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Abstract. We study a new version of the weak subgradient method, recently

developed by Dinc Yalcin and Kasimbeyli for solving nonsmooth, nonconvex

problems. This method is based on the concept of using any weak subgradient
of the objective of the problem at the currently generated point with a version

of the dynamic stepsize in order to produce a new point at each iteration.
The target value needed in the dynamic stepsize is defined using a path based

target level (PBTL) algorithm to ensure the optimal value of the problem is

reached. We analyze the convergence and give an estimate of the convergence
rate of the proposed method. Furthermore, we demonstrate the performance

of the proposed method on nonsmooth, nonconvex test problems, and give

the computational results by comparing them with the approximately optimal
solutions.

1. Introduction

In this paper, we focus on nonsmooth problems where the objective function
is lower locally Lipschitz but not necessarily convex or smooth. Many real-world
application such as control theory, machine learning, optimal shape design are
nonsmooth optimization problems.

In nonsmooth convex optimization, a subgradient defines the normal vectors of
the supporting hyperplane to the graph of the function at the relevant point. Thus,
in nonsmooth convex optimization, the projected subgradient methods are well
known and the fundamentals of these methods have been investigated by Polyak
[50], Ermoliev [23], Shor [53]. The main purpose of a projected subgradient method
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is to generate a new point by using a subgradient of the function at the current point
and a positive stepsize parameter. The projection is not computationally expensive
if the constraint set is easy for example box constraints. For the convergence
analysis, the selection of the stepsize parameter is significant. The classical stepsize
types are a (fixed positive) constant, diminishing, and dynamic stepsize. With the
dynamic stepsize, the target value is an estimate of the optimal value of the problem
and it can be defined as a constant or it can be updated throughout the projected
subgradient method. The constant target value may be greater or lower than the
optimal value. Alternatively, the target value may be calculated by a path based
target level (PBTL) algorithm, which guarantees that the target value will converge
to the optimal value [14,27,45,56].

When the function is nonsmooth and nonconvex, various definitions of sub-
gradients are used such as Clarke’s subgradient [18] and weak subgradient [3, 4].
Clarke’s subgradient is used in nonsmooth, nonconvex (unconstrained or only box
constrained) optimization problems, and employed in various methods such as
bundle-type methods (see, e.g., [24, 29, 30, 36, 41]), gradient sampling algorithm
(see, e.g., [16, 19,39]), variable metric method (see, e.g., [55]), trust region method
(see, e.g., [1, 21, 31, 52]), cutting planes (see, e.g., [25]), proximal algorithms (see,
e.g., [9,11,12,48]), quasi-Newton method (see, e.g., [20,40]). In these methods, the
descent directions are usually computed by solving a subproblem which may be
quadratic.

Besides subgradient based methods, smoothing methods are also proposed in
literature to solve some class of nonsmooth optimization problems. In these meth-
ods, the nonsmooth function is approximated by a smooth function, then the
smooth function is optimized. The nonsmooth function may be convex (see, e.g.,
[8,10,13,47,54]), convex composite(see, e.g., [15]), or nonconvex (see, e.g., [10,17]).

In addition to these methods, for solving nonsmooth, nonconvex optimization
problems, the weak subgradient method [22] is the first to use weak subgradients
which have vector and scalar parts, corresponding the supporting conic surfaces to
the graph of the function at the relevant point. The weak subgradient method is a
generalization of projected subgradient methods, and a convergence analysis of it
is investigated with various stepsize parameters: constant and diminishing as well
as three types of dynamic.

The aim of this paper is to propose a new version of the weak subgradient
method that uses a stepsize parameter computed with PBTL algorithm. Then, the
convergence properties and the convergence rate of the proposed method are also
investigated. We approximately compute the weak subgradient of the function at
the relevant point with the algorithm using the theorem [22, Theorem 2.8] which
establish the relation between the directional derivative and weak subdifferential.
Additionally, we test the performance of the method on nonsmooth, nonconvex test
problems from the literature.
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The rest of the paper is organized as follows. Section 2 gives the main properties
of the weak subdifferentials and the algorithm for the approximate computing of
the weak subgradient is presented. In section 3, we give the convergence proper-
ties and convergence rate of the weak subgradient method with PBTL algorithm.
Section 4 gives the computational results. In section 5 we draw some conclusions.

2. Preliminaries

In this section, we explain the weak subdifferential and the approximate com-
puting of the weak subgradient.

2.1. Weak Subdifferentials. In this section, we give the definition of the weak
subdifferentials and some properties related to this study (see [3, 4, 22,33,34] ).

Definition 1. Let f : S → R and x̄ ∈ S. A pair (v, c) ∈ Rn × R+ is called a weak
subgradient of f at x̄ on S if

f(x) ≥ f(x̄) + ⟨v, x− x⟩ − c∥x− x̄∥, ∀x ∈ S. (1)

The set

∂wS f(x̄) = {(v, c) ∈ Rn × R+ : f(x) ≥ f(x̄) + ⟨v, x− x̄⟩ − c∥x− x̄∥, ∀x ∈ S}
of all weak subgradients of f at x̄ is called the weak subdifferential of f at x̄ on S.

As a result of the definition of the weak subgradient, a continuous (superlinear)
and concave function is obtained as follows

g(x) = f(x̄) + ⟨v, x− x̄⟩ − c∥x− x̄∥,
where x ∈ S, g(x̄) = f(x̄), and (v, c) ∈ ∂wS f(x̄). In addition, the hypograph of

this function g(x) is a cone and thus supports the epigraph of the function f(x) at
the point (x̄, f(x̄)).

Assumption 1. Let S ⊆ Rn be starshaped at x̄ ∈ S, and let f : S → R be a given
function. Suppose that f has a directional derivative at x̄ in every direction x− x̄
with arbitrary x ∈ S and

f(x)− f(x̄) ≥ f ′(x̄;x− x̄) for all x ∈ S− {x̄}. (2)

When Assumption 1 holds, the following equation

f ′(x̄;h) = max{⟨v, h⟩ − c ∥h∥ : (v, c) ∈ ∂wS f(x̄), ∥v∥+ c ≤M}, ∀h ∈ Rn

explains the relation between the weak subdifferential ∂wS f(x̄) and the directional
derivative f ′(x̄;h) (see [22, Theorem 2.8]), where M is a positive number. The
relation plays an important role in the approximation of the weak subgradients.

In addition, it is known that the weak subdifferential of a function is convex
and closed (see [33, Theorem 2.4]), and also compact (see [22, Theorem 2.9]). The
property of compactness is handled by limiting the scalar part of weak subgradient c
with an upper bound L and thus the norm of the vector part of the weak subgradient
v is also bounded with an uper bound D. It means that ∂wSLf(x̄) is nonempty for
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c ≤ L and with the number D > 0, ∥v∥ ≤ D for all (v, c) ∈ ∂wSLf(x̄). This
property of the weak subgradient is essential for both the approximation of the
weak subgradients and the convergence analysis of the weak subgradient method.

2.2. Approximation of Weak Subgradients. Dinc Yalcin and Kasimbeyli [22]
presented an algorithm which makes use of the relation between the directional
derivative and weak subgradients, and also the compactness property of the weak
subdifferential and, in addition, utilizes the discrete gradient method given by [6].
The algorithm numerically computes the weak subgradient of a function at a given
point. Note that the approximation is computed more properly when the value of
L which is the upper limit of the scalar part of the weak subgradient c is defined
large enough. In addition, throughout this work Assumption 1 holds. We briefly
explain the method.

Let us consider the set G = {e = (e1, e2, ..., en) ∈ Rn : |ej | = 1, j = ¯1, n}
and generate the n vectors ej(α) = (αe1, α

2e2, ..., α
jej , 0, ..., 0), j = ¯1, n where

e = (e1, e2, ..., en) ∈ G and α ∈ (0, 1] is a fixed number. Then, the equation
f ′(x̄; ej(α)) = ⟨v̄, ej(α)⟩ − c̄

∥∥ej(α)∥∥ is constructed by the relation between the
directional derivative and the weak subdifferential. In addition, with using the
compactness of the weak subdifferential, the set Vc̄ = {v ∈ Rn : (v, c̄)} is obtained
for the particular c̄ ≤ L. Thus, the weak subgradient (v̄, c̄) exists, where v̄ ∈ Vc̄.
Note that L may be defined as the lower Lipschitz constant.

Due to the compactness of the weak subdifferential and the relation with the di-
rectional derivative, a weak subgradient (v̄, c̄) that satisfies the equation f ′(x̄; ej(α)) =
⟨v̄, ej(α)⟩ − c̄

∥∥ej(α)∥∥ exists, where v̄ ∈ Vc̄ defined as Vc̄ = {v ∈ Rn : (v, c̄)} for the
particular c̄. Note that c̄ can be taken less or equal to the lower Lipschitz constant
L.

Let take any e ∈ G, and let define λ > 0, α > 0 and given any c̄ and generate
the points where the zeroth point is the current point x0 = x̄ and the others
are obtained as xj = x0 + λej(α), j = ¯1, n. Furthermore, the points are easily
generated by xj = xj−1 + (0, . . . , 0, λαjej , 0, . . .) for every j = ¯1, n. After that, the
vector v(e, α, λ) ∈ Rn with the coordinates

vj(e, α, λ) =
f(xj)− f(xj−1)

λαjej
+

c̄

ej
, j = ¯1, n

is defined and with the given numbers, we can state the set W (e, α) = {(w, c̄) ∈
Rn × C : ∃(λk → +0, k → +∞), w = limk→∞ v(e, α, λk)}. Finally, the set W (e, α)
is a subset of weak subdifferential, W (e, α) ⊂ ∂wSLf(x̄) ∀α ∈ (0, α0] (see [22,
Proposition 3.5], also see [22, Proposition 3.1], [22, Proposition 3.3], [22, Corollary
3.4] for more details).

By using the construction given above, Algorithm 1 is constructed in [22] as
follows.
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Algorithm 1 Approximate computing of the weak subgradient (v, c) ∈ ∂wSLf(x̄).

1: Let e ∈ G = {e = (e1, e2, ..., en) ∈ Rn : |ej | = 1, j = ¯1, n} and λ > 0, α ∈ (0, 1],
x̄ ∈ S, and L > 0 sufficient large.

2: Define ej(α) = (e1α, e2α
2, ..., ejα

j , 0, ..., 0), j = ¯1, n.
3: Choose a number 0 < c < L.
4: Let x0 = x̄.
5: j ← 1.
6: while j ≤ n do
7: xj = x0 + λej(α),

8: vj =
f(xj)−f(xj−1)

λαjej
+ c

ej
,

9: j ← j + 1.
10: end while

3. Weak Subgradient Method with Path Based Target Level (Pbtl)
Algorithm

In this paper, we focus on the following box constrained nonsmooth optimization
problem:

minimize f(x)
subject to x ∈ S (3)

where f : S → R is a lower locally Lipschitz function not necessarily convex and
smooth. S ⊂ Rn defines the box constraints S = {x ∈ Rn : l ≤ x ≤ u}, where l and
u shows the lower and upper bounds, respectively.

We present the weak subgradient method with the PBTL algorithm for solving
Problem (3). The process of weak subgradient method at every iteration k is as
follows:

xk+1 = PS(xk − αkvk). (4)

Here, PS denotes projection on the set S, (vk, ck) ∈ ∂wSLf(xk) is the weak subgradient
and the parameter αk is a positive stepsize. Since the set consists of box constraints,
the projection is simple.

Some notations is used through this section. x∗ and f∗ denote a critical point and
the critical value of the problem (3) in the sense of weak subdifferential, respectively.
We assume that positive numbers D and L exists satisfying

∥vk∥ ≤ D, (5)

ck ≤ L, (6)

for all (vk, ck) ∈ ∂wSLf(xk) for all xk ∈ S. The diameter of S is denoted by the notion
dS = diam(S) = maxx1,x2∈S ∥x1 − x2∥. Then

∥xk − x∗∥ ≤ dS, (7)
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where ∥ · ∥ is the Euclidean norm.
The dynamic stepsize is generally defined as

αk = γk
f(xk)− f levk − ckdS

∥vk∥2
, 0 < γ ≤ γk ≤ γ̄ < 2, (8)

where the target value f levk is an estimate of f∗. The convergence analysis for the
various selections of f levk is given in [22]. When these selections of f lev are defined
constantly, greater or lower value of f lev than the optimal value f∗ occurs. In
this circumstances, the convergence depends on f lev and the difference (f∗− f lev),
respectively. When f levk is updated during the algorithm with the procedure f levk =
mink{f(xk)} − δk and the parameter δk is computed, regardless of whether or not
the current iteration is better than f levk , the upper limit of δk has an impact on the
convergence.

In this paper, we analyze the weak subgradient method with a new dynamic
stepsize (8), where f levk is defined by the PBTL algorithm given in [14,27,45,56] to
ensure f levk → f∗. The pseudocode is given in Algorithm 2.

The algorithm decreases the δl parameter only in Steps 14-16 if the length of the
path σk travelled by iterates for all k < kl+1 exceeds the prescribed upper bound
R; otherwise, the parameter remains the same. Decreasing δl means increasing the
target level f levk . σk is reset when a new point is generated with sufficient descent
of the objective function.

We begin the convergence analysis with the following lemma without proof which
gives a general inequality between the generated points and the critical point that
is true for all stepsizes (also, see e.g. [2,26,32,37,38,45,46,51] for other subgradient
methods) This lemma is essential for the subsequent convergence analysis.

Lemma 1. [22, Lemma 2] Let {xk} be the sequence generated by the weak sub-
gradient method. Then for all k ≥ 0, we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2αk[f(xk)− f∗ − ck∥x∗ − xk∥] + α2
k∥vk∥2.

We start with a lemma which explains that if δl is nondiminishing, then the target
values f levk are updated infinitely through iterations which means infk≥0 f(xk) =
−∞. The lemma holds true regardless of whether the computation of the weak
subgradient is exact or approximate.

Lemma 2. Algorithm 2 generates infinitely many values of l which means l→∞.
Thus we have either infk≥0 f(xk) = −∞ or liml→∞ δl = 0 for the sequence {xk}
generated by the weak subgradient method with the PBTL algorithm.

Proof. Assume that l takes only a finite number of values, let l̄ > 0 be the upper
bound of l. In this case, we have

σk + αk∥vk∥ ≤ σk + αkD = σk+1 ≤ R
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Algorithm 2 Weak subgradient method with PBTL algorithm

1: Select a starting initial solution x0 ∈ X, and δ0 > 0, R > 0, let the incumbent
solution be xbest = x0, and σ0 = 0, frec−1 =∞.

2: Define tolerance tol, and let iteration counter k = 0 and l = 0, kl = 0.
3: while δl > tol do
4: Calculate f(xk).
5: if f(xk) < freck−1, then

6: Set freck = f(xk), x
best = xk

7: else
8: Set freck = freck−1.
9: end if

10: if f(xk) < freckl
− δl

2 , then
11: Set kl+1 = k, σk = 0, δl+1 = δl, l = l + 1,
12: Go to 17.
13: end if
14: if σk > R, then
15: Set kl+1 = k, σk = 0, δl+1 = δl

2 , l = l + 1.
16: end if
17: Set f levk = freckl

− δl.
18: Compute a weak subgradient (vk, ck) ∈ ∂wSLf(xk) of f at xk via Algorithm

1 in Sect. 2.2.
19: Calculate xk+1 via (4) and (8).
20: σk+1 = σk + αk∥vk∥.
21: k ← k + 1.
22: end while

from (5) and Step 20 for all k ≥ kl̄. This would mean that limk→∞ αk = 0, which
is impossible. Since for all k ≥ kl̄, from Step 17, we have

f(xk)− f levk ≥ δl̄. (9)

Furthermore, ck is chosen less than
f(xk)−f lev

k

dS
since the stepize is a positive param-

eter. Thus, with (9) and the way of choosing the vale of ck, we have

αk = γk
f(xk)− f levk − ckdS

∥vk∥2
> 0.

This implies that for all k ≥ kl̄, the stepsize αk is bounded below with a positive
value which means limk→∞ αk > 0. As a consequence l cannot be finite: l→∞.

Since l goes to infinite, there should be a limit δ = liml→∞ δl. If δ = 0, then
liml→∞ δl = 0. Otherwise, let l0 is large enough so that for all l ≥ l0, we have δl = δ
from 10-13 and 14-16 and

freckl+1
− freckl

≤ −δ
2
,
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implying that infk≥0 f(xk) = −∞. □

Remark 1. Algorithm 2 is terminated when δl is less than tol. According to Lemma
2, if the function f goes to negative infinity, then while l goes to infinity, δl has a
limit point δ. In this case, Algorithm 2 runs infinite iterations since the stopping
condition δl ≤ tol cannot be hold. Therefore, another termination rule such as a
time limit or an iteration limit may be used to prevent this situation.

The convergence property of the weak subgradient method with the PBTL al-
gorithm is given in the following proposition.

Proposition 1. For the sequence {xk} generated by the weak subgradient method
with the PBTL algorithm, we have

• (a) if liml→∞ δl > 0, then

inf
k≥0

f(xk) = −∞,

• (b) if liml→∞ δl = 0, then

inf
k≥0

f(xk) = f∗.

Proof. If liml→∞ δl > 0, according to Lemma 2, we have infk≥0 f(xk) = −∞. Thus
the proof is completed for part (a).

Now, we prove part (b).
Let ψ be the set of l given by

ψ =
{
l|δl =

δl−1

2
, l ≥ 1

}
.

We obtain

σk = σk−1 + αk−1∥vk−1∥ =
k−1∑
j=kl

αj∥vj∥

from Steps 10-16 and 20 . When the length of the path becomes greater than the

upper value
∑k−1
j=kl

αjD >
∑k−1
j=kl

αj∥vj∥ > R at Steps 14-16, kl+1 becomes equal
to iteration number kl+1 = k where l + 1 ∈ ψ . Thus, the sum gives

k−1∑
j=kl−1

αj >
R

D
∀l ∈ ψ,

and, since the cardinality of ψ is infinite, we have the inequality,

∞∑
j=0

αj ≥
∑
l∈ψ

k−1∑
kl−1

αj >
∑
l∈ψ

R

D
=∞. (10)

Now, assume to contrary that there exists some ε > 0

inf
k≥0

f(xk) > f∗ + ε,
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inf
k≥0

f(xk)− ε > f∗.

Since liml→∞ δl = 0, let l̄ be large enough so that there exits some ε such that
δl ≤ ε for all l ≤ l̄. Thereby for all k ≤ kl̄ we obtain,

f levk = freckl
− δl ≥ inf

k≥0
f(xk)− ε > f∗. (11)

By using the inequality obtained in (11) and by Lemma 1, and in addition, with
assumption (5), the diameter of S given in (7), the dynamic stepsize (8), and finally
using the fact that γk < 2, γ2k ≤ γk, 0 < γ < γk ≤ γ̄ < 2, the following inequality
is obtained

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γ(2− γ)
(f(xk)− f levk − ckdS)2

D2
. (12)

By summing these inequalities over k ≥ kl̄, we have

∥xk+1 − x∗∥2 ≤ ∥xkl̄ − x
∗∥ −

γ(2− γ)
D2

∞∑
k=kl̄

(f(xk)− f levk − ckdS)2. (13)

Due to (8) and (10), the last term
∑∞
k=kl̄

(f(xk)− f levk − ckdS)2 of the inequality

(13) goes to infinity. Then, the relation cannot hold true. Thus, we obtain the
contradiction. □

Now, we give a convergence rate analysis.

Proposition 2. If the weak subgradient method with the PBTL algorithm termi-
nates after a finite number of K iterations, then K is the largest positive integer
such that

K−1∑
k=0

(δk − LdS)2 ≤
D2

γ(2− γ̄)
∥x0 − x∗∥2

and we have

inf
0≤k≤K

f(xk) ≤ f∗ + δ0.

Proof. Assume to the contrary that

f(xk) ≥ f∗ + δ0 (14)

for all k = 0, ...,K.
Since f levk = min0≥j≥k f(xj)− δk and δk ≤ δ0 for all k ≥ 0, with (14) we have

f levk ≥ f∗ − δ0 ≥ f∗ − δk ≥ f∗ (15)

for all k = 0, ...,K.
Hereby, by using the inequality f levk ≥ f∗ obtained in (15) and by Lemma 1,

and in addition, with the diameter of S given in (7), the definition of the dynamic



386 G. DINC YALCIN

stepsize (8),0 < γ < γk ≤ γ̄ < 2 (similar to the Proposition 1), we get the inequality
(12).

When we combine the inequality (12) using the fact f(xk) − f levk ≥ δk∀k and
ck ≤ L given in (6), for all k ≤ K the following inequality

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γ(2− γ)
(δk − LdS)2

D2

is obtained.
By summing these inequalities over k = 0, ...K, we have

∥xK+1 − x∗∥2 ≤ ∥x0 − x∗∥2 −
γ(2− γ)
D2

K∑
k=0

(δk − LdS)2.

The last relation cannot hold for sufficiently large K because of the compactness
of the set S. Thus, it implies

K−1∑
k=0

(δk − LdS)2 ≤
D2

γ(2− γ̄)
∥x0 − x∗∥2.

□

Remark 2. Let the Assumption 1 hold true. Then, there exists a weak subgradient
(vk, ck) ∈W (e, α) ⊂ ∂wSLf(xk) and thus, we have

f(x∗)− f(xk) ≥ f ′(xk;x∗ − xk) = ⟨vk, x∗ − xk⟩ − ck ∥x∗ − xk∥
for all k ≥ 0, which plays an important role in proving Lemma 1. Since Lemma
1 is essential to prove the results on the propositions of convergence analysis and
convergence rate, all the results of this section are valid if the weak subgradient is
computed via Algorithm 1.

4. Computational Results

In this section, we verify the performance and analyze the efficiency of the weak
subgradient method with the PBTL algorithm by solving completely 49 nonsmooth,
nonconvex test problems, of which 19 are small scale, P-SS, (P1-P19) with 2 to 10
decision variables and 15+15 are large scale (P20-P34), with 50, P-LS-50, (shown
as P20-50 to P34-50) and 200, P-LS-200 (shown as P20-200 to P34-200) decision
variables, respectively. Table 1 shows the properties of the test problems, including
the names given in the literature and references to where they were taken from,
the variable numbers, n, and the optimal values of the problems, f∗. Note that the
optimal values of some problems are approximate, P12 and P13 are the L1 version
of the Rosenbrock and Wood functions, respectively, and P21 is the nonsmooth
version of the Brown function.
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Table 1: Nonsmooth nonconvex test problems

Small Scale
Problem

n f∗ Large Scale Problem n f∗

P1 Crescent [35] 2 0 P20 Active faces [28] any 0
P2 Mifflin 2 [44] 2 −1 P21 Brown function [29] any 0
P3 WF [42] 2 0 P22 Chained crescent I [29] any 0
P4 SPIRAL [42] 2 0 P23 Chained crescent II [29] any 0
P5 EVD52 [42] 3 3.5991193 P24 Problem 6 in [43] any 0
P6 PBC3 [42] 3 0.0042021427 P25 Problem 17 in [43] any 0
P7 Bard [42] 3 0.050816327 P26 Problem 19 in [43] any 0
P8 Polak 6 [49] 4 −44 P27 Problem 20 in [43] any 0
P9 El-Attar [42] 6 0.5598131 P28 Problem 22 in [43] any 0
P10 Gill [42] 10 9.7857721 P29 Problem 24 in [43] any 0
P11 Problem 1 [5] 2 2 P30 DC Maxl [5] any 0
P12 Rosenbrock [5] 2 0 P31 DC Maxlq [7] any 0
P13 Wood [5] 4 0 P32 Problem 6 in [7] any 0
P14 EXP [42] 5 0.00012237125 P33 Problem 7 in [7] any 0
P15 Kow.-Osb. [42] 4 0.0080843684

P34 Chained Mifflin 2 [29]
50 −34.795

P16 OET5 [42] 4 0.0026359735 200 −140.86
P17 OET6 [42] 4 0.0020160753
P18 PBC1 [42] 5 0.022340496
P19 EVD61 [42] 6 0.034904926

The constraint set is S = {x|xi ∈ [−5, 5] i = 1, ..., n} in the problems, however
if any component of the optimal solution is not in this interval, then the constraint
set is updated as [x∗i − 5, x∗i + 5] i ∈ {1, ..., n}. In addition, the starting points of
the problems needed in the algorithm are the same in reference to the corresponding
problems.

We code the weak subgradient method with the PBTL algorithm in the Python
programming language and carry out numerical experiments on MacBook Pro with
2.5GHz Intel Core i7 processor and with 16GB 1600 MHz DDR3 RAM. The al-
gorithm is terminated if δk becomes less than tol = 0.001 or the CPU (s) time
reaches 3600s for all test problems. δ0 is defined as |f(x0)|. The prescribed upper
bound R is defined as 100, 5000 and 50 for P-SS, P-LS-50 and P-LS-200, respec-
tively. For P7, R is defined as 10000. The parameters α and λ is set as 1 and 0.001
for the approximate computing of the weak subgradient via Algorithm 1, respec-
tively. The upper bound c̄k of the scaler parameter ck of the weak subgradient is

c̄k =
f(xk)−f lev

k

dS
to ensure the positiveness of the stepsize. The scaler parameter

ck is defined ck = c̄k ∗ 0.5 to compute the vector part vk of the subgradient in
Algorithm 1.
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The computational results, the CPU times, and iteration numbers of nonsmooth,
nonconvex test problems obtained via weak subgradient method with the PBTL
algorithm are given in Table 2, where the following notations are used:

• WSM − Path: The weak subgradient method with the PBTL algorithm.
• WSM −Dyn: The weak subgradient method with dynamic stepsize with
dynamic f levk from [22].
• fpathwsa : The best value of the objective function, computed using WSM −
Path.
• fdynwsa : The best value of the objective function, computed using WSM −
Dyn.
• iter: The number of iterations at which the weak subgradient method with
the PBTL algorithm is terminated.

Table 2 compares the results with the (approximate) optimal solutions obtained so
far and the results obtained byWSM−Dyn. The better results are shown in bold.
The results show that WSM −Path outperforms WSM −Dyn in 29 out of 49 test
problems and two algorithms find the same value in 7 out of 49 test problems.

f − f∗

1 + |f∗|
≤ ε. (16)

We evaluate the results with the evaluation criteria (16) given above, where f is the
results obtained by the relevant method (fdynwsm or fpathwsm in this paper). When the
evaluation criteria of each result is less than ε, the results is accepted as successful.
The successful percentage is computed by the total number of successful results
over the total number of the problems. We take ε as 10−2, 10−3, and 5× 10−5. We
summarize the results in Table 3.

If we take the ε = 10−2, then WSA − Path reaches the optimal value with
%95,%60 and %40 percentages for P-SS, P-LS-50, and P-LS-200, respectively. Sim-
ilar, If we take the ε = 10−3, then %95,%46 and %33 percentages are obtained.
Last, if we take the ε = 5 × 10−5, then %68,%40 and %27 percentages are ob-
served. Additional, WSA − Path finds better solution for P14 (EXP). Moreover,
WSA− Path outperforms the successful percentage of WSM −Dyn.

5. Conclusion

In this paper, we propose a new version of the weak subgradient method with
the PBTL algorithm (WSA−Path). A weak subgradient of the current point with
a version of dynamic stepsize is used to produce a new solution at each iteration,
where the weak subgradient is computed with Algorithm 1 using the theorem about
the directional derivative and weak subdifferential. The target level in the dynamic
stepsize is computed with the PBTL algorithm. Then, the difference with the PBTL
algorithm compared to the other dynamic stepsizes is the method of defining the
target level to ensure f levk → f∗. We give the convergence analysis and converge
rate of the method. Furthermore, we show the tests performed using the method
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Table 2: Computational results for nonsmooth test problems for
test problems

Prob. f∗ fdynwsm
WSM − Path

fpathwsm CPU
(s)

P1 0 0 0 86.19
P2 −1 −1 −1 80.41
P3 0 0 0.00000169 81.30
P4 0 0 0 1.14
P5 3.5991193 3.59984305 3.59973074 123.51
P6 0.0042021427 0.00421077 0.00420479 429.55
P7 0.050816327 0.0508552 0.050829 232.20
P8 −44 −43.99 −43.99 215.58
P9 0.5598131 0.56171104 0.55993735 1859.47
P10 9.7857721 9.813723 9.79246244 2739.11
P11 2 2 2 118.39
P12 0 0.00015433 0 16.50
P13 0 0.0090316 0 0.04
P14 0.00012237125 −0.0024076 −6 552.60
P15 0.0080843684 0.00815057 0.00810742 114.80
P16 0.0026359735 0.00325996 0.0026544 367.68
P17 0.0020160753 0.00317971 0.00209686 353.22
P18 0.022340496 0.11826176 0.02251701 155.31
P19 0.034904926 0.03578041 0.07816864 12.48
P20-50 0 0.004235249 0 90.75
P21-50 0 0.01909278 0 1656.90
P22-50 0 0.045976722 0 3606.05
P23-50 0 0.0048727756 0 3636.80
P24-50 0 0.004071199 0.00300322 3544.41
P25-50 0 0 0.87361276 200, 47
P26-50 0 0.002417618 0.18014279 4106, .27
P27-50 0 0.0073205 0.103582595 552.50
P28-50 0 0.000680983 0.00068109 0.004
P29-50 0 0.012916485 0.00928192 3019.05
P30-50 0 2.575630571 0 1054.63
P31-50 0 1 1 906.04
P32-50 0 0.028024848 0.02395819 3548.23
P33-50 0 0 0.07654164 3684.00
P34-50 −34.795 −34.70324 −34.774069 2517.02
P20-200 0 0.01170317 0.76033843 27.00
P21-200 0 0.096967 0 3600.04



390 G. DINC YALCIN

Prob. f∗ fdynwsm
WSM − Path

fpathwsm CPU
(s)

P22-200 0 0.662850133 0 1211.46
P23-200 0 0.08312041 0 3600.07
P24-200 0 0.0093181 0.00489712 1698.22
P25-200 0 0 0.83829569 544.62
P26-200 0 0.00852129 0.0300995 398.30
P27-200 0 0.505147266 0.2388156 1018.13
P28-200 0 0 0 0.04
P29-200 0 0.01205072 0.02550528 1037.98
P30-200 0 9.54184555 0.0787 3600.05
P31-200 0 1 1 152.23
P32-200 0 0.00613751490.09293225 3600.28
P33-200 0 1.170935921 0.32948383 3600.28
P34-200 −140.86 −139.8939 −140.75363 3196.39

Table 3: Success percentage of WSM − Path for nonsmooth test prob-
lems versus the optimal value and WSM −Dyn

Type of
Prob.

Criteria f−f∗
1+|f∗| fdyn

wsm fpath
wsm

P-SS
< 5× 10−5 63% 68%
< 10−3 74% 95%
< 10−2 95% 95%

P-LS-50
< 5× 10−5 14% 40%
< 10−3 20% 46%
< 10−2 60% 60%

P-LS-200
< 5× 10−5 14% 27%
< 10−3 14% 33%
< 10−2 34% 40%

on nonsmooth, nonconvex optimization problems. The performance of WSA −
Path over the (approximate) optimal values and WSM − Dyn is shown by the
computational experiments. Besides WSM − Path shows good performance in
reaching the optimal values, it also outperforms WSM −Dyn in 29 out of 49 test
problems and the two algorithms find the same value from 7 out of 49 test problems.
We intend to investigate the ways of weakening Assumption 1 as a part of our future
work. Additionally, we would like to solve other nonsmooth optimization problems,
such as those found in machine learning problems.
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