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FRACTIONAL VARIATIONAL PROBLEMS ON CONFORMABLE
CALCULUS
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Abstract. In this paper, we deal with the variational problems de�ned by
an integral that include fractional conformable derivative. We obtained the
optimality results for variational problems with �xed end-point boundary con-
ditions and variable end-point boundary conditions. Then, we studied on the
variational problems with integral constraints and holonomic constraints, re-
spectively.

1. Introduction

Origin of fractional calculus dates back to 1600�s, �rstly seen in a letter from
Leibnitz to L�Hospital. So far, a number of famous mathematicians such as Abel,
Fourier, Liouville, Leibnitz, Weyl and Riemann made contributions to this theory.
Probably, Abel has given the �rst applications of fractional calculus in 1823. Es-
pecially in last decades, fractional calculus �nd ample applications in various �elds
of science (see [13, 22, 23, 27, 28]). Recently, fractional order Black-Scholes equa-
tion is studied in [11], fractional Harry-Dym equation is studied in [12]. There
are several de�nitions of fractional derivatives and fractional integrals, such as
Atangana-Baleanu, Riemann-Liouville, Grunwald-Letnikov, Caputo, Riesz, Riesz-
Caputo, Hadamard-Hilfer, Caputo-Fabrizio, and Weyl, etc. We refer to mono-
graphs [15, 20,24] for de�nitions and properties of most common fractional deriva-
tives. Recently Khalil et. al. [19] gave a new well-behaved fractional derivative de-
�nition; named as conformable fractional derivative. This new de�nition has many
similar properties with ordinary integer order derivative such as constant function
rule, linearity, product and quotient rules and Leibnitz rule (see [1]). Conformable
fractional di¤erential equations are studied widely in the literature. We refer to [9]
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for Lie symmetry analysis; to [8] for boundary value problems; to [18] for numerical
solutions conformable di¤erential equations; to [14] for Fourier transform, etc.
Calculus of variations is a subject which is concerned with �nding the maxima

and minima of functionals and plays important role in many problems arising in
mechanics, geometry, analysis etc. We refer to monograph [17] for the basic con-
cepts of this theory. In 1996, Riewe [25] noted that the traditional Lagrangian
and Hamiltonian mechanics can not be used with non-conservative forces. In order
to deal with Lagrangians involving nonconservative forces, Riewe [26] generalized
the usual variational methods by using Riemann-Liouville type operators and in-
troduced the fractional order calculus of variations. For di¤erent de�nitions on
fractional derivatives, di¤erent approaches have been developed to generalize cal-
culus of variations to fractional case. Agarwal [2, 3, 4] studied variational meth-
ods for Riemann-Liouville, Caputo and Riesz fractional derivatives. Almeida [5, 6]
considered variational problems involving Riesz-Caputo and Caputo-Katugampola
fractional derivatives. Zhang et. al. [29] and Bastos [7] studied calculus of varia-
tions with Caputo-Fabrizio derivatives. Chatibi et. al. [10] investigated variational
methods for Atangana-Baleanu fractional derivatives. Lazo and Torres [21] and
Ero¼glu and Yap¬̧skan [16] studied variational methods for conformable fractional
derivatives.
In this paper, we consider more general variational problems with conformable

fractional derivative and extend the results given in [21]. More specially, we in-
vestigate variable end-point variational problems and variational problems with
subsidiary conditions.

2. Preliminaries

In this section, we introduce de�nitions and basic properties concerning the
conformable fractional derivative that will be needed in our proofs.
0 < � � 1 order left-conformable fractional derivative of the function h :

[a;1)! R is de�ned by

(T a�h) (t) := lim
"!0

h(t+ "(t� a)1��)� h(t)
"

:

If (T�h) exists on the interval (a; b), then (T a�h) (a) = lim
t!a+

(T a�h) (t) :

Similarly, 0 < � � 1 order right-conformable fractional derivative of the function
h is de�ned by �

b
�Th

�
(t) := lim

"!0

h(t+ "(b� t)1��)� h(t)
"

:

If
�
b
�Th

�
exists on the interval (a; b) ; then

�
b
�Th

�
(a) = lim

t!b�

�
b
�Th

�
(t) :

We remark that, additionally if h is di¤erentiable, then (T a�h) (:) = (:�a)1��h
0
(:)

and
�
b
�Th

�
(:) = �(b� :)1��f 0(:) for all t 2 (a; b). As in the case Caputo derivative,

conformable derivative of the constant function is zero (see [1, 19]).
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0 < � � 1 order left and right conformable fractional integrals of the function h
are de�ned by

(Ia�h) (t) :=

tZ
a

h(s)d�(s; a)

and

�
b
�Ih

�
(t) :=

bZ
t

h(s)d�(b; s)

respectively, where d�(s; a) = (s� a)��1ds and d�(b; s) = (b� s)��1ds (see [1]).
Let 0 < � � 1: If h : [a;1) ! R is continuous, then the identity (T a�Ia�h) (t) =

h(t) holds for all t > a. And, if h : (a;1) ! R is continuous, then the identity
(Ia�T

a
�h) (t) = h(t)� h(a) holds for all t > a (see [1, 19]).

For the di¤erentiable functions h; g : [a; b] ! R, the conformable integration by
parts formula reads as follows (see [1])

bZ
a

h(t) (T a�g) (t)d
�(t; a) = (hg)(t)jt=bt=a �

bZ
a

g(t) (T a�h) (t)d
�(t; a): (1)

In the following, we give the fundamental lemma of fractional variational calculus
and the de�nition of jointly-convex functions that will be used in the sequel .

Lemma 1 ( [21]). Let the functions '; � : [a; b] ! R be continuous and the the
equality

bZ
a

'(t)�(t)d�(t; a) = 0

holds for all � 2 C [a; b] satisfying �(a) = �(b) = 0. Then

'(t) = 0

for all t 2 [a; b].

De�nition 2 ( [7]). Let F (x1; x2; x3) be continuous function for its second and
third arguments. If the inequality

F (x1; x2 + h1; x3 + h2)� F (x1; x2; x3) � (�)@2F (x1; x2; x3)h1 + @3F (x1; x2; x3)h2

is hold for all (x1; x2; x3) 2 A and all h1; h2 2 R, then we say that function F is
jointly-convex (or jointly-concave) in A � R3.
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3. Main results

In this study, we consider the functional

J[x] :=
bZ
a

L(t; x(t); T a�x(t))d
�(t; a): (2)

Throughout the paper, we assume that x 2 C1 [a; b], T a� (@3L (t; x(t); T a�x(t))) is
continuous, and L 2 C12;3

�
[a; b]� R2;R

�
; where C12;3 denotes the family of functions

that continuously di¤erentiable for its second and third arguments, and @i denotes
the partial derivative of the function for its i�th argument.
One can �nd necessary optimality conditions for the problem of �nding local

minimizers of the functional (2) in the following result.

Theorem 3 ( [13]). Let 0 < � � 1 and xa; xb 2 R be �xed. If x is a minimizer of
the (2) on the set

S :=
�
x 2 C1 [a; b] : x(a) = xa; x(b) = xb

	
; (3)

then we say that x(t) is a solution of the equation

@2 (L�;x)� T a� (@3 (L�;x)) = 0; (4)

where L�;x := L (:; x (:) ; T a�x(:)) :

De�nition 4. Equation (4) is named as the Euler-Lagrange equation for (2) ; and
its solutions are named as the extremals of (2).

Equation (4) provides only a necessary condition for the function x(t) to be
an extremal of (2). By using notion of jointly-convex functions given above and
conformable integration by parts formula (1), we can give a su¢ cient condition as
follows.

Theorem 5. If the function L is jointly-convex in [a; b]� R2, then every solution
of the Euler-Lagrange equation (4) minimizes the functional J on the set S.

Proof. Assume that function x(t) is a solution of (4) : Let x+ �� be a variation of
x, with 1� j�j and � 2 C1 [a; b] with �(a) = �(b) = 0. Since x(t) is a solution of (4)
and L is jointly-convex, we have

J[x+ ��]� J[x]

=

bZ
a

(L�;x+��) d
�(t; a)�

bZ
a

(L�;x) d
�(t; a)

� �

bZ
a

[@2 (L�;x) �(t) + @3 (L�;x)T
a
��(t)] d

�(t; a):
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= �

bZ
a

@2 (L�;x) �(t)d
�(t; a) + �

bZ
a

@3 (L�;x)T
a
��(t)d

�(t; a)

Using (1) for the second term of the inequality, we can write

J[x+ ��]� J[x]

� �

bZ
a

@2 (L�;x) �(t)d
�(t; a) + ��(t)@3@3 (L�;x)

���t=b
t=a

��
bZ
a

T a� (@3 (L�;x)) �(t)d
�(t; a)

= �

bZ
a

[@2 (L�;x)� T a� (@3 (L�;x))] �(t)d�(t; a)

= 0:

Hence, we can say that x(t) is a local minimizer of the functional J. �

In Theorems 3 and 5, we introduced the variational problems with �xed end-
point. In the following result, we will study the variational problems with variable
end-point. Because of the absence of at least one of the end-point conditions (3)
in such problems, we need additional conditions, which are named transversality
conditions in the literature.

Theorem 6. Assume that x(t) is a minimizer of the functional J. Then, x(t) is a
solution of the Euler-Lagrange equation (4).
If x(a) is absent, then

@3 (L�;x)jt=a = 0:
If x(b) is absent, then

@3 (L�;x)jt=b = 0:

Proof. Let x + �� be a variation of x, with 1 � j�j and � 2 C1 [a; b]. Let the
functional j de�ned in a neighborhood of zero by

j [�] := J [x+ ��] :

Since x is a minimizer of J, then � = 0 will be a minimizer of j and so we can
conclude that j0 [0] = 0. Using (1), we can calculate j0 [�] as

@

@�
j [�] =

@

@�

0@ bZ
a

L�;x+��d
�(t; a)

1A
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=

bZ
a

[@2 (L�;x+��) �(t) + @3L (L�;x+��)T
a
�� (t)] d

�(t; a)

=

bZ
a

@2 (L�;x+��) �(t)d
�(t; a) + @3 (L�;x+��) � (t)

���t=b
t=a

�
bZ
a

T�a (@3 (L�;x+��)) �(t)d
�(t; a):

Using the fact that j0 [0] = 0; we get
bZ
a

[@2 (L�;x)� @3 (L�;x)] �(t)d�(t; a) + @3 (L�;x) �(t)
���t=a
t=a

= 0: (5)

Also, since x is a minimizer, the relation

@2 (L�;x)� @3 (L�;x) = 0
holds for all t 2 [a; b] : Therefore, from (5) we have

@3 (L�;x) �(t)jt=at=a = 0:

If x(a) is not �xed, then �(a) will be free. Hence taking the end-point conditions
as �(a) 6= 0 and �(b) = 0; we obtain that

@3 (L�;x) �(t)jt=a = 0:
If x(b) is not �xed, then �(b) will be free. Hence taking the end-point conditions as
�(b) 6= 0 and �(a) = 0; we obtain that

@3 (L�;x) �(t)jt=b = 0:
Thus, the proof is complete. �

Now we consider variational problems with constraints, i.e. subsidiary condi-
tions. Let l 2 R �xed, G 2 C12;3

�
[a; b]� R2;R

�
, and T a� (@3 (G�;x(t))) is continuous.

Theorem 7. Assume that x is a minimizer of functional (2), de�ned on the set
(3) subject to the additional restriction

I [x] :=
bZ
a

G�;xd
� (t; a) = l: (6)

If x is not an extremal of I, then there exists a � 2 R such that x is a solution of
the equation

@2 (K�;x)� @3 (K�;x) = 0 (7)

where K : [a; b]� R2 ! R is de�ned by K = L+ �G.
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Proof. Consider a variation of x with two parameters x+ �1�1 + �2�2; with 1� j�j
and �i 2 C1 [a; b] satisfying �i(a) = �i(b) = 0; for i = 1; 2. In the neighborhood of
zero, let de�ne the bivariate functions k and j� as

k (�1; �2) = I (x+ �1�1 + �2�2)

and
j� (�1; �2) = J (x+ �1�1 + �2�2) :

Using integration by parts formula given by (1) ; we obtain

@

@�2
k (�1; �2)

=
@

@�2

0@ bZ
a

G�;x+�1�1+�2�2d
� (t; a)�

bZ
a

G�;xd
� (t; a)

1A
=

bZ
a

@2
�
G�;x+�1�1+�2�2

�
�2 (t) d

� (t; a) +

bZ
a

@3
�
G�;x+�1�1+�2�2

�
T a��2 (t) d

� (t; a)

=

bZ
a

@2
�
G�;x+�1�1+�2�2

�
�2 (t) d

� (t; a) + @3
�
G�;x+�1�1+�2�2

�
�2 (t)

���t=b
t=a

�
bZ
a

T a�
�
@3
�
G�;x+�1�1+�2�2

��
�2 (t) d

� (t; a)

=

bZ
a

h
@2
�
G�;x+�1�1+�2�2

�
� T a�

�
@3
�
G�;x+�1�1+�2�2

�� i
�2 (t) d

� (t; a)

+ @3
�
G�;x+�1�1+�2�2

�
�2 (t)

���t=b
t=a

:

Therefore, we have

@

@�2
k (�1; �2)

����
(0;0)

=

bZ
a

h
@2 (G�;x)� T a� [@3 (G�;x)]

i
�2 (t) d

� (t; a)+ @3 (G�;x) �2 (t)
���t=b
t=a

:

From the hypothesis we know that x is not an extremal of I, so we can conclude
that there exists a function �2 such that

@
@�2
k (�1; �2)

���
(0;0)

6= 0: From the Implicit

Function Theorem, we can say that there exists a unique function �2(:) de�ned in
the neighborhood of zero such that k(�1; �2 (�1)) = 0 is satis�ed.
Additionally, (0; 0) is a minimizer of j�, with condition k(:; :) = 0, and so we

proved that rk(0; 0) = 0. After that using the Lagrange multiplier rule, we con-
clude that there exists a � 2 R such that r(j+�k) = 0 is satis�ed. Di¤erentiating
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the map �! j (�1; �2) + �k (�1; �2), and taking (�1; �2) = (0; 0)

bZ
a

h
@2 (G�;x)� T a� [@3 (G�;x)]

i
�2 (t) d

� (t; a) + @3 (G�;x) �2 (t)
���t=b
t=a

= 0

is obtained. Finally, using the fundamental lemma, we obtain the desired result. �

Now we consider variational problems with holonomic constraints, i.e. the
case when admissible functions lie on a certain surface. Let the function L 2
C12;3;4;5

�
[a; b]� R4;R

�
, and the functions T a� (@iL (t; x1(t); x2(t); T

a
�x1(t); T

a
�x2(t)))

are continuous for i = 4; 5.
Consider the functional

J [x1; x2] :=
bZ
a

L (t; x1(t); x2(t); T
a
�x1(t); T

a
�x2(t)) d

� (t; a) (8)

on the space

S� :=
�
(x1; x2) : x1;2 2 C1 [a; b] ; (x1(a); x2(a)) = xa and (x1(a); x2(b)) = xb

	
where xa; xb 2 R2 are �xed, and assume that the admissible functions of (8) lie on
the surface

G(t; x1(t); x2(t)) = 0 (9)

where G 2 C12;3
�
[a; b]� R2;R

�
.

For the sake of brevity, we denote x(t) := (x1 (t) ; x2 (t)) and
T a�x(t) := (T

a
�x1(t); T

a
�x2(t)) in the remaining part of this paper.

Theorem 8. Let x 2 S� be a minimizer of J given by (8) under the constraint (9).
If

@3G (t; x (t)) 6= 0; t 2 [a; b] ;
then there is a continuous function 
 : [a; b]! R such that x satis�es

@2 (L�;x)� T a� (@4 (L�;x)) + 
 (t) @2G (t; x (t)) = 0; (10)

and
@3 (L�;x)� T a� (@5 (L�;x)) + 
 (t) @3G (t; x (t)) = 0:

Proof. Consider a variation of x as x + �� with 1 � j�j and � 2 C1 [a; b] satisfying
end-point conditions �(a) = �(b) = 0. Since

@3G (t; x (t)) 6= 0;
from the Implicit Function Theorem, we can say that there exists a subfamily of
variations satisfying condition (9), i.e., there exists a unique function �2 (�; �1) such
that (x1 + ��1; x2 + ��2) satis�es (7) : Therefore, we get

G (t; x1 (t) + ��1 (t) ; x2 (t) + ��2 (t)) = 0; t 2 [a; b] : (11)
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Di¤erentiating equation (11) with respect to � and putting � = 0; we obtain

@2G (t; x1 (t) ; x2 (t)) �1 (t) + @3G (t; x1 (t) ; x2 (t)) �2 (t) = 0;

i.e.
@2G (t; x (t)) �1 (t) + @3G (t; x (t)) �2 (t) = 0: (12)

Now, de�ne the function


(t) = �@3 (L�;x)� T
a
� (@5 (L�;x))

@3G (t; x (t))
: (13)

Using equations (12) and (13), we obtain


 (t) @2G (t; x (t)) �1 (t) = [@3 (L�;x)� T a� (@5 (L�;x))] �2 (t) : (14)

On the other hand, using the fact that if x is a minimizer of J, then �rst variation
of J is equal to zero, we have

bZ
a

h
@2 (L�;x) �1 (t) + @3 (L�;x) �2 (t)

+ @4 (L�;x)T
a
��1 (t) + @5 (L�;x)T

a
��2 (t)

i
d�(t; a) = 0:

Using conformable integration by parts, we obtain
bZ
a

hh
@2 (L�;x)� T a� (@4 (L�;x))

i
�1 (t)

+
h
@3 (L�;x)� T a� (@5 (L�;x))

i
�2 (t)

i
d�(t; a) = 0:

Inserting (14) into the this integral, we get

bZ
a

h
@2 (L�;x)� T a� (@4 (L�;x)) + 
(t)@2G (t; x (t))

i
�1 (t) d

� (t; a) = 0:

Since �1 is an arbitrary function, we can conclude that x is a solution of

@2 (L�;x)� T a� (@4 (L�;x)) + 
(t)@2G (t; x (t)) = 0:
Following the same process, the second condition

@3 (L�;x)� T a� (@5 (L�;x)) + 
(t)@3G (t; x (t)) = 0
can be obtained, and the proof is complete. �

Theorem 9. Suppose that the function L (t; x1 (t) ; x2 (t) ; y1 (t) ; y2 (t)) given by
(8) is convex in [a; b] � R4; G 2 C12;3, and let 
 be given by equation (13). If
@3G (t; x (t)) 6= 0 for all t 2 [a; b] and x is a solution of the fractional Euler-Lagrange
equation (10), then x minimizes J in S�, subject to (9).
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Proof. If x+ �� is a variation of x, then we have

J [x+ ��]� J [x] �
bZ
a

f[@2 (L�;x)� T a� (@4 (L�;x))] ��1 (t)

+ [@3 (L�;x)� T a� (@5L�;x)] ��2 (t) d� (t; a) :

since the variation functions must satisfy the constraint (9) ; from (12) we have the

�2 (t) = �
@2G (t; x (t)) �1 (t)

@3G (t; x (t))

and from equation (13) ; we obtain

J [x+ ��]�J [x] �
bZ
a

[@2 (L�;x)� T a� (@4 (L�;x)) + 
(t)@2G (t; x (t))] ��1 (t) d� (t; a) ;

which is zero by hypothesis. �

4. Conclusions

We have discussed the optimality conditions of the variational problems including
conformable fractional derivatives. We obtained the optimality conditions for �xed
end-point variational problems in Theorem 5, and for variable end-point variational
problems in Theorem 6. Then, we have investigated the isoperimetric problem in
Theorem 7, and variational problem with holonomic constraints in Theorem 8.
Finally, in Theorem 9, we have given a su¢ cient condition for optimality results of
variational problems.
It is known that conformable fractional derivative generalizes the ordinary de-

rivative, i.e. if we take � = 1 in conformable derivative T a�h(t), we have ordinary
derivative Dh(t). Using this fact, It is clear that the results obtained in our study
expand the results in the literature given before.
The problems we have dealt with include only one independent variable and one

dependent variable and its derivative. As a possible extension of our results, one
can study the problems involving more than one dependent variable and their deriv-
atives. And problems with one dependent variable and its derivatives of di¤erent
orders can be studied.
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