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Abstract. The main purpose of this paper is to present various identities and
computation formulas for certain classes of Apostol-type numbers and polyno-
mials. The results of this paper contain not only the �-Apostol-Daehee num-
bers and polynomials, but also Simsek numbers and polynomials, the Stirling
numbers of the �rst kind, the Daehee numbers, and the Chu-Vandermonde
identity. Furthermore, we derive an in�nite series representation for the �-
Apostol-Daehee polynomials. By using functional equations containing the
generating functions for the Cauchy numbers and the Riemann integrals of
the generating functions for the �-Apostol-Daehee numbers and polynomials,
we also derive some identities and formulas for these numbers and polyno-
mials. Moreover, we give implementation of a computation formula for the
�-Apostol-Daehee polynomials in Mathematica by Wolfram language. By this
implementation, we also present some plots of these polynomials in order to
investigate their behaviour in some randomly selected special cases of their
parameters. Finally, we conclude the paper with some comments and obser-
vations on our results.

1. Introduction

Let N and C denote respectively the set of natural numbers and the set of complex
numbers and let N0 := f0; 1; 2; 3; : : : g = N [ f0g. For z 2 C, here assuming that
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log z denotes the principal branch of the many-valued function with the imaginary
part Im(log z) constrained by

�� < Im(log z) � �;

it is considered to be log e = 1 throughout this paper. Furthermore, it is assumed
that

0n =

�
1; n = 0
0; n 2 N

and also �
�

n

�
=
(�)n
n!

where � 2 C, n 2 N0 and (�)n = � (�� 1) (�� 2) ::: (�� n+ 1) with (�)0 = 1.
In recent years, many studies on Apostol-type numbers and polynomials have

been carried out by some researchers (see [4]-[34]). Among others, in this paper,
we are mainly dealt with the �-Apostol-Daehee numbers Dn (�) and polynomi-
als Dn (x;�) introduced and investigated by Simsek [27, 28] respectively as in the
following generating functions:

GD (t;�) :=
log �+ log (1 + �t)

� (1 + �t)� 1 =

1X
n=0

Dn (�)
tn

n!
(1)

and

GD (t; x;�) := GD (t;�) (1 + �t)
x
=

1X
n=0

Dn (x;�)
tn

n!
(2)

where � is an arbitrary (real or complex) parameter not equal to 1 and satisfying
j�tj < 1 and j�2tj < j�� 1j (cf. [27, 28]; and also see [32]).
First few values of the numbers Dn(�) are given as follows:

D0(�) =
log �

�� 1 ;

D1(�) = � �
2 log �

(�� 1)2
+

�

�� 1 ;

D2(�) =
2�4 log �

(�� 1)3
+
�2 (1� 3�)
(�� 1)2

;

D3(�) = �6�
6 log �

(�� 1)4
+
�3
�
11�2 � 7�+ 2

�
(�� 1)3

;

and so on (cf. [14, 27,28,32]).
Another family of Apostol-type numbers and polynomials is the family of the

numbers Yn (�) (so-called Simsek numbers) and the polynomials Yn (x;�) (so-called
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Simsek polynomials) de�ned respectively by the following generating functions:

F (t;�) :=
2

� (1 + �t)� 1 =
1X
n=0

Yn (�)
tn

n!
(3)

and

F (t; x;�) := F (t;�) (1 + �t)
x
=

1X
n=0

Yn (x;�)
tn

n!
(4)

where � is an arbitrary (real or complex) parameter not equal to 1 and satisfying
j�tj < 1 and j�2tj < j�� 1j (cf. [29]).
For n 2 N0, the numbers Yn(�) are computed by the following explicit formula:

Yn(�) = 2(�1)n
n!

�� 1

�
�2

�� 1

�n
; (5)

by which, one may easily compute �rst few values of the numbers Yn (�) as below:

Y0(�) =
2

�� 1 ; Y1(�) = �
2�2

(�� 1)2
; Y2(�) =

4�4

(�� 1)3
;

Y3(�) = �
12�6

(�� 1)4
; Y4(�) =

48�8

(�� 1)5
;

and so on (cf. [29]; and also see [34]).
Observe that the combination of (3) with (4) yields the relation between the

numbers Yn(�) and the polynomials Yn(x;�) given, for n 2 N0, by

Yn(x;�) =
nX
j=0

�
n

j

�
Yj(�)�

n�j(x)n�j ; (6)

by which, one may easily compute �rst few values of the polynomials Yn (x;�) as
below:

Y0(x;�) =
2

�� 1 ;

Y1(x;�) =
2�

�� 1x�
2�2

(�� 1)2
;

Y2(x;�) =
2�2

�� 1x
2 � 6�

3 � 2�2

(�� 1)2
x+

4�4

(�� 1)3
;

Y3(x;�) =
2�3

�� 1x
3 � 12�

4 � 6�3

(�� 1)2
x2 +

22�5 � 14�4 + 4�3

(�� 1)3
x� 12�6

(�� 1)4
;

and so on (cf. [29]; and also see [34]).
Another family of Apostol-type numbers and polynomials is the family of the

numbers Y (�k)n (�) (so-called negative higher-order Simsek numbers) and the poly-
nomials Qn (x;�; k) (so-called negative higher-order Simsek polynomials) de�ned
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respectively by the following generating functions:

GY (t; k;�) := 2�k (� (1 + �t)� 1)k =
1X
n=0

Y (�k)n (�)
tn

n!
(7)

and

GQ (t; x; k;�) := GY (t; k;�) (1 + �t)x =
1X
n=0

Qn (x;�; k)
tn

n!
; (8)

(cf. [15]).
For n 2 N0, the numbers Y (�k)n (�) are computed by the following explicit for-

mula:

Y (�k)n (�) =

�
2�kn!

�
k
n

�
�2n (�� 1)k�n if n � k
0 if n > k

(9)

by which, one may easily compute the values of the numbers Y (�k)n (�) as below:

Y
(�k)
0 (�) = 2�k (�� 1)k ;

Y
(�k)
1 (�) = 2�k

�
k

1

�
�2 (�� 1)k�1 ;

Y
(�k)
2 (�) = 2�k2!

�
k

2

�
�4 (�� 1)k�2 ;

...

Y
(�k)
j (�) = 2�kj!

�
k

j

�
�2j (�� 1)k�j for j � k;

...

Y
(�k)
k (�) = 2�kk!�2k;

(cf. [15]).
The combination of (7) with (8) yields the relation between the numbers Y (�k)n (�)

and the polynomials Qn (x;�; k) given, for k; n 2 N0, by

Qn (x;�; k) =

nX
j=0

�
n

j

�
Y
(�k)
j (�)�n�j (x)n�j ; (10)

by which, one may easily compute �rst few values of the polynomials Qn (x;�; k)
as below:

Q0 (x;�; k) = 2�k (�� 1)k ;
Q1 (x;�; k) = 2�k (�� 1)k �x+ 2�kk�2 (�� 1)k�1 ;

Q2 (x;�; k) = 2�k (�� 1)k �2x2 +
�
�2�k (�� 1)k �2 + 2�k+1k�3 (�� 1)k�1

�
x

+2�kk (k � 1)�4 (�� 1)k�1 ;
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and so on (cf. [15]).
Let x 2 [0; 1]. The Bernstein basis functions, Bnk (x), are de�ned as below:

Bnk (x) =

�
n

k

�
xk(1� x)n�k; (k = 0; 1; : : : ; n; n 2 N0) (11)

and their generating functions are given by

(xt)
k
e(1�x)t

k!
=

1X
n=0

Bnk (x)
tn

n!
; (12)

so that the Bernstein basis functions have relationships with a large number of
concepts including the Bezier curves, the binomial distribution, the Poisson distri-
bution, the Catalan numbers, and etc.; see, for details, [1, 10,9,16,21,23,24,25,31]
and also the references cited therein.
It is concluded with the help of (9) and (11) that there exists the following

relation between the numbers Y (�k)n (�) and the Bernstein basis functions:

Y (�k)n (�) =
(�1)k�n n!

2k
�nBkn(�) (13)

where n; k 2 N0 and � 2 [0; 1] (cf. [15]).
Actually, the numbers Y (�k)n (�) have other relations than its relation to the

Bernstein basis functions. Among others, the numbers Y (�k)n (�) have relationships
with the Poisson�Charlier polynomials, the Bell polynomials (i.e., exponential poly-
nomials) and other kinds of combinatorial numbers. To see the relations mentioned
above, the interested readers may glance at the paper [15].
The Stirling numbers of the �rst kind, S1(n; k), are de�ned, for n; k 2 N0, by

the following recurrence relation:

S1(n+ 1; k) = �nS1(n; k) + S1(n; k � 1)
with the side conditions S1(0; 0) = 1, S1(0; k) = 0 if k > 0, S1(n; 0) = 0 if n > 0,
S1(n; k) = 0 if k > n; and these numbers are also given by

(x)n =
nX
k=0

S1 (n; k)x
k (14)

and
(log(1 + t))

k

k!
=

1X
n=k

S1(n; k)
tn

n!
(15)

(cf. [2, 3, 5, 8, 18,22]; and the references cited therein).
The Cauchy numbers (or the Bernoulli numbers of the second kind), bn (0), are

de�ned by

bn (0) =

1Z
0

(x)n dx (16)
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and

GC (t) :=
t

log (t+ 1)
=

1X
n=0

bn (0)
tn

n!
(17)

(cf. [20, p. 116], [13], [17], [18]).
The combination of (14) with (16) yields the relation between the Cauchy num-

bers and the Stirling numbers of the �rst kind given by

bn (0) =
nX

m=0

S1 (n;m)

m+ 1
; (18)

(cf. [5, p. 294], [17, p. 1908], [20, p. 114]).
The Daehee numbers, Dn, are de�ned by the following generating function:

FD (t) :=
log (1 + t)

t
=

1X
n=0

Dn
tn

n!
(19)

and these numbers are computed, for n 2 N0, by the following explicit formula:

Dn =
(�1)n n!
n+ 1

(20)

(cf. [7, 11,27,28]).
The well-known Chu-Vandermonde identity is given by�

x+ y

n

�
=
1

n!

nX
k=0

�
n

k

�
(x)k (y)n�k (21)

(cf. [5, 6, 30]).
The outline of this paper may brie�y given as follows:
In Section 2, we present various identities and computation formulas containing

not only the �-Apostol-Daehee numbers and polynomials, but also Simsek numbers
and polynomials, the Stirling numbers of the �rst kind, the Daehee numbers and
the Chu-Vandermonde identity. Besides, we derive an in�nite series representation
for the �-Apostol-Daehee polynomials.
In Section 3, by using functional equations containing the generating functions

for the Cauchy numbers and the Riemann integrals of the generating functions for
the �-Apostol-Daehee numbers and polynomials, we also derive some identities and
formulas for these numbers and polynomials.
In Section 4, we give Mathematica implementation of a formula which computes

the �-Apostol-Daehee polynomials in terms of the Simsek polynomials. By this
implementation, some plots of the �-Apostol-Daehee polynomials are presented for
some randomly selected special cases.
In Section 5, we conclude the paper with some comments and observations on

our results.
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2. Identities containing Apostol-type numbers and polynomials

In this section, by using the techniques of generating functions and their func-
tional equations, we derive some identities involving not only the Chu-Vandermonde
identity, but also some special numbers and polynomials such as the numbers
Dn (�), the polynomials Dn (x;�), the numbers Yn (�), the polynomials Yn (x;�),
the numbers S1 (n;m) and the numbersDn. In addition, we get computation formu-
las for not only the numbers Dn (�), but also the polynomials Dn (x;�). Moreover,
we derive an in�nite series representation for the polynomials Dm (x;�) in terms of
the polynomials Qm (x;�; n).
By (2), we have

(1 + �t)
x
=

� (1 + �t)� 1
log �+ log (1 + �t)

1X
n=0

Dn (x;�)
tn

n!

and

(1 + �t)
y
=

� (1 + �t)� 1
log �+ log (1 + �t)

1X
n=0

Dn (y;�)
tn

n!
:

Multiplying the above two equations each other, we get

(1 + �t)
x+y

=

�
� (1 + �t)� 1

log �+ log (1 + �t)

�2 1X
n=0

Dn (x;�)
tn

n!

1X
n=0

Dn (y;�)
tn

n!
:

For j�tj < 1, with the application of the Binomial theorem and the Cauchy product
rule to the above equation, we get
1X
n=0

�
x+ y

n

�
�ntn =

(� (1 + �t)� 1)2

(log �)
2
�
1 + log(1+�t)

log �

�2 1X
n=0

nX
j=0

�
n

j

�
Dj (x;�)Dn�j (y;�)

tn

n!
:

Then, assuming that j log(1+�t)log � j < 1 and using negative binomial series expansion
in the above equation, we have

1X
n=0

�
x+ y

n

�
�ntn =

(� (1 + �t)� 1)2

(log �)
2

1X
n=0

�
�2
n

�
(log (1 + �t))

n

(log �)
n

�
1X
n=0

nX
j=0

�
n

j

�
Dj (x;�)Dn�j (y;�)

tn

n!
:

By combining (15) with the above equation, after some elementary calculations, we
get

1X
n=0

�
x+ y

n

�
�ntn =

(� (1 + �t)� 1)2

(log �)
2

1X
m=0

mX
n=0

�
�2
n

�
n!S1 (m;n)

(log �)
n

tm

m!

�
1X
n=0

nX
j=0

�
n

j

�
Dj (x;�)Dn�j (y;�)

tn

n!
:
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By applying the Cauchy product rule to the above equation, we get

1X
m=0

�
x+ y

m

�
�mtm =

�
�4t2 + 2�2 (�� 1) t+ (�� 1)2

�
(log �)

2

�
1X
m=0

mX
k=0

�
m

k

� kX
n=0

�
�2
n

�
n!S1 (k; n)

(log �)
n

�
m�kX
j=0

�
m� k
j

�
Dj (x;�)Dm�k�j (y;�)

tm

m!
:

After some elementary calculations and by comparing the coe¢ cients of tm on both
sides of the �nal equation, we arrive at the following theorem:

Theorem 1. Let m 2 N n f1g and � 6= 1. Then we have

m!

�
x+ y

m

�
=

�4�m

(log �)
2m (m� 1)A (m� 2) (22)

+
2�2�m (�� 1)
(log �)

2 mA (m� 1)

+
��m (�� 1)2

(log �)
2 A (m) ;

where

A (m) =

mX
k=0

kX
n=0

m�kX
j=0

�
m

k

��
�2
n

��
m� k
j

�
n!S1 (k; n)Dj (x;�)Dm�k�j (y;�)

(log �)
n :

Combining (22) with (21) yields the following corollary:

Corollary 2. Let m 2 N n f1g and � 6= 1. Then we have
mX
k=0

�
m

k

�
(x)k (y)m�k =

�4�m

(log �)
2m (m� 1)A (m� 2) (23)

+
2�2�m (�� 1)
(log �)

2 mA (m� 1)

+
��m (�� 1)2

(log �)
2 A (m)

where A (m) is as given in the Theorem 1.

By the combination of (2) with (4) and (19), we get the following functional
equation:

GD (t; x;�) =

�
log �

2
+
�tFD (�t)

2

�
F (t; x;�) : (24)
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which yields

1X
n=0

Dn (x;�)
tn

n!
=

 
log �

2
+
�t

2

1X
n=0

�nDn
tn

n!

! 1X
n=0

Yn (x;�)
tn

n!
:

By applying the Cauchy product rule to the above equation, after some elementary
calculations, we get

1X
n=0

Dn (x;�)
tn

n!
=

log �

2

1X
n=0

Yn (x;�)
tn

n!

+
1

2

1X
n=0

n�1X
j=0

n

�
n� 1
j

�
�n�jDn�j�1Yj (x;�)

tn

n!
:

Comparing the coe¢ cients of tn

n! on both sides of the above equation yields the
following theorem:

Theorem 3. Let n 2 N and � 6= 1. Then we have

Dn (x;�) =
log �

2
Yn (x;�) +

1

2

n�1X
j=0

n

�
n� 1
j

�
�n�jDn�j�1Yj (x;�) : (25)

Using (20) in (25), we get a relation between the �-Apostol-Daehee polynomials
and the Simsek polynomials by the following corollary:

Corollary 4. Let n 2 N and � 6= 1. Then we have

Dn (x;�) =
log �

2
Yn (x;�)�

n!

2

n�1X
j=0

(�1)n�j �
n�jYj (x;�)

j! (n� j) : (26)

Substituting x = 0 into (26), we also get a relation between the �-Apostol-Daehee
numbers and the Simsek numbers by the following corollary:

Corollary 5. Let n 2 N and � 6= 1. Then we have

Dn (�) =
log �

2
Yn (�) +

n!

2

n�1X
j=0

(�1)n�j�1 �
n�jYj (�)

j! (n� j) : (27)

Combining (5) with (27), we get a computation formula for the numbers Dn (�)
by the following corollary:

Corollary 6. Let n 2 N and � 6= 1. Then we have

Dn (�) =
(�1)nn!
�� 1

0@� �2

�� 1

�n
log �� �n

n�1X
j=0

1

n� j

�
�

�� 1

�j1A : (28)
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Remark 7. The computation formula (28), obtained by reduction from the equation
(25), may also be obtained with the help of the application of the binomial theorem
on the generating function for the numbers Dn (�). In the meanwhile, for another
form of this formula, the interested readers may see the paper [14, Theorem 8,
p. 492] in which other methods and generating function families used in order to
achieve the aforementioned formula.

By (28), we obtain a �nite sum whose value is computed by the numbers Dn (�)
as in the following corollary:

Corollary 8. Let n 2 N and � 6= 1. Then we have
n�1X
j=0

1

n� j

�
�

�� 1

�j
= (�1)n+1 (�� 1)Dn (�)

n!�n
+

�
�

�� 1

�n
log �: (29)

By using the Taylor series expansion of the function log (1 + (� (1 + �t)� 1)),
assuming that j� (1 + �t) � 1j < 1, in the equation (2), and then by making some
simpli�cations, we get

1X
m=0

Dm (x;�)
tm

m!
= (1 + �t)

x
1X
n=0

(�1)n (� (1 + �t)� 1)
n

n+ 1
:

By combining (8) with the above equation, we get
1X
m=0

Dm (x;�)
tm

m!
=

1X
n=0

(�1)n 2n

n+ 1

1X
m=0

Qm (x;�; n)
tm

m!
:

which yields
1X
m=0

Dm (x;�)
tm

m!
=

1X
n=0

1X
m=0

(�1)n 2
nQm (x;�; n)

n+ 1

tm

m!
:

By assuming that j� � 1j < 1 and comparing the coe¢ cients of t
m

m! on both sides
of the above equation yields a relation between the numbers Dm (x;�) and the
polynomials Qm (x;�; n) as in the following theorem:

Theorem 9. Let m 2 N0. If j�� 1j < 1, then we have the following in�nite series
representation for the polynomials Dm (x;�):

Dm (x;�) =
1X
n=0

(�1)n 2
nQm (x;�; n)

n+ 1
: (30)

3. Further identities derived from integral formulas and Cauchy
numbers

In this section, by using functional equations involving the generating functions
for the Cauchy numbers and the integrals of the generating functions for the num-
bers Dn (�) and the polynomials Dn (x;�), we derive some identities and formulas.
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Integrating both-sides of the equation (2), with respect to the variable x, from
0 to 1, we get the following integral formula:

1Z
0

GD (t; x;�) dx =

1Z
0

log �+ log (1 + �t)

� (1 + �t)� 1 (1 + �t)
x
dx (31)

=
�t (log �+ log (1 + �t))

(� (1 + �t)� 1) log (1 + �t) ; (32)

which, by (1) and (17), yields the following functional equation:

1Z
0

GD (t; x;�) dx = GD (t;�)GC (�t) : (33)

Combining the above equation with (1), (2) and (17) yields

1Z
0

1X
n=0

Dn (x;�)
tn

n!
dx =

1X
n=0

Dn (�)
tn

n!

1X
n=0

�nbn (0)
tn

n!
: (34)

By applying the Cauchy product rule to the right-hand side of the above equation,
after some elementary calculations, we get

1X
n=0

1Z
0

Dn (x;�) dx
tn

n!
=

1X
n=0

nX
m=0

�
n

m

�
�mbm (0)Dn�m (�)

tn

n!
: (35)

Comparing the coe¢ cients of tn

n! on both sides of the above equation yields the
following theorem:

Theorem 10. Let n 2 N0 and � 6= 1. Then we have
1Z
0

Dn (x;�) dx =
nX

m=0

�
n

m

�
�mbm (0)Dn�m (�) : (36)

Remark 11. By using the generating function for the k-th order �-Apostol-Daehee
polynomials, Choi [4, Theorem 5, p.1854] gave the following integral formula:

�+1Z
�

D(k)n (x;�) dx =
nX

m=0

m!

�
n

m

�
�mD

(k)
n�m (�;�) pm:

If we substitute k = 1 and � = 0 into the above formula, we get

1Z
0

Dn (x;�) dx =
nX

m=0

m!

�
n

m

�
�mDn�m (�) pm:
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When we compare the above formula with the equation (36), it is shown that the
numbers m!pm considered in the formula above actually correspond to the Cauchy
numbers bm (0) which is obtained by the techniques of generating functions and their
functional equations. Thus, we conclude that Choi [4] modi�ed the numbers bm (0)
as follows:

m!pm = bm (0)

in order to obtain an integral formula for the higher-order �-Apostol-Daehee poly-
nomials.

Integrating both-sides of the equation (2), with respect to the variable x, from
0 to z, we get the following integral formula:

zZ
0

GD (t; x;�) dx =

zZ
0

log �+ log (1 + �t)

� (1 + �t)� 1 (1 + �t)
x
dx (37)

=
((1 + �t)

z � 1) (log �+ log (1 + �t))
(� (1 + �t)� 1) log (1 + �t) (38)

which, by (1) and (2), yields the following functional equation:
zZ
0

GD (t; x;�) dx =
(GD (t; z;�)�GD (t;�))GC (�t)

�t
: (39)

Combining the above equation with (1), (2) and (17) yields
zZ
0

1X
n=0

Dn (x;�)
tn

n!
dx =

1

�t

 1X
n=0

(Dn (z;�)�Dn (�))
tn

n!

! 1X
n=0

�nbn (0)
tn

n!
:

By applying the Cauchy product rule to the right-hand side of the above equation,
after some elementary calculations, we get

zZ
0

1X
n=0

Dn (x;�)
tn

n!
dx =

1X
n=0

1

n+ 1

n+1X
m=0

�
n+ 1

m

�
�m�1bm (0)

� (Dn+1�m (z;�)�Dn+1�m (�))
tn

n!
:

Comparing the coe¢ cients of tn

n! on both sides of the above equation yields the
following theorem:

Theorem 12. Let n 2 N0 and � 6= 1. Then we have
zZ
0

Dn (x;�) dx =
1

n+ 1

n+1X
m=0

�
n+ 1

m

�
�m�1bm (0) (Dn+1�m (z;�)�Dn+1�m (�)) : (40)
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4. Implementation of computation formulas involving
�-Apostol-Daehee polynomials

In this section, by implementing some of our results with the aid of the Wolfram
programming language in Mathematica [35], we compute a few values of the �-
Apostol-Daehee polynomials. In addition, we also give some illustrations involving
two dimensional plots of the �-Apostol-Daehee polynomials.
We �rst give Mathematica implementation of the equation (25) in Implemen-

tation 1 in which we utilized from the Implementation 2 and the Implementation
3 given by Simsek and Kucukoglu [33] in order to compute the rational functions
Yn (�) and the polynomials Yn (x;�).

IMPLEMENTATION 1. The following Mathematica code (i.e. the procedure
DPoly) returns the values of the polynomials Dn (x;�)

DPoly[x�; n[Lambda]�; n�] := (Log[n[Lambda]]=2) � Y Poly[x; n[Lambda]; n]+
(Factorial[n]=2) � Sum[((�1)^(n� j � 1)) � ((((n[Lambda])^(n� j))
�Y Poly[x; n[Lambda]; j])=(Factorial[j] � (n� j))); fj; 0; n� 1g]

IMPLEMENTATION 2. The following Mathematica code (i.e. the procedure
YPoly) returns the values of the polynomials Yn (x;�) (cf. [33])

Y Poly[x�; n[Lambda]�; n�] := Sum[Binomial[n; j] � (n[Lambda]^(n� j))�
FactorialPower[x; n� j; 1] � Y Num[n[Lambda]; j]; fj; 0; ng]

IMPLEMENTATION 3. The following Mathematica code (i.e. the procedure
YNum) returns the values of the rational functions Yn (�) (cf. [33])

Y Num[n[Lambda]�; n�] := 2 � ((�1)^n) � (Factorial[n]=(n[Lambda]� 1))
�(((n[Lambda]^2)=(n[Lambda]� 1))^n)

By using the Implementation 1 in Mathematica, the values of the �-Apostol-
Daehee polynomials are computed as follows:

D0 (x;�) =
log �

�� 1 ;

D1 (x;�) =
�

�� 1 +
 
�x

�� 1 �
�2

(�� 1)2

!
log �;

D2 (x;�) = �
2�3

(�� 1)2
+
�2 (2x� 1)
�� 1 +

 
2�4

(�� 1)3
� 2�3x

(�� 1)2
+
�2x (x� 1)
�� 1

!
log �;

and so on.
By using the Implementation 1 and the Plot command in Mathematica, we also

give some two dimensional plots of the polynomials Dn (x;�) in Figure 1-2. The
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curves, provided in Figure 1-2, illustrate the behaviour of the polynomials Dn (x;�)
in some randomly selected special cases.

Figure 1. Plots of the polynomials Dn (x;�) for the randomly
selected special cases when � 2

�
3
2 ;

7
2

�
and n 2 f0; 1; 2; 3g with

(A) x = 1; (B) x = 2; (C) x = 3.

Firstly, in order to illustrate the e¤ects of the parameter x on the graphs of the
polynomials Dn (x;�) in the case when the other parameter � belongs to a �xed
randomly selected interval, we present Figure 1 which contains some plots of the
polynomials Dn (x;�) for some randomly selected special cases when � 2

�
3
2 ;

7
2

�
and n 2 f0; 1; 2; 3g with x 2 f1; 2; 3g.
Next, in order to illustrate the e¤ects of the parameter � on the graphs of the

polynomials Dn (x;�) in the case when the other parameter x belongs to a �xed
randomly selected interval, we present Figure 2 which contains some plots of the
polynomials Dn (x;�) for the randomly selected special cases when x 2 [�2; 2] and
n 2 f0; 1; 2; 3g with � 2 f 32 ; e;

7
2 ; e

2g

5. Conclusion

In this paper, we present various identities and computation formulas containing
not only the �-Apostol-Daehee numbers and polynomials, but also Simsek numbers
and polynomials, the Stirling numbers of the �rst kind, the Daehee numbers, and
also the Chu-Vandermonde identity. Furthermore, by using functional equations
containing the generating functions for the Cauchy numbers and the integrals of
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Figure 2. Plots of the polynomials Dn (x;�) for the randomly
selected special cases when x 2 [�2; 2] and n 2 f0; 1; 2; 3g with
(A) � = 3

2 ; (B) � = e; (C) � =
7
2 ; (D) � = e

2.

the generating functions for the �-Apostol-Daehee numbers and polynomials, we
also derive some identities and formulas for these numbers and polynomials. In
addition, we give Mathematica implementation of a computation formula which
computes the �-Apostol-Daehee polynomials in terms of the polynomials Yn (x;�).
By the aid of the Mathematica implementation, we also give some plots which help
the readers to analyze the behaviour of the �-Apostol-Daehee polynomials in some
randomly selected special cases of their parameters. As a conclusion, the results of
this paper have the potential to a¤ect many researchers conducting a research not
only in computational mathematics, discrete mathematics and combinatorics, but
also in other related �elds.
For future studies, it is planned to investigate connections of the �-Apostol-

Daehee numbers with some special functions such as the Bernstein basis functions
which possess many applications not only in approximation theory, but also in the
construction of the Bezier curves widely used in computer-aided geometric design
(cf. [1, 10,9, 16,21,23,24,25,31] and also cited references therein).
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