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Abstract 

Let the sequence (𝒯𝑛)𝑛∈ℕ be the generalized tetranacci sequence. Define the 𝑛 × 𝑛 circulant matrix C(𝒯) by 

 c𝑖j = {
𝒯j−𝑖 , j ≥ 𝑖

𝒯𝑛+j−𝑖 , j < 𝑖
  for 𝑖, j = 1, 2, … , 𝑛. In this paper, the eigenvalue of 𝐶(𝒯) is studied. By using this value, the 

determinant value of this matrix is delivered.  

 

Keywords: Determinant, Eigenvalue, Tetranacci numbers 

 

 

Öz 

(𝒯𝑛)𝑛∈ℕ genelleştirilmiş tetranacci dizisi ve 𝐶(𝒯) , 𝑛 × 𝑛 tipinde 𝑖, 𝑗 = 1, 2, … , 𝑛 için  

𝑐𝑖𝑗 = {
𝒯𝑗−𝑖 , 𝑗 ≥ 𝑖

𝒯𝑛+𝑗−𝑖 , 𝑗 < 𝑖
   

biçimde tanımlı circulant matris olsun. Bu çalışmada, 𝐶(𝒯)’nin özdeğerleri çalışılmıştır. Bu değer kullanılarak, circulant 

matrisin determinant değeri hesaplanmıştır. 

 

Anahtar kelimeler: Determinant, Özdeğer, Tetranacci sayıları 
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1. Introduction 

 

The calculation of the eigenvalues and 

eigenvectors of a system is high-level subject in 

mathematics and engineering, where it is 

mentioned in such many applications as analysis 

and small oscillations of vibrating systems. Also 

eigenvalues are often introduced in the context of 

matrix theory. Developments of eigenvalues were 

initiated by Cauchy in (Cauchy, 1829). He proved 

that the eigenvalues of a symmetric matrix are real. 

This was extended by Hermite in (Hermite, 1855) 

to what are now called Hermitian matrices. After 

these progresses, many mathematicians worked in 

these problems for improving theory of eigenvalue. 

An 𝑛 −step Fibonacci sequence (𝐹𝑘
(𝑛)

)
𝑘=1

∞
is 

defined by letting 𝐹𝑘
(𝑛)

= 0 for 𝑘 ≤ 0 , 𝐹1
(𝑛)

=

𝐹2
(𝑛)

= 1, and other terms according to the 

following linear recurrence relation 𝐹𝑘
(𝑛)

=

∑ 𝐹𝑘−𝑖
(𝑛)𝑛

𝑖=1  for 𝑘 > 2. Tetranacci numbers are the 

𝑛 = 4 case of the Fibonacci 𝑛 −step numbers. 

Firstly the tetranacci numbers which also called 

Quadranacci were described in (Feinberg, 1963).  

Waddill generalized the tetranacci series in his 

work in (Waddill, 1992). Then, some new 

properties and results for tetranacci numbers were 

obtained in (Kirkpatrick, 1977; Spickerman,1982; 

Spickerman and Joyner, 1984; Zaveri and Patel, 

2015). 

There is no hesitation that circulant and 𝑟−circulant 

matrices have a wide range of applications in some 

differential equations, communication linear 

forecast, coding theory and so on. The 𝑟 −circulant 

matrix 𝐶𝑟 = [𝑑𝑖𝑗], which is 𝑗 − 𝑖 ≡ 𝑘 (𝑚𝑜𝑑 𝑛), is 

defined as form 

 

𝑑𝑖𝑗 = {
𝑑𝑗−𝑖         , 𝑗 ≥ 𝑖

𝑟. 𝑑𝑛+𝑗−𝑖 , 𝑗 < 𝑖
 for  𝑖, 𝑗 = 1, 2, … , 𝑛. 

 

Particularly, for 𝑟 = 1, The matrix 𝐶 = [𝑐𝑖𝑗] of type 

𝑛x𝑛, is called the circulant matrix and generic 

element is shown as 

 

𝐶𝑖𝑗 = {
𝑐𝑗−𝑖 , 𝑗 ≥ 𝑖

𝑐𝑛+𝑗−𝑖 , 𝑗 < 𝑖
 . 

 

Circulant matrices via special numbers have widely 

applications in several studies for example Solak’s 

paper (Solak, 2005; Bahsi and Solak, 2014). For 

instance, Kocer et al. (Kocer et al, 2007) have 

studied the norms of circulant matrices which 

terms are Horadam numbers. In (Shen and Cen, 

2010), Shen and Cen have obtained the bounds for 

the norms of 𝑟 −circulant matrices Bahsi in (Bahşi, 

2015) has computed norms of circulant matrices 

with the generalized Fibonacci and Lucas numbers. 

In (Tuglu and Kızılateş, 2015a; Kızılateş and 

Tuglu, 2016; Kızılateş and Tuglu, 2018), Tuglu and 

Kızılateş have given some matrix norms of 

circulant, 𝑟−circulant and geometric circulant 

matrices with the special Fibonacci numbers. Also, 

Bahşi calculated the matrix norms of circulant 

matrices with Tribonacci sequence (Bahşi, 2015). 

Then, Özkoç and Ardıyok calculated the spectral 

and Euclidean norms of the circulant and 

negacyclic matrices via tetranacci sequence 

(Özkoç and Ardıyok, 2016). Taşçı and Acar 

studied Gaussian tetranacci numbers with their 

initial values being Gaussian integer (Tascı and 

Acar, 2017). Yesil Baran et al. calculated some 

matrix norms for the circulant matrices consisting 

of elements of the generalized tetranacci number 

sequence (Yesil Baran and Yetiş, 2019). Also 

Tuglu et al. obtained the norms of some special 

matrices with Fibonacci numbers (Tuglu and 

Kızılateş, 2015b). In addition to this, Kızılateş et al. 

showed that some properties of Harmonic 

Fibonacci numbers and Quadra Lucas-Jacobsthal 

numbers (Kızılateş,2017; Tuglu et al., 2015). 

In the light of these informations, the target of this 

study is to present eigen values and determinants of 

circulant matrix which terms are generalized 

tetranacci sequence with the help of fourth 

recurrence relation. Now, we give some 

preliminaries about concept of circulant matrix and 

tetranacci sequence. 

 

2. Preliminaries 

 

Firstly, because of that results of this study, we need to introduce some concepts which include special 

sequences. 

Tetranacci sequence which is shown (𝑀𝑛)𝑛∈ℕ is defined by the recurrence relation 

 

𝑀𝑛 = 𝑀𝑛−1 + 𝑀𝑛−2 + 𝑀𝑛−3 + 𝑀𝑛−4     (  𝑛 ≥ 4 )       (1) 

 

where initial conditions for 𝑀0 = 𝑀1 = 0 , 𝑀2 = 𝑀3 = 1 .The elements of this sequence are called Tetranacci 

numbers (Waddill, 1992). Binet formula for this sequence is  

𝑀𝑛 =
𝛼𝑛

(𝛼−𝛽)(𝛼−𝛾)(𝛼−𝛿)
+

𝛽𝑛

(𝛽−𝛼)(𝛽−𝛾)(𝛽−𝛿)
+

𝛾𝑛

(𝛾−𝛼)(𝛾−𝛽)(𝛾−𝛿)
+

𝛿𝑛

(𝛿−𝛼)(𝛿−𝛽)(𝛿−𝛾)
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(Zaveri and Patel, 2015). Here 𝛼, 𝛽, 𝛾, 𝛿 are the roots of the characteristic equation of (1). 

The sequence (𝒯𝑛)𝑛∈ℕ is defined as the generalized tetranacci sequence with recurrence relation as 

 

𝒯𝑛 = 𝑝𝒯𝑛−1 + 𝑞𝒯𝑛−2 + 𝑟𝒯𝑛−3 + 𝑠𝒯𝑛−4      (𝑛 ≥ 4)       (2) 

 

where initial conditions for  𝒯0 = 𝑎,  𝒯1 = 𝑏,  𝒯2 = 𝑐, 𝒯3 = 𝑑  and 1 − 𝑝 − 𝑞 − 𝑟 − 𝑠 ≠ 0  (Yesil Baran and 

Yetis,2019). Let  𝛼, 𝛽, 𝛾 and 𝛿 are the roots of characteristic equation of (2) . Binet formula for  (𝒯𝑛)𝑛∈ℕ is 

obtained as 

 

𝒯𝑛 =
𝐴𝛼𝑛

(𝛼−𝛽)(𝛼−𝛾)(𝛼−𝛿)
+

𝐵𝛽𝑛

(𝛽−𝛼)(𝛽−𝛾)(𝛽−𝛿)
+

𝐶𝛾𝑛

(𝛾−𝛼)(𝛾−𝛽)(𝛾−𝛿)
+

𝐷𝛿𝑛

(𝛿−𝛼)(𝛿−𝛽)(𝛿−𝛾)
       (3) 

 

where 

 

𝐷 = 𝑑 − 𝑐𝑝 − 𝑏𝑞 − 𝑎𝑟  

𝐶 = (𝛾 − 𝛿)[𝑐 − 𝑏𝑝 − 𝑎𝑞] + 𝐷  

𝐵 = (𝑏 − 𝑎𝑝)[(𝛾 − 𝛽)(𝛿 − 𝛽)] −
𝐶(𝛽−𝛿)+𝐷(𝛾−𝛽)

(𝛾−𝛿)
  

𝐴 =
𝑎(𝛼−𝛽)(𝛼−𝛾)(𝛼−𝛿)(𝛽−𝛾)(𝛽−𝛿)+𝐵(𝛼−𝛾)(𝛼−𝛿)

(𝛽−𝛾)(𝛽−𝛿)
+

−𝐶(𝛼−𝛽)(𝛼−𝛿)(𝛽−𝛿)+𝐷(𝛼−𝛽)(𝛼−𝛾)(𝛽−𝛾)

(𝛽−𝛾)(𝛽−𝛿)(𝛾−𝛿)
 . 

 

Vieta’s formula is about to the coefficients of a polynomial to sums and products of its roots. 

For 𝑎 ≠ 0, Vieta’s formula for the quartic 

 

𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 = (𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4)  

 

gives in four variables as 

 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 =
−𝑏

𝑎
  

𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 + 𝑥3𝑥4 =
𝑐

𝑎
  

𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4 =
−𝑑

𝑎
  

𝑥1𝑥2𝑥3𝑥4 =
𝑒

𝑎
 . 

 

Lemma 2.1. Let 𝒜 = 𝐶(𝑎0, 𝑎1,⋯ , 𝑎𝑛−1) be an 𝑛 × 𝑛 circulant matrix. Then we have 

 

𝜆𝑗(𝒜) = ∑ 𝑎𝑘
𝑛−1
𝑘=0 𝑤−𝑗𝑘  

 

where 𝑤 = 𝑒
2𝜋𝑖

𝑛 , 𝑖 = √−1, 𝑗 = 0,1,⋯ , 𝑛 − 1 (Davis,1979). 

 

Lemma 2.2. Let the  𝑤 = 𝑒
2𝜋𝑖

𝑛  satisfy the 𝑛 − 𝑡ℎ primitive root of unity, where 𝑖 = √−1 and 𝑎, 𝑏, 𝑐, 𝑑, 𝑔𝜖ℂ, 

following equation holds 

∏ (𝑎 − 𝑏𝑤−𝑘 + 𝑐𝑤−2𝑘 − 𝑑𝑤−3𝑘) = 𝑎𝑛 − 𝑑𝑛 + (2−𝑛 − 21−2𝑛)𝑏𝑛 + 21−𝑛 (
𝑐−2𝑎𝑑

𝑏
)
𝑛

+ 2𝑛 (
𝑎𝑑

𝑏
)
𝑛

𝑛
𝑘=1   

∏ (𝑎 − 𝑏𝑤−𝑘 + 𝑐𝑤−2𝑘 − 𝑑𝑤−3𝑘 + 𝑔𝑤−4𝑘) = 𝑎𝑛 + 𝑔𝑛 + 22−2𝑛(𝑏𝑛 + 𝑑𝑛) + 21−3𝑛 (
4𝑎𝑐+𝑏

𝑎
)
𝑛

+𝑛
𝑘=1

                                                                                         +22−4𝑛 (
𝑏

𝑎
)
𝑛

 . 

 

Proof: The proof of lemma 2.2. was shown in (Davis,1979). 

 

3. Main section 

 

In this section, we formulate eigenvalues and determinants of circulant matrix with fourth recurrence 

relation. Firstly the 𝑛x𝑛 circulant matrix which terms are generalized tetranacci numbers is defined by  
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𝐶(𝒯) =

[
 
 
 
 

𝒯0 𝒯1 𝒯2 ⋯ 𝒯𝑛−1

𝒯𝑛−1 𝒯0 𝒯1 ⋯ 𝒯𝑛−2

𝒯𝑛−2 𝒯𝑛−1 𝒯0 ⋯ 𝒯𝑛−3

⋮ ⋮ ⋮ ⋱ ⋮
𝒯1 𝒯2 𝒯3 ⋯ 𝒯0 ]

 
 
 
 

. 

 

The following theorem gives us to the eigenvalues of 𝐶(𝒯). 

 

Theorem 3.1.  Let 𝐶(𝒯) be circulant matrix. The eigenvalues of matrix 𝐴 are 

 

𝜆𝑗(𝐶(𝒯)) =

[
−𝑠 {𝒯𝑛−1 +

1
𝛼

𝐴∗ +
1
𝛽

𝐵∗ +
1
𝛾

𝐶∗ +
1
𝛿

𝐷∗}𝑤−3𝑗 + {−𝑞𝒯𝑛 + 𝑝𝒯𝑛+1 − 𝒯𝑛+2 + 𝐿}𝑤−2𝑗

+{𝑝𝒯𝑛 − 𝒯𝑛+1 − [(𝑝 − 𝛼)𝐴∗ + (𝑝 − 𝛽)𝐵∗ + (𝑝 − 𝛾)𝐶∗ + (𝑝 − 𝛿)𝐷∗]}𝑤−𝑗 + 𝒯𝑛 − {𝐴∗ + 𝐵∗ + 𝐶∗ + 𝐷∗}
]

−𝑠𝑤−4𝑗 − 𝑟𝑤−3𝑗 − 𝑞𝑤−2𝑗 + 𝑝𝑤−𝑗 + 1
 

 

where 

 

 𝐿 = 𝐴∗(𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿) + 𝐵∗(𝛼𝛾 + 𝛼𝛿 + 𝛾𝛿) + 𝐶∗(𝛼𝛽 + 𝛼𝛿 + 𝛽𝛿) + 𝐷∗(𝛼𝛽 + 𝛼𝛾 + 𝛽𝛾) . 

and 

 𝐴∗ =
𝐴

(𝛼−𝛽)(𝛼−𝛾)(𝛼−𝛿)
 , 𝐵∗ =

𝐵

(𝛽−𝛼)(𝛽−𝛾)(𝛽−𝛿)
, 𝐶∗ =

𝐶

(𝛾−𝛼)(𝛾−𝛽)(𝛾−𝛿)
, 𝐷∗ =

𝐷

(𝛿−𝛼)(𝛿−𝛽)(𝛿−𝛾)
  . 

 

Proof: From Lemma 2.1. and (3), we have  

 

𝜆𝑗(𝐶(𝒯)) = ∑ 𝒯𝑘

𝑛−1

𝑘=0

𝑤−𝑗𝑘 

                  = ∑(𝐴∗𝛼𝑘 + 𝐵𝛽𝑘 + 𝐶∗𝛾𝑘 + 𝐷∗𝛿𝑘)𝑤−𝑗𝑘

𝑛−1

𝑘=0

 

                 = 𝐴∗ (𝛼𝑤−𝑗)
𝑛
−1

𝛼𝑤−𝑗−1
+ 𝐵∗ (𝛽𝑤−𝑗)

𝑛
−1

𝛽𝑤−𝑗−1
+ 𝐶∗ (𝛾𝑤−𝑗)

𝑛
−1

𝛾𝑤−𝑗−1
+ 𝐷∗ (𝛿𝑤−𝑗)

𝑛
−1

𝛿𝑤−𝑗−1
. 

 

For the (𝛼𝑤−𝑗)
𝑛

= 𝛼𝑛, (𝛽𝑤−𝑗)
𝑛

= 𝛽𝑛, (𝛾𝑤−𝑗)
𝑛

= 𝛾𝑛, (𝛿𝑤−𝑗)
𝑛

= 𝛿𝑛, the RHS of equation equals to 

 

𝜆𝑗(𝐶(𝒯)) =

𝐴∗(𝛼𝑛−1)(𝛽𝑤−𝑗−1)(𝛾𝑤−𝑗−1)(𝛿𝑤−𝑗−1)

+𝐵∗(𝛽𝑛−1)(𝛼𝑤−𝑗−1)(𝛾𝑤−𝑗−1)(𝛿𝑤−𝑗−1)

+𝐶∗(𝛾𝑛−1)(𝛼𝑤−𝑗−1)(𝛽𝑤−𝑗−1)(𝛿𝑤−𝑗−1)

+𝐷∗(𝛿𝑛−1)(𝛼𝑤−𝑗−1)(𝛽𝑤−𝑗−1)(𝛾𝑤−𝑗−1)

(𝛼𝑤−𝑗−1)(𝛽𝑤−𝑗−1)(𝛾𝑤−𝑗−1)(𝛿𝑤−𝑗−1)
 . 

 

After regulations of numerator, we obtain  

 

{
𝛼𝛽𝛾𝛿{𝐴∗𝛼𝑛−1 + 𝐵∗𝛽𝑛−1 + 𝐶∗𝛾𝑛−1 + 𝐷∗𝛿𝑛−1}

−{𝐴∗𝛽𝛾𝛿 + 𝐵∗𝛼𝛾𝛿 + 𝐶∗𝛼𝛽𝛿 + 𝐷∗𝛼𝛽𝛾}
}𝑤−3𝑗 

 

+{
𝐴∗𝛼𝑛(𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿) + 𝐵∗𝛽𝑛(𝛼𝛾 + 𝛼𝛿 + 𝛾𝛿)

+𝐶∗𝛾𝑛(𝛼𝛽 + 𝛼𝛿 + 𝛽𝛿) + 𝐷∗𝛿𝑛(𝛼𝛽 + 𝛼𝛾 + 𝛽𝛾) − 𝐿
}𝑤−2𝑗 

 

+{
𝐴∗𝛼𝑛(𝛽 + 𝛾 + 𝛿) + 𝐵∗𝛽𝑛(𝛼 + 𝛾 + 𝛿) + 𝐶∗𝛾𝑛(𝛼 + 𝛽 + 𝛿)

+𝐷∗𝛿𝑛(𝛼 + 𝛽 + 𝛾) − 𝐴∗(𝛽 + 𝛾 + 𝛿) − 𝐵∗(𝛼 + 𝛾 + 𝛿) − 𝐶∗(𝛼 + 𝛽 + 𝛿) − 𝐷∗(𝛼 + 𝛽 + 𝛾)
}𝑤−𝑗 

 

+𝐴∗𝛼𝑛 + 𝐵∗𝛽𝑛 + 𝐶∗𝛾𝑛 + 𝐷∗𝛽 + 𝛾 + 𝛿𝛿𝑛 − (𝐴∗ + 𝐵∗ + 𝐶∗ + 𝐷∗). 

 

Using Vieta formulas and (3), if we replace 

 

 𝛼𝛽𝛾𝛿 = −𝑠,  
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𝐴∗𝛼𝑛−1 + 𝐵∗𝛽𝑛−1 + 𝐶∗𝛾𝑛−1 + 𝐷∗𝛿𝑛−1 = 𝒯𝑛−1, 

 𝛽 + 𝛾 + 𝛿 = 𝑝 − 𝛼, 

 𝛼 + 𝛾 + 𝛿 = 𝑝 − 𝛽, 

 𝛼 + 𝛽 + 𝛿 = 𝑝 − 𝛾, 

 𝛼 + 𝛽 + 𝛾 = 𝑝 − 𝛿,  

 

then we get 

 

[
−𝑠 {𝒯𝑛−1 +

1

𝛼
𝐴∗ +

1

𝛽
𝐵∗ +

1

𝛾
𝐶∗ +

1

𝛿
𝐷∗}𝑤−3𝑗 + {−𝑞𝒯𝑛 + 𝑝𝒯𝑛+1 − 𝒯𝑛+2 + 𝐿}𝑤−2𝑗

+{𝑝𝒯𝑛 − 𝒯𝑛+1 − [(𝑝 − 𝛼)𝐴∗ + (𝑝 − 𝛽)𝐵∗ + (𝑝 − 𝛾)𝐶∗ + (𝑝 − 𝛿)𝐷∗]}𝑤−𝑗 + 𝒯𝑛 − {𝐴∗ + 𝐵∗ + 𝐶∗ + 𝐷∗}
]. 

 

After regulations of denominator, we obtain  

 

[𝛼𝛽𝛾𝛿𝑤−4𝑗 − (𝛼𝛽𝛾 + 𝛼𝛽𝛿 + 𝛼𝛾𝛿 + 𝛽𝛾𝛿)𝑤−3𝑗 + (𝛼𝛽 + 𝛼𝛾 + 𝛼𝛿 + 𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿)𝑤−2𝑗 −

(𝛼 + 𝛽 + 𝛾 + 𝛿)𝑤−𝑗 + 1] . 
 

Using Vieta formulas, if we change 

 

 𝛼𝛽𝛾𝛿 = −𝑠, 𝛼𝛽𝛾 + 𝛼𝛽𝛿 + 𝛼𝛾𝛿 + 𝛽𝛾𝛿 = 𝑟, 

 𝛼𝛽 + 𝛼𝛾 + 𝛼𝛿 + 𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿 = −𝑞, 

 𝛼 + 𝛽 + 𝛾 + 𝛿 = −𝑝,  

 

we reach  

 

[−𝑠𝑤−4𝑗 − 𝑟𝑤−3𝑗 − 𝑞𝑤−2𝑗 − (𝛼 + 𝛽 + 𝛾 + 𝛿) + 𝑝𝑤−𝑗 + 1] . 
 

Finally we obtain the eigenvalues of matrix 𝐶(𝒯) are 

 

𝜆𝑗(𝐶(𝒯)) =

[
−𝑠 {𝒯𝑛−1 +

1
𝛼

𝐴∗ +
1
𝛽

𝐵∗ +
1
𝛾

𝐶∗ +
1
𝛿

𝐷∗}𝑤−3𝑗 + {−𝑞𝒯𝑛 + 𝑝𝒯𝑛+1 − 𝒯𝑛+2 + 𝐿}𝑤−2𝑗

+{𝑝𝒯𝑛 − 𝒯𝑛+1 − [(𝑝 − 𝛼)𝐴∗ + (𝑝 − 𝛽)𝐵∗ + (𝑝 − 𝛾)𝐶∗ + (𝑝 − 𝛿)𝐷∗]}𝑤−𝑗 + 𝒯𝑛 − {𝐴∗ + 𝐵∗ + 𝐶∗ + 𝐷∗}
]

−𝑠𝑤−4𝑗 − 𝑟𝑤−3𝑗 − 𝑞𝑤−2𝑗 + 𝑝𝑤−𝑗 + 1
 

 

Theorem 3.2. Let 𝐶(𝒯) be circulant matrix. The determinant value of matrix 𝐶(𝒯) is 

 

det(𝐴) =
[
 
 
 
 
 
 
 
 (𝒯𝑛−{𝐴∗+𝐵∗+𝐶∗+𝐷∗})𝑛+(−𝑠{𝒯𝑛−1+

1

𝛼
𝐴∗+

1

𝛽
𝐵∗+

1

𝛾
𝐶∗+

1

𝛿
𝐷∗}

𝑛
)

−(2−𝑛−21−2𝑛){𝑝𝒯𝑛−𝒯𝑛+1−[(𝑝−𝛼)𝐴∗+(𝑝−𝛽)𝐵∗+(𝑝−𝛾)𝐶∗+(𝑝−𝛿)𝐷∗]}𝑛

+21−𝑛({−𝑞𝒯𝑛+𝑝𝒯𝑛+1−𝒯𝑛+2+𝐿}−2(𝒯𝑛−{𝐴∗+𝐵∗+𝐶∗+𝐷∗})𝑠{𝒯𝑛−1+
1

𝛼
𝐴∗+

1

𝛽
𝐵∗+

1

𝛾
𝐶∗+

1

𝛿
𝐷∗})

𝑛

+2𝑛(
𝒯𝑛−{𝐴∗+𝐵∗+𝐶∗+𝐷∗}𝑠{𝒯𝑛−1+

1
𝛼𝐴∗+

1
𝛽

𝐵∗+
1
𝛾𝐶∗+

1
𝛿
𝐷∗}

−{𝑝𝒯𝑛−𝒯𝑛+1−[(𝑝−𝛼)𝐴∗+(𝑝−𝛽)𝐵∗+(𝑝−𝛾)𝐶∗+(𝑝−𝛿)𝐷∗]}
)

𝑛

]
 
 
 
 
 
 
 
 

1+(−𝑠)𝑛+22−2𝑛((−𝑝)𝑛+𝑟𝑛)+21−3𝑛(−4𝑞−𝑝)𝑛+22−4𝑛(−𝑝)𝑛
.  

 

Proof: From Theorem 3.1., we have 

 

det(𝐶(𝒯)) = ∏ 𝜆𝑗(𝐶(𝒯))𝑛−1
𝑗=0   

         =

[
−𝑠{𝒯𝑛−1+

1

𝛼
𝐴∗+

1

𝛽
𝐵∗+

1

𝛾
𝐶∗+

1

𝛿
𝐷∗}𝑤−3𝑗+{−𝑞𝒯𝑛+𝑝𝒯𝑛+1−𝒯𝑛+2+𝐿}𝑤−2𝑗

+{𝑝𝒯𝑛−𝒯𝑛+1−[(𝑝−𝛼)𝐴∗+(𝑝−𝛽)𝐵∗+(𝑝−𝛾)𝐶∗+(𝑝−𝛿)𝐷∗]}𝑤−𝑗+𝒯𝑛−{𝐴∗+𝐵∗+𝐶∗+𝐷∗}
]

−𝑠𝑤−4𝑗−𝑟𝑤−3𝑗−𝑞𝑤−2𝑗+𝑝𝑤−𝑗+1
. 

 

By considering Lemma 2.2., we obtain 
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det(𝐶(𝒯)) =
[
 
 
 
 
 
 
 
 (𝒯𝑛−{𝐴∗+𝐵∗+𝐶∗+𝐷∗})𝑛+(−𝑠{𝒯𝑛−1+

1

𝛼
𝐴∗+

1

𝛽
𝐵∗+

1

𝛾
𝐶∗+

1

𝛿
𝐷∗}

𝑛
)

−(2−𝑛−21−2𝑛){𝑝𝒯𝑛−𝒯𝑛+1−[(𝑝−𝛼)𝐴∗+(𝑝−𝛽)𝐵∗+(𝑝−𝛾)𝐶∗+(𝑝−𝛿)𝐷∗]}𝑛

+21−𝑛({−𝑞𝒯𝑛+𝑝𝒯𝑛+1−𝒯𝑛+2+𝐿}−2(𝒯𝑛−{𝐴∗+𝐵∗+𝐶∗+𝐷∗})𝑠{𝒯𝑛−1+
1

𝛼
𝐴∗+

1

𝛽
𝐵∗+

1

𝛾
𝐶∗+

1

𝛿
𝐷∗})

𝑛

+2𝑛(
𝒯𝑛−{𝐴∗+𝐵∗+𝐶∗+𝐷∗}𝑠{𝒯𝑛−1+

1
𝛼𝐴∗+

1
𝛽

𝐵∗+
1
𝛾𝐶∗+

1
𝛿
𝐷∗}

−{𝑝𝒯𝑛−𝒯𝑛+1−[(𝑝−𝛼)𝐴∗+(𝑝−𝛽)𝐵∗+(𝑝−𝛾)𝐶∗+(𝑝−𝛿)𝐷∗]}
)

𝑛

]
 
 
 
 
 
 
 
 

1+(−𝑠)𝑛+22−2𝑛((−𝑝)𝑛+𝑟𝑛)+21−3𝑛(−4𝑞−𝑝)𝑛+22−4𝑛(−𝑝)𝑛
 . 

 

Therefore the proof is completed.  

 

4. Conclusion 

 

In this paper, we investigate the eigenvalue of C(𝒯) 

which is defined by tetranacci numbers. Tetranacci 

series of numbers each term is added to the next 

term by adding the four terms before and they ara 

a continuing sequence of numbers. So tetranacci 

series of numbers is generalization of Fibonacci 

numbers. So all theorems and conclusions, which 

are found for tetranacci numbers, can be applied to 

Fibonacci numbers. Consequently, These theorems 

are generalization of the eigenvalues and 

determinants of the circulant matrix which is 

defined by Fibonacci numbers.  
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