be easily seen that while n increases, P fMm (1) = lg also
increases for �xed values ofm and l: It is clear that as l increases P fMm (1) = lg de-
creases for �xed values ofm and n: Furthermore, whilem increases, P fMm (1) = lg
decreases for �xed values of n and l:

Table 2. Numerical values of P fMm (1) = lg for di¤erent values
of n and m = 10:

(m;n) l 0 1 2 3 4 5
(10; 5) P fMm(1) = lg 0:796 0:151 0:038 0:011 0:00305913 0:00085
(10; 10) P fMm(1) = lg 0:926 0:0657 0:00695 0:000853 0:000109 0:0000138
(10; 20) P fMm(1) = lg 0:978 0:0211 0:000739 0:0000316 1:47� 10�6 6:84� 10�8
(m;n) l 6 7 8 9 10
(10; 5) P fMm(1) = lg 0:00022 0:000051 9:70281� 10�6 1:38612� 10�6 1:10889� 10�7
(10; 10) P fMm(1) = lg 1:62� 10�6 1:68� 10�7 1:43� 10�8 8:79� 10�10 2:93� 10�11
(10; 20) P fMm(1) = lg 3:02� 10�9 1:18� 10�10 3:81� 10�12 8:86� 10�14 1:11� 10�15

The FGM copula is highly preferred in applications due to its closed form struc-
ture that facilitates theoretical calculations. In addition, it has become one of the
preferred distributions in applications in the �eld of hydrology, since it includes
both negative and positive dependency structure, see [20], [1], and [16]. For this
reason, some numerical results in this paper have been calculated under the FGM
copula.
Let C1(u; v) = uv and C2(u; v) = uv (1 + � (1� u) (1� v)) ; � 2 [�1; 1] ; then

P fMm (1) = lg =
�
m

l

�Z 1

0

Z 1

0

[uv (1 + � (1� u) (1� v))]l

� [1� uv (1 + � (1� u) (1� v))]m�l

� fn (1� u� v + uv)n�1

+ n (n� 1) (1� u� v + uv)n�2 (1� u) (1� v)gdudv; (8)

In Table 3, the numerical values of P fMm (1) = lg is provided for C1(u; v) = uv
and C2(u; v) = uv (1 + � (1� u) (1� v)) ; � 2 [�1; 1] by using equation (5).
In Table 3, similar to Tables 1 and 2, as n increases P fMm (1) = lg also increases

for �xed values of �;m and l: For l = 0, �xed values ofm and n when the dependence
parameter � increases P fMm (1) = lg decreases. But for l = 1; :::; 5 and �xed values
of m and n; P fMm (1) = lg increases. As in Tables 1 and 2, while l increases,
P fMm (1) = lg decreases for �xed values of m;n and �:
In Table 4, the numerical values of P fMm (1) = lg is provided for C1(u; v) =

C2(u; v) = uv (1 + � (1� u) (1� v)) ; � 2 [�1; 1] by using Equation (6). In Table 4,
similar to Table 3 when l = 0 and � increases P fMm (1) = 0g decreases for �xed
values of m and n: But for l = 1; :::; 5 and �xed values of m and n; P fMm (1) = lg
increases. In Tables 5-7, the expected values of Mm(1) are calculated by using
Equations (5) and (6) under

C1(u; v) = C2(u; v) = uv; (9)
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Table 3. Numerical values of P fMm (1) = lg for di¤erent values
of n and m = 5:

(m;n) �=l 0 1 2 3 4 5
(5; 5) �1 0:940 0:0533 0:00604 0:000765 0:0000836 5:61� 10�6

�0:5 0:909563 0:0790261 0:00996047 0:00129879 0:000141936 9:3751� 10�6
0:5 0:853735 0:122215 0:0204795 0:00316417 0:000380553 0:000026234
1 0:828 0:140 0:0267 0:00456 0:000591 0:0000429

(5; 10) �1 0:988 0:0118 0:000370 0:0000146 5:31� 10�7 1:21� 10�8
�0:5 0:974123 0:0248275 0:00100337 0:0000443511 1:68777� 10�6 3:89844� 10�8
0:5 0:947961 0:0486292 0:00319862 0:000200988 9:89698� 10�6 2:75831� 10�7
1 0:935 0:0595 0:00469 0:000345 0:0000195 6:10� 10�7

(5; 20) �1 0:998 0:00194 0:0000122 1:10� 10�7 10�9 6:08� 10�12
�0:5 0:993419 0:00650981 0:0000701828 8:60826� 10�7 9:39504� 10�9 6:37741� 10�11
0:5 0:984326 0:0153334 0:000333565 7:29272� 10�6 1:28804� 10�7 1:30955� 10�9
1 0:980 0:0196 0:000534 0:0000144 3:07� 10�7 3:73� 10�9

Table 4. Numerical values of P fMm (1) = lg for di¤erent values
of n and m = 5:

(m;n) �=l 0 1 2 3 4 5
(5; 5) �1 0:946472 0:0487 0:00435425 0:000407848 0:0000315723 1:44141� 10�6

�0:5 0:913422 0:076709 0:00876889 0:00100174 0:0000937063 5:20157� 10�6
0:5 0:849052 0:124131 0:0224053 0:00384628 0:000524333 0:0000415192
1 0:818045 0:143125 0:0312117 0:00646731 0:00105374 0:0000981558

(5; 10) �1 0:988971 0:0107548 0:000266524 2:01062� 10�7 2:01062� 10�7 3:14295� 10�9
�0:5 0:975021 0:0240525 0:000890853 0:0000348152 1:14229� 10�6 2:22888� 10�8
0:5 0:946488 0:04975 0:00349145 0:000258435 0:0000154613 3:1657� 10�7
1 0:931939 0:061969 0:00556312 0:000492862 0:0000348765 1:40955� 10�6

C1(u; v) = uv;C2(u; v) = uv (1 + � (1� u) (1� v)) ; (10)

and
C1(u; v) = C2(u; v) = uv (1 + � (1� u) (1� v)) ; (11)

respectively: In Table 5, we can interpret E (Mm(1)) as follows. When m = n = 5
(The number of stations is not changed in a certain location), expected number of
nonhazardous stations is 0:139.

Table 5. Expected values of Mm(1) for C1(u; v) = C2(u; v) = uv

m n E (Mm(1)) m n E (Mm(1))
5 5 0:139 5 10 0:0413
10 5 0:278 10 10 0:0826
20 5 0:556 20 10 0:165
50 5 1:39 50 10 0:413

In Table 5, we can clearly see that when m increases E (Mm(1)) also increases
for �xed values of n: For �xed values of m; as n increases E (Mm(1)) decreases.
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From Table 6, we can easily observe that as � increases, E (Mm(1)) also increases
for �xed values of m and n: As n increases E (Mm(1)) also increases for �xed values
of m and �: From Table 7, we can see that for �xed values of n and �; when m
increases E (Mm(1)) also increases. For �xed values of m and �; as n increases
E (Mm(1)) decreases. Furthermore similar to Table 7, as � increases E (Mm(1))
also increases for �xed values of m and n: In Tables 8-10, the variance of Mm(1)

Table 6. Expected value of Mm(1) for C1(u; v) = uv; C2(u; v) =
uv (1 + � (1� u) (1� v))

� m n E (Mm(1)) � m n E (Mm(1))
5 5 0:0680 5 5 0:210
10 5 0:0126 10 5 0:0700

�1 5 10 0:136 1 5 10 0:420
10 10 0:0253 10 10 0:140
20 20 0:00787 20 20 0:0828
5 5 0:103458 5 5 0:17432

�0:5 5 10 0:206916 0:5 5 10 0:348639
10 5 0:0269743 10 5 0:0556703
10 10 0:0539486 10 10 0:111357

Table 7. Expected value of Mm(1) for C1(u; v) = C2(u; v) =
uv (1 + � (1� u) (1� v))

� m n E (Mm(1)) � m n E (Mm(1))
5 5 0.0587987 5 5 0.229656
10 5 0.117597 10 5 0.459311

�1 5 10 0.0113121 1 5 10 0.0747203
5 5 0.0976528 5 5 0.182785

�0:5 10 5 0.195306 0:5 10 5 0.365559
5 10 0.0259433 5 10 0.0575716

are calculated by using Equations (5) and (6) under

C1(u; v) = C2(u; v) = uv; (12)

C1(u; v) = uv;C2(u; v) = uv (1 + � (1� u) (1� v)) ; (13)
and

C1(u; v) = C2(u; v) = uv (1 + � (1� u) (1� v)) ; (14)
respectively.
In Table 8, it is obvious that for �xed values of n; when m increases variance of

Mm(1) also increases. For �xed values of m; as n increases the variance of Mm(1)



AN EXCEEDANCE MODEL BASED ON BIVARIATE ORDER STATISTICS 793

decreases. Similary, in Tables 9 and 10, for �xed values of � and n; as m increases
variance of Mm(1) increases. Furthermore for �xed values of m and n; when �
increases, the variance of Mm(1) increases.

Table 8. Variances of Mm(1) for C1(u; v) = C2(u; v) = uv

m n V (Mm(1)) m n V (Mm(1))
5 5 0:165 5 10 0:044
10 5 0:404 10 10 0:097
20 5 1:1 20 10 0:226

Table 9. Variances of Mm(1) for C1(u; v) = uv; C2(u; v) =
uv (1 + � (1� u) (1� v))

� m n V (Mm(1)) � m n V (Mm(1))
5 5 0:0812 5 5 0:254
10 5 0:198 10 5 0:642

�1 5 10 0:133 1 5 10 0:0768
10 10 0:0284 10 10 0:173
5 5 0:121 5 5 0:201

�0:5 5 10 0:0286 0:5 5 10 0:0603
10 5 0:297 10 5 0:52
10 10 0:061 10 10 0:134

Table 10. Variances of Mm(1) for C1(u; v) = C2(u; v) = uv (1 + � (1� u) (1� v))

� m n V (Mm(1)) � m n V (Mm(1))
5 5 0:0669047 5 5 0:292749
5 10 0:0117666 5 10 0:0836673

�1 10 5 0:1558 1 10 5 0:769603
5 5 0:112893 5 5 0:224385

�0:5 5 10 0:027275 0:5 5 10 0:0629825
10 5 0:268656 10 5 0:5694260

3. Conclusion

In this study, a bivariate exceedance model is constructed based on bivariate
order statistics. In this model, we compose a bivariate random threshold model by
using the past �ood peak and �ood volume of the hydrological stations. Probability
of exceedance statistics are calculated under some well-known copulas for small
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sample sizes. Then the numerical values of expected values of exceedance statistics
are provided for independent and FGM copulas. Because of the complexity of the
calculations, the numerical results are provided for small sample sizes. As a further
study, we need to investigate the properties of exceedance statistics under di¤erent
bivariate distributions by using some real data sets in hydorology. The results
obtained using real data sets can be compared with the theoretical results in this
article.
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