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We propose and present a self-starting numerical approximation with a higher order
of accuracy for direct solution of a special fourth-order ordinary differential equation
(ODE) using a Hybrid Linear Multistep Method (HLMM). The technique utilizes the
collocation and interpolation approach with six-step numbers and two off-step points
using power series as the basis function. Error constants and basic properties proved
the convergence of the method. Numerical experiments involving both linear, non-
linear, and linear systems of fourth-order initial value problems appearing in modeling
of physical phenomenon from various areas of applied sciences were used to demon-
strate the effectiveness and efficiency of the proposed method. The results revealed that
the proposed method is an excellent choice for approximating general fourth-order ODE
and shows the impact of choices of step sizes in the numerical solution of the problem
considered. In addition, the proposed HLMM outperformed existing methods in the
literature in terms of accuracy.

1. Introduction

Higher-order differential equations continue to gain more attention in applied sciences and engineering, especially
the fourth-order ordinary differential equations (ODE) such as, in the modeling of deflection of beams, electric
circuits, fluid flow, and neural networks [1–6].This class of differential equations has craved for novel researches
because of its importance in understanding the behaviors and properties of the physical situations involved. Some
of these equations appear in linear, non-linear, and system of differential equations where an analytical solution is
rarely available. Therefore, we result in a numerical approximation of the solution to understand and interpret the
physical situation.
In this paper, we will be considering a special fourth order ODE of the form;

D[y(t)] = f(t, y,
dy

dt
,
d2y

dt2
,
d3y

dt3
) t ∈ (t0, tn) (1)

coupled with the initial conditions

y(t0) = φ0,
dy(t0)

dt
= φ1,

d2y(t0)

dt2
= φ2,

d3y(t0)

dt3
) = φ3 (2)

where D is equivalent to d4

dt4
, y(t) ∈ Rn and f is a continuous-valued function.
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Solutions to this concerned equation (1) with its initial conditions (2) have been researched over the years. Several
authors have attempted to reduce the higher-order ODE to systems of first-order equations, then applied suitable
numerical methods to approximate the solution [6–10]. This attempt has some drawbacks, like wastage of com-
puting time and storage. Some other authors have addressed these setbacks by directly solving them using the
predictor-corrector approach. Still, the disadvantage is that the accuracy of the numerical Result depends on the
starting method. Recently, researchers [11–17] have also worked on the direct solution of the fourth-order initial
value problems using the linear multistep method. However, the limitations of these direct methods are the low
degree of accuracy and low step-number.
In other to obtain a more efficient method than the available in literatures, it is necessary to increase the step
numbers (both grid and off-grid points) of the method of solutions that will be a self-starting and higher order of
accuracy to cater for stiff differential equations. This paper develops a zero-stable order nine hybrid block method
that caters to the low-degree of accuracy and low step number in previous research. The method can handle linear,
non-linear, and system of (1).
This paper is organized as follows; brief introduction was presented in section 1, formulation and development
of the propose method is given in section 2, section 3 contains the analysis of the proposed method. numerical
experiments are presented in section 4 to show the efficiency and effectiveness of the developed method, and the
conclusion was presented in section 5.

2. Methodology

2.1. Preliminaries

2.1.1. Linear Multistep Method

Let y(x) be the numerical solution of a differential equation, a k− step general linear multistep method (LMM)
is;

y(t) =

k∑
j=0

αj(t)yn+j + hn
k∑

j=0

βj(t)fn+j (3)

where k is the step number, αj(t) and βj(t) are the continuous coefficients to be determined, n is the order of the
differential equation, h is the step-size [11].

2.1.2. Hybrid Linear Multistep Method

A linear multistep method with off-grid point(s) is called a hybrid linear multistep method. Following [3], a k-step
hybrid LMM is represented by;

y(t) =
k∑

j=0

αj(t)yn+j + hn
k∑

j=0

βj(t)fn+j + hnφv(t)fn+j + hnφu(t)fn+j (4)

where phiv(t) and phiu(t) are continuous coefficients on the off-grid points to be determined.

2.1.3. Power Series Function as a Basis function

In this paper, we implore the power series of the form

Y (t) =
∞∑
j=0

cjt
j (5)

where cj are the coefficients of the series.
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2.2. Development of HLMM for Fourth-Order ODE

In this section, we develop a numerical approximation to (1) by using the basis function in (5) of the form;

y(t) =

a+b−1∑
j=0

cjt
j (6)

where a is the collocation points, b is the interpolating points. The fourth derivative of (6) is;

yiv(t) =
a+b−1∑
j=0

j(j − 1)(j − 2)(j − 3)cjt
j−4 (7)

Then, (1) becomes

f(t, y,
dy

dt
,
d2y

dt2
,
d3y

dt3
) =

a+b−1∑
j=0

j(j − 1)(j − 2)(j − 3)cjt
j−4 (8)

We propose an LMM of the form;

y(t) =

k−2∑
j=0

αj(t)yn+j + h4
k∑

j=0

βj(t)fn+j + h4βu(t)fn+j + h4βv(t)fn+j (9)

The method is specified with a = 9 , b = 4, k = 6, u = 1
4 , and 1

2 . Collocating (7) at t = tn+j ; j =
0, 14 ,

1
2 , 1, 2, 3, 4, 5, 6 and interpolating (6) at t = tn+j ; j = 0, 14 ,

1
2 , 1 to obtain a 13× 13 systems of equation. We

solve the system of equations using the matrix inversion method with the aid of Maple 2015 software to obtain
the unknown coefficients αn+j ; j = 0, 14 ,

1
2 , 1 and βn+j ; j = 0, 14 ,

1
2 , 1, 2, 3, 4, 5, 6.

The continuous hybrid LMM is of the form;

y(t) =

1∑
j=0

αjyn+j + α 1
4
yn+ 1

4
+ α 1

2
yn+ 1

2
+

6∑
j=0

βjfn+j + β 1
4
fn+ 1

4
+ β 1

2
fn+ 1

2
(10)

Evaluating (10) at t = tj ; j = 2, 3, 4, 5, 6 to obtain the following scheme

yn+2 = −21yn + 64yn+ 1
4
− 56yn+ 1

2
+ 14yn+1 + h4

5081221

3397386240
fn + h4

15163

15574680
fn+ 1

4

+ h4
2417567

21897216
fn+ 1

2
+ h4

174693371

1698693120
fn+1 + h4

11529503

3397386240
fn+2 − h4

4042693

9342812160
fn+3)

+
297619

3397386240
fn+4 − h4

1351813

96825507840
fn+5 + h4

984133

859538718720
fn+6 (11)

yn+3 = −110yn + 320yn+ 1
4
− 264yn+ 1

2
+ 55yn+1 − h4

172374109

4756340736
fn + h4

4563485

21804552
fn+ 1

4

+ h4
3101429

9953280
fn+ 1

2
+ h4

2460549085

2460549085
fn+1 + h4

1003712473

4756340736
fn+2 − h4

969550831

65399685120
fn+3)

+
18513413

4756340736
fn+4 − h4

93833123

135555710976
fn+5 + h4

6659209

109395836928
fn+6 (12)

yn+4 = −315yn + 896yn+ 1
4
− 720yn+ 1

2
+ 140yn+1 − h4

16748755

113246208
fn + h4

112261

136620
fn+ 1

4

+ h4
2096243

3649536
fn+ 1

2
+ h4

210331987

56623104
fn+1 + h4

165979543

113246208
fn+2 + h4

39403411

311427072
fn+3)

+
5122903

566231040
fn+4 − h4

283583

169869312
fn+5 + h4

4475117

28651290624
fn+6 (13)
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yn+5 = −684yn + 1920yn+ 1
4
− 1520yn+ 1

2
+ 285yn+1 − h4

1558245841

3963617280
fn + h4

58297

27324
fn+ 1

4

+ h4
19348669

25546752
fn+ 1

2
+ h4

3610519517

396361728
fn+1 + h4

3780601817

792723456
fn+2 + h4

2734237085

2179989504
fn+3)

+
148043269

792723456
fn+4 − h4

30115061

5945425920
fn+5 + h4

99230179

200559034368
fn+6 (14)

yn+6 = −1265yn + 3520yn+ 1
4
− 2760yn+ 1

2
+ 506yn+1 − h4

3523805183

4756340736
fn + h4

3858329

948024
fn+ 1

4

+ h4
177977887

153280512
fn+ 1

2
+ h4

213617542267

11890851840
fn+1 + h4

7622336597

679477248
fn+2 + h4

56393830847

13079937024
fn+3)

+
947872849

679477248
fn+4 + h4

20444080127

135555710976
fn+5 + h4

267530371

261598740480
fn+6 (15)

Obtaining the first, second, and third derivatives (with respect to t) of the continuous hybrid LMM in (10), and
evaluating at all the collocation points t = tn+j ; j = 0, 14 ,

1
2 , 1, 2, 3, 4, 5, 6. Then, we obtain the desired discrete

schemes for yn+j as follows;

yn+ 1
4
= yn +

1

4
hzn +

1

32
h2vn +

1

384
h3un + h4

(
27284911601

251134790860800
fn +

955447

10964574720
fn+ 1

4

)
+ h4

(
− 29704723

735746457600
fn+ 1

2
+

352916869

41855798476800
fn+1 −

10433279

7175279738880
fn+2 +

337034191

690620674867200
fn+3

)
h4
(
− 2394167

16742319390720
fn+4 +

200451599

7157341539532800
fn+5 −

15152717

5776100189798400
fn+6

)
(16)

yn+ 1
2
= yn +

1

2
hzn +

1

8
h2vn +

1

48
h3un + h4

(
74804309

61312204800
fn +

4286321

2248594425
fn+ 1

4

)
+ h4

(
− 119869

188179200
fn+ 1

2
+

4036169

30656102400
fn+1 −

13133

583925760
fn+2 +

1268749

168608563200
fn+3

)
h4
(
− 1753

796262400
fn+4 +

250907

582465945600
fn+5 −

625519

15511987814400
fn+6

)
(17)

yn+1 = yn + hzn +
1

2
h2vn +

1

6
h3un + h4

(
126731

10886400
fn +

3100672

107075925
fn+ 1

4

)
+ h4

(
− 5056

15436575
fn+ 1

2
+

2251

1425600
fn+1 −

5881

23950080
fn+2 +

13399

164656800
fn+3

)
h4
(
− 947

39916800
fn+4 +

7907

1706443200
fn+5 −

13127

30296851200
fn+6

)
(18)

yn+2 = yn + 2hzn + 2h2vn +
4

3
h3un + h4

(
48229

467775
fn +

8912896

29202525
fn+ 1

4

)
+ h4

(
714752

5145525
fn+ 1

2
+

2210

18711
fn+1 +

1

891
fn+2 +

148

467775
fn+3

)
h4
(
− 61

467775
fn+4 +

254

8887725
fn+5 −

67

23669415
fn+6

)
(19)

yn+3 = yn + 3hzn +
9

2
h2vn +

9

2
h3un + h4

(
156069

492800
fn +

12275712

9253475
fn+ 1

4

)
+ h4

(
+

864

1925
fn+ 1

2
+

134217

123200
fn+1 +

20007

98560
fn+2 −

1179

96800
fn+3

)
h4
(
+

1539

492800
fn+4 −

1269

2340800
fn+5 +

531

11334400
fn+6

)
(20)
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yn+4 = yn + 4hzn + 8h2vn +
32

3
h3un + h4

(
327808

467775
fn +

536870912

149906295
fn+ 1

4

)
+ h4

(
2097152

2205225
fn+ 1

2
+

600064

155925
fn+1 +

19328

13365
fn+2 +

684032

5145525
fn+3

)
h4
(
+

32

4455
fn+4 −

34816

26663175
fn+5 +

14464

118347075
fn+6

)
(21)

yn+5 = yn + 5hzn +
25

2
h2vn +

125

6
h3un + h4

(
6125125

4790016
fn +

688640000

89943777
fn+ 1

4

)
+ h4

(
+
320000

205821
fn+ 1

2
+

1020625

108864
fn+1 +

7553125

1596672
fn+2 +

8344375

6586272
fn+3

)
h4
(
+

876875

4790016
fn+4 −

14125

3250368
fn+5 +

518125

1211874048
fn+6

)
(22)

yn+6 = yn + 6hzn + 18h2vn + 36h3un + h4
(
4167

1925
fn +

127401984

9253475
fn+ 1

4

)
+ h4

(
+
55296

21175
fn+ 1

2
+

35478

1925
fn+1 +

4293

385
fn+2 +

91764

21175
fn+3

)
h4
(
+
243

175
fn+4 +

5562

36575
fn+5 −

63

69575
fn+6

)
(23)

where z,v, and u represent the first, second, and third derivatives of equation (10).

3. Analysis

3.1. Consistency

Conventionally, the developed method in section 2 can be written as;
k∑

j=0

αjyn+j − h4
k∑

j=0

βjfn+j = 0 (24)

following [5] and [7], the local truncation error is defined as;

L[y(t);h] =
k∑

j=0

(αjy(t+ jh)− h4βjf(t+ jh)) (25)

Suppose y(t) and f(t) are sufficiently differentiable, we express (25) in Taylor series about point x to obtain;

L[y(t);h] = C0y(t) + C1hy
′(t) + C2h

2y′′(t) + · · ·+ cph
pyp(t) + . . . (26)

An LMM is said to be consistent if p ≥ 1 for C0 = C1 = C2 = · · · = Cp+3 = 0, and Cp+4 6= 0 is the error
constant, where p is the order of the method [7]. Therefore, each scheme in (11) to (15) has equal order 9 with
error constants C13 obtained as − 411605

1826434842624 , − 156416461
9132174213120 , − 79500469

1522029035520 , − 213114317
1522029035520 , − 264703481

1304596316160
respectively. Since p > 1, then the method is consistent. Furthermore, in closed form, (24) can be rewritten as;

ρ(z) = h4σ(z) (27)

where ρ(z) and σ(z) are the first and second characteristic polynomials of the method, respectively. The consis-
tency of a linear multistep method can be strengthened with the following conditions [11]

1.
∑k

j=0 αj = 0

2. ρ(z) = ρ′(z) = ρ′′(z) = · · · = ρ(n−1)(z) = 0

3. ρn(z) = n!σ(z)

where z = 1 is the principal root and n = 4 is the root of the differential equation. Equation (11) to (15) satisfied
the above conditions. Hence, the hybrid block method is consistent.

51



Tiamiyu et.al CUJSE 18(1): 047-060 (2021)

3.2. Zero Stability

We analyze the zero stability of the developed discrete schemes in (16) to (23) by normalizing the first character-
istic polynomial ρ(z) as

ρ(z) = det(zA0 −A1) = zn−1(z − 1) (28)

where |z| ≤ 1 and the roots |z| = 1 has multiplicity not exceeding the order 4 of the differential equation, with
A0 = 8× 8 identity matrix and

A1 =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1


Then, ρ(z) = z7(z − 1). Hence, the method is zero stable.

3.3. Convergence

The necessary and sufficient condition for the convergence of an LMM is stability and consistency [7, 18, 19].
Since the newly developed method is consistent and zero-stable, the convergence holds.

4. Numerical Experiments

In this section, we shall investigate the effectiveness of the newly proposed method with four different problems
consisting of;

1. Linear Homogeneous Initial Value Problem of type (1)

d4y(t)

dt4
= 2

d3y(t)

dt3
− d2y(t)

dt2
+ y(t) (29)

with the initial conditions;

y(0) = 1, y′(0) = −1, y′′(0) = 0, y′′′(0) = 1, t ∈ [0, 1] (30)

The exact solution Y (ti) and absolute error, Ei = |Y (ti)− y(ti)| at h = 10−1 and h = 10−2 are presented
in Table 1

2. Linear inhomogeneous Initial Value Problem of type (1)

d4y(t)

dt4
= y(t) + sin(2t+ 1) (31)

with the initial conditions;

y(0) = 1, y′(0) = 1, y′′(0) = 1, y′′′(0) = 0, t ∈ [0, 1] (32)

The exact solution Y (ti) and absolute error, Ei = |Y (ti)− y(ti)| at h = 10−1 and h = 10−2 are presented
in Table 2

3. Non-linear inhomogeneous Initial Value Problem of type (1)

d4y(t)

dt4
= y(t)2 + sin2(t)− cos(t)− 1 (33)
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coupled with the initial conditions;

y(0) = −1, y′(0) = 0, y′′(0) = 1, y′′′(0) = 0, t ∈ [0, 1] (34)

The exact solution Y (ti) and absolute error, Ei = |Y (ti)− y(ti)| at h = 10−1 and h = 10−2 are presented
in Table 3

4. Linear system of Fourth Order Initial Value Problem of type (1)

d4y(t)

dt4
= w(t)− 3t+ 1

d4w(t)

dt4
= y(t)− 17t, t ∈ [0, 1] (35)

coupled with the initial conditions;

y(0) = y′(0) = 0, y′′(0) = 1, y′′′(0) = 2, w(0) = 0, w′(0) = 1, w′′(0) = 2, w′′′(0) = 3 (36)

The exact solution Y (ti) and W (ti), and absolute error, Ei = |Y (ti)− y(ti)| and Fi = |W (ti)− w(ti)| at
h = 10−1 and h = 10−2 are presented in Table 4

4.1. Numerical Results

Tables 1-4 show the numerical approximation for fourth-order ODE problems 1, 2, 3, and 4, respectively. In table
1, 2, and 3, we present the exact solution of the linear homogenous problem 1, linear inhomogeneous problem 2,
and the non-linear inhomogeneous problem 3, respectively, and further compare the absolute error at h = 10−1

and h = 10−2. We observe and validate the notion that smaller step sizes improve the accuracy of numerical
results. In table 4, we compare the absolute error generated at the two solutions of the system of linear fourth-
order initial value problem 4, at h = 10−1 and h = 10−2. As well, h = 10−2 produce better results.
Furthermore, we performed a comparative study of the numerical solution of the proposed method and a method
from literature. The numerical results in tables 5 – 8 were presented and we observed that our proposed method
agreed more with the exact solution better than the method in the recent literature. Also, Figures 1 – 8 shows the
plot of the absolute errors in table 1 – 8. Logarithm was used to rescale the absolute errors in figure 5 – 8.

Table 1: Comparison of Exact Solution and Absolute Errors at Different h for Problem 1

i ti Exact Solution Ei at h = 10−1 Ei at h = 10−2

0 0.0 1.00000000000000000000000000000 0.0000000000× 100 0.0000000000× 100

1 0.1 0.900179507086368372903374199083 3.6033340898× 10−18 7.5186000000× 10−26

2 0.2 0.801544463014773780147434876987 3.0383799877× 10−17 3.5324420000× 10−24

3 0.3 0.705598886975389102786943445988 2.6490566309× 10−16 2.4454285000× 10−23

4 0.4 0.614238931291468928689510164747 9.7651913746× 10−16 9.2802195000× 10−23

5 0.5 0.529808143393722026230366958821 2.9378900946× 10−15 2.5992831300× 10−22

6 0.6 0.455160525903564167533022684300 4.6224649408× 10−15 6.0541431800× 10−22

7 0.7 0.393732683343854693761826491153 3.5548475308× 10−14 1.2455985530× 10−21

8 0.8 0.349626585274874939064008235833 1.8393427213× 10−13 2.3442494940× 10−21

9 0.9 0.327704761421510586558072410078 5.6244382854× 10−13 4.1256599390× 10−21

10 1.0 0.333700082480454521066470136026 1.3053065440× 10−12 6.8907945350× 10−21

5. Conclusions

In this paper, we have developed a self-starting six-step continuous LMM (10) with a higher order of accuracy
via collocation and interpolation technique using power series as the basis function for solving the general fourth-
order initial value problems (1). The basis of our scheme development is to produce a method with high accuracy
and efficiency with a higher step-number. We choose two off-grid points and six-step points in the development
of the method. The hybrid block method does not require any starting method as it can solve directly (1). We
analyzed the necessary and sufficient conditions for the zero stability of the proposed method and established that
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Table 2: Comparison of Exact Solution and Absolute Errors at Different h for Problem 2

i ti Exact Solution Ei at h = 10−1 Ei at h = 10−2

0 0.0 1.00000000000000000000000000000 0.0000000000× 100 0.0000000000× 100

1 0.1 1.10500784281162318792753574933 1.1768058627× 10−18 1.3385000000× 10−25

2 0.2 1.22012809273037441141389389811 1.0004440235× 10−17 5.6943600000× 10−24

3 0.3 1.34566107154216822937734719332 6.1097212716× 10−17 3.4172400000× 10−23

4 0.4 1.48212717733088254865710046589 2.4456364514× 10−16 1.1086648000× 10−22

5 0.5 1.63028084944718840830472830377 6.6790232440× 10−16 2.6218577000× 10−22

6 0.6 1.79112167219365401739325168467 1.1856235912× 10−15 5.0889493000× 10−22

7 0.7 1.96590279473473281749942159245 3.4063187692× 10−15 8.5965198000× 10−22

8 0.8 2.15613702296117045852698392964 1.1966112787× 10−14 1.3049569100× 10−21

9 0.9 2.36360110791601762677262189541 3.0999150442× 10−14 1.8119147900× 10−21

10 1.0 2.59033890897054176900334640442 6.5371716798× 10−14 2.3199642600× 10−21

Table 3: Comparison of Exact Solution and Absolute Errors at Different h for Problem 3

i ti Exact Solution Ei at h = 10−1 Ei at h = 10−2

0 0.0 -1.00000000000000000000000000000 0.0000000000× 100 0.0000000000× 100

1 0.1 - 0.995004165278025766095561987804 3.4653522370× 10−21 1.4000000000× 10−29

2 0.2 -0.980066577841241631124196516748 2.6041766249× 10−20 8.2400000000× 10−28

3 0.3 - 0.955336489125606019642310227568 2.8318136289× 10−19 7.8250000000× 10−27

4 0.4 - 0.921060994002885082798526732052 9.0277390864× 10−19 3.6969000000× 10−26

5 0.5 - 0.877582561890372716116281582604 2.6568462816× 10−18 1.2088600000× 10−25

6 0.6 - 0.825335614909678297240952498955 3.4494683710× 10−18 3.1478400000× 10−25

7 0.7 - 0.764842187284488426255859990192 3.9132946168× 10−17 7.0209100000× 10−25

8 0.8 - 0.696706709347165420920749981642 2.0539350498× 10−16 1.3999120000× 10−24

9 0.9 - 0.621609968270664456484716151407 6.0481068347× 10−16 2.5639890000× 10−24

10 1.0 - 0.540302305868139717400936607443 1.3388092848× 10−15 4.3932680000× 10−24

Table 4: Comparison of Absolute Errors at Different Step Size for Problem 4

i ti Ei at h = 10−1 Ei at h = 10−2 Fi at h = 10−1 Fi at h = 10−2

0 0.0 0.0000000000× 100 0.0000000000× 100 0.0000000000× 100 0.0000000000× 100

1 0.1 4.9976250273× 10−16 2.7735971761× 10−16 8.8388987407× 10−10 7.1727383447× 10−8

2 0.2 1.0651556063× 10−14 1.3944996408× 10−12 5.7745406868× 10−9 3.8402319854× 10−6

3 0.3 2.9508564016× 10−13 7.2172775853× 10−11 9.5571005062× 10−8 3.1298871517× 10−5

4 0.4 1.7327345662× 10−13 1.0548597284× 10−9 2.4932225821× 10−7 1.3461903866× 10−4

5 0.5 1.2795102600× 10−11 8.1791146832× 10−9 8.7218222179× 10−7 4.1422761232× 10−4

6 0.6 8.1370588714× 10−11 4.3065935903× 10−9 1.8472152352× 10−6 1.0346936017× 10−3

7 0.7 3.9006503943× 10−10 1.7442933422× 10−8 1.7605316780× 10−4 2.2405658324× 10−3

8 0.8 4.1314082215× 10−9 5.8419528171× 10−7 1.0463737494× 10−3 4.3725724503× 10−3

9 0.9 4.3714003541× 10−8 1.6937666861× 10−6 3.1872358832× 10−3 7.8834097542× 10−3

10 1.0 2.7735971099× 10−7 4.3847671247× 10−6 3.1872358832× 10−3 1.3353555708× 10−2
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Table 5: Comparison of Computed Solution and [11] Solution for Problem 1

i ti Computed Result [11] Result
0 0.0 1.00000000000000000000000000000 1.000000000000000000000000000000
1 0.1 0.900179507086368372903374199083 0.900179351973242707537353912032
2 0.2 0.801544463014773780147434876987 0.801544463626791433337934571564
3 0.3 0.705598886975389102786943445988 0.705495644876698820940300917832
4 0.4 0.614238931291468928689510164747 0.619572272109120819023258475508
5 0.5 0.529808143393722026230366958821 0.535141294546234736647628567378
6 0.6 0.455160525903564167533022684300 0.460494563690888050849998550111
7 0.7 0.393732683343854693761826491153 0.398893819465743659183444067928
8 0.8 0.349626585274874939064008235833 0.368740268144559552520963343431
9 0.9 0.327704761421510586558072410078 0.346830880946468534592993737455

10 1.0 0.333700082480454521066470136026 0.352851809982481156753891807979

Table 6: Comparison of Computed Solution and [11] Solution for Problem 2

i ti Computed Result [11] Result
0 0.0 1.00000000000000000000000000000 1.00000000000000000000000000000
1 0.1 1.10500784281162318792753574933 1.10500775529198817591876319479
2 0.2 1.22012809273037441141389389811 1.22012809276619040882200095323
3 0.3 1.34566107154216822937734719332 1.34559968750905240186220160530
4 0.4 1.48212717733088254865710046589 1.48212717683624594791240421046
5 0.5 1.63028084944718840830472830377 1.63028073867910745725033831106
6 0.6 1.79112167219365401739325168467 1.79112164273427455960058656260
7 0.7 1.96590279473473281749942159245 1.96582619352277796774560330116
8 0.8 2.15613702296117045852698392964 2.16080128998166607911381747178
9 0.9 2.36360110791601762677262189541 2.36826520625839046078135567845
10 1.0 2.59033890897054176900334640442 2.59500343846858341914822682036

Table 7: Comparison of Computed Solution and [11] Solution for Problem 3

i ti Computed Result [11] Result
0 0.0 -1.00000000000000000000000000000 -1.000000000000000000000000000000
1 0.1 - 0.995004165278025766095561987804 - 0.995004126383223588209469314832
2 0.2 -0.980066577841241631124196516748 - 0.980066577805663811848889927646
3 0.3 - 0.955336489125606019642310227568 - 0.955306505549980353067443629653
4 0.4 - 0.921060994002885082798526732052 - 0.921060994435867925893461260988
5 0.5 - 0.877582561890372716116281582604 - 0.877582536175753210403144811227
6 0.6 - 0.825335614909678297240952498955 - 0.825335642332886842470487844905
7 0.7 - 0.764842187284488426255859990192 - 0.764815811345606363419702684906
8 0.8 - 0.696706709347165420920749981642 - 0.698783791241969344233596090398
9 0.9 - 0.621609968270664456484716151407 - 0.623687102360712351883433833488
10 1.0 - 0.540302305868139717400936607443 - 0.542379318525173566383072403243
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Table 8: Comparison of Computed Solution and [11] Solution for y(t) in Problem 4

i ti Computed Result for y(ti) [11] Result for y(ti)
0 0.0 0.000000000000000000000000000000 0.000000000000000000000000000000
1 0.1 0.005337336170588601015159770360 0.005337310731645549739432238449
2 0.2 0.022728185372858107737863502673 0.022728186631248256677142874881
3 0.3 0.054299154257895178305291350819 0.054274737471418395833836657074
4 0.4 0.102241674099634009300405386803 0.112908359229701162323943353662
5 0.5 0.168797961883331786933163948151 0.179464878857838599358704086715
6 0.6 0.256249792676434048811437843676 0.266918523282677175407813095941
7 0.7 0.366910275255487213686827518583 0.377575508790029426890743617968
8 0.8 0.503118758648318406723783714589 0.525888691857064864114881932377
9 0.9 0.667238931913925063784088510934 0.690039282924070022329539079267

10 1.0 0.861660106592471275898433381648 0.884514408445752438286251507812

Table 9: Comparison of Computed Solution and [11] Solution for w(t) in Problem 4

i ti Computed Result for w(ti) [11] Result for w(ti)
0 0.0 0.000000000000000000000000000000 0.000000000000000000000000000000
1 0.1 0.110498583878257448109870931032 0.110498718860789578690300169048
2 0.2 0.243954754921108116463530519418 0.243954761570889539077098824100
3 0.3 0.403156946378856514336340022922 0.403207922325459632312979586432
4 0.4 0.590555936573307549372616536208 0.606555699109555560542847437601
5 0.5 0.808098677127406427715346949050 0.824098366046852480671784550245
6 0.6 1.05706212041691564334691880079 1.07306162152884878419273769404
7 0.7 1.33806344255074706704864281854 1.35414360683515398086178399692
8 0.8 1.65107583638740399136815798492 1.67486212464898317139503227055
9 0.9 1.99497115482310691288191258582 2.01663749430024622275071780691

10 1.0 2.36731169967442249755621822038 2.38502848228792537919321246945

Figure 1: Absolute errors at h = 10−1 and h = 10−2 for problem 1.
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Figure 2: Absolute errors at h = 10−1 and h = 10−2 for problem 2.

Figure 3: Absolute errors at h = 10−1 and h = 10−2 for problem 3.

Figure 4: Absolute errors at h = 10−1 and h = 10−2 for problem 4.
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Figure 5: Log of absolute errors of the proposed method and [11] for problem 1.

Figure 6: Log of absolute errors of the proposed method and [11] for problem 2.

Figure 7: Log of absolute errors of the proposed method and [11] for problem 3.
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Figure 8: Log of absolute errors of the proposed method and [11] for problem 4.

the proposed method is zero-stable. Furthermore, we illustrated the efficiency of the method with four initial value
problems of a linear homogeneous, non-linear homogeneous, non-linear inhomogeneous, and linear system of
(1) coupled with distinct initial conditions. The numerical results obtained showed the efficiency of the proposed
method as numerical approximations are closer to the exact solutions. The results proved that the proposed method
is an excellent choice for approximating the numerical solution of general fourth-order initial value problems in
applied sciences and engineering. Our numerical computations are performed with the aid of MAPLE 2015
software package.
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