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Abstract 

Pan-sharpening is a fundamental task of remote sensing, aiming to produce a synthetic image having high spatial and spectral 

resolution of original panchromatic and multispectral images. In recent years, as in other tasks of the remote sensing field, deep 

learning based approaches have been developed for this task. In this research, a detailed comparative analysis was conducted to 

evaluate the performance and visual quality of pan-sharpening results from traditional algorithms and deep learning-based models. 

For this purpose, the deep learning based methods that are CNN based pan-sharpening (PNN), Multiscale and multi-depth 

convolutional neural networks (MSDCNN) and Pan-sharpened Generative Adversarial Networks (PSGAN) and traditional methods 

that are Brovey, PCA, HIS, Indusion and PRACS were applied. Analysis was performed on regions with different land cover 

characteristics to evaluate the stability of the methods. In addition, effects of the filter size, spectral indices, activation and loss 

functions on the pan-sharpening were investigated. For the accuracy assessment, commonly used with-reference and without-

reference quality metrics were computed in addition to visual quality evaluations. According to results, the deep learning-based 

methods provided promising results in both the reduced resolution and full resolution experiments, while PRACS method 

outperformed other traditional algorithms in most of the experimental configurations. 
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Introduction 

The current very high resolution (VHR) optical satellites 

provide multi-resolution sensor data, where the multi-

spectral (MS) sensor acquires a higher degree of spectral 

resolution image than the panchromatic (PAN) sensor, 

whereas the PAN image has a higher spatial resolution 

than the MS image, to fulfil the high-resolution 

requirements in both domains. The pan-sharpening 

process enables a sensor fusion between the MS image 

and PAN image, which provides both high spectral 

resolution and high spatial resolution (Pohl and Van 

Genderen, 1998; Çelik and Gazioğlu, 2020;  Tombul and 

Kavzoğlu, 2020; Ozcelik et al., 2020). Thus, pan-

sharpening is quite significant for the remote sensing 

image interpretation and frequently used as the pre-

processing step for image analysis such as feature 

extraction, segmentation, and classification. Therefore, it 

has been the focus and hotspot of remote sensing 

research. 

In the last decades, several methods were developed for 

the pan-sharpening process. The research performed by 

Vivone et al. (Vivone et al., 2015; Erdem and Avdan, 

2020; Oztürk et al., 2020), presented a detailed review of 

the traditional pan-sharpening methods. These methods 

can be divided into three main categories: (1) 

Component Substitution (CS) based methods; (2) Detail 

Injection based methods and (3) Sparse Representation 

based methods. In addition, model based methods gained 

growing attention in the recent decade (Kang et al., 

2014) (Palsson et al., 2020). 

One of the basic CS based pan-sharpening method is 

based on intensity-hue-saturation (IHS) transform, which 

can only be applied on three spectral bands (Shettigara, 

1992). The IHS method includes the RGB-IHS 

transformation model and a generalized IHS (GIHS) 

image fusion procedure with the colour distortion 

problem (Tu et al., 2001). Principal component analysis 

(PCA) (Chavez Jr. and Yaw Kwarteng, 1989), Brovey 

transform (BT) (Gillespie et al., 1987), Gram-Schmidt 

(GS) spectral sharpening (Laben and Brower, 2000), 

partial replacement (PRACS) (Choi et al., 2011) and 

band-dependent spatial-detail (BDSD) (Zhong et al., 

2017) are among the commonly used CS based methods 

for the pan-sharpening purpose. 

To deal with the colour distortion problem encountered 

in the CS methods and provide a better spectral fidelity, 

detail injection-based methods were proposed. The 

concept of detail injection is to extract the spatial 

information (high-frequency detail) from the PAN image 

by wavelet transform, Laplacian pyramid, etc., in the 

first step and then inject it to the up-sampled MS images 

to generate the fused image (Aiazzi et al., 2002). Several 
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methods were proposed for this category, such as à 

Trous Wavelet Transform (ATWT) and curvelet 

transform based fusion algorithms (Aiazzi et al., 2002) 

(Nencini et al., 2007). Khan et al.(Khan et al., 2008), 

proposed a new approach, named Indusion method, by 

using the induction scaling technique instead of bicubic 

interpolation to obtain sharper, better correlated and 

better co-registered images in an upscaled domain. To 

reduce the distortion, approaches are developed by 

tuning the filters to match the modulation transfer 

functions (MTFs) of the sensors (Aiazzi et al., 2003). 

The smoothing-filter-based intensity modulation (SFIM) 

is one of the famous methods among them (J. G. Liu, 

2010). 

Besides, several researches devoted to the sparse 

representation-based methods. In the study of Zhu and 

Bamler (Zhu and Bamler, 2013), a pan-sharpening 

method named Sparse Fusion of Image (SparseFI) was 

introduced. This method is based on the compressive 

sensing theory and asserted give higher spatial resolution 

with relatively less spectral distortion (Cheng et al., 

2014). Yang et al. (Yang et al., 2018), proposed a novel 

sparse representation-based pan-sharpening method that 

includes three steps-dictionary construction, PAN image 

decomposition, and high spatial resolution multispectral 

image reconstruction. The sparse representation methods 

require the presence of high resolution MS image, which 

is not practically available. Most of the algorithms rely 

on assumptions for high resolution MS dictionary, such 

as considering the original MS as the degraded version 

of high resolution MS, which limits the performance of 

these approaches (Yin, 2015). 

As a summary, traditional algorithms face several 

difficulties such as spectral distortions, spatial detail 

injection limitations, and limitations based on theoretical 

assumptions. Moreover, performance of these methods is 

variable across different sensor data, land cover 

characteristics and acquisition geometry configurations.   

With developments in machine learning (ML) and deep 

learning (DL) in the last decades, these technologies 

started to be widely used in image processing, such as 

image classification, image segmentation, object 

detection super-resolution, pan-sharpening and 

reconstruction. As an initial CNN based super-resolution 

study, researchers proposed a super-resolution 

reconstruction method by using a three-layer 

convolutional neural network named as SRCNN (Dong 

et al., 2016). This approach was implemented to the task 

of pan-sharpening in remote sensing, which is named as 

PNN and was proved that it is a more promising 

approach (Masi et al., 2016). However, the design of 

PNN is relatively simple, thus still needs to be improved.  

The well-known drawback of the deeper neural networks 

is the difficulty of the training phase. In 2016, He et al. 

(He et al., 2015), demonstrated the depth problem of the 

networks and proposed a remarkable solution, which has 

since allowed the training of over 2000 layers with 

increasing accuracy. With the development of the 

residual neural networks, more researchers have 

contributed to the pan-sharpening task. Wei and Yuan 

(Wei and Yuan, 2017) proposed deep residual learning 

for remote sensing imagery; however, it only tested on 

the reduced resolution dataset. Another example for the 

pan-sharpening includes transfer learning of the residual 

network in addition to fine-tuning by changing the loss 

function, and the test part was applied both in reduced 

resolution and the full-resolution dataset (Scarpa et al., 

2018). More recently, a novel network specifically 

designed for the pan-sharpening task named as the 

multiscale and multi-depth convolutional neural network 

(MSDCNN) was proposed (Yuan et al., 2018). In this 

design, the PNN was used as the shallow part and a 

deeper multiscale feature extraction layer was used as 

the deep part to generate a deep architecture.  

Another important breakthrough in the DL field is 

Generative Adversarial Networks (GAN) proposed by 

Goodfellow et al. in 2014 (Goodfellow and Pouget-

Abadie, 2014). GANs try to train a generator to generate 

the fake image and train a discriminator to distinguish 

whether the output image is real or fake. The goal is to 

minimize the difference between the generated and 

realimages. Ledig et al. (Christian Ledig  Ferenc Huszar, 

2017) successfully applied the GAN to the super-

resolution task. In other researches, a Generative 

adversarial network (PSGAN) was proposed for remote 

sensing image pan-sharpening (X. Liu et al., 2018a) (X. 

Liu et al., 2018b). More recently, the PanColorGAN 

method was introduced for the pan-sharpening of 

satellite images, which reconstructs the problem by 

colorization of the panchromatic image and achieved 

high level of spatial detail conservation (Ozcelik et al., 

2020). 

This research aims to perform a comparative evaluation 

of DL based approaches and traditional methods by 

investigating the performance of three DL methods that 

are PNN as a representative of shallow network, a 

modified version of MSDCNN as a representative of 

deep network and PSGAN as a representative of 

adversarial network, while taking the Brovey, PCA, HIS, 

Indusion and PRACS as the representatives of traditional 

methods. Within the scope of the research, satellite 

images from different VHR sensors that represent 

different land cover characteristics and acquisition 

conditions were used for evaluating the pan-sharpening 

performances of the methods over broad coverages, 

different land cover configurations and different sensors. 

In addition, effects of different hyper parameter and 

input data configurations on the DL based methods were 

investigated. 

Materials and Methods 

Subsections provide information about traditional and 

deep learning based methods applied on this research, 

details of satellite images and pre-processing of the 

images, and lastly the details of the quantitative 

evaluation metrics. The processing steps and workflow 

of this research is provided in Figure 1. 

Traditional Pan-sharpening Methods 

Traditional methods that are Brovey (Gillespie et al., 

1987), PCA (Chavez Jr. and Yaw Kwarteng, 1989), IHS 
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(Tu et al., 2001), Indusion (Khan et al., 2008), and 

PRACS (Choi et al., 2011) were applied on the dataset 

for comparative evaluation. Some of the implementation 

codes of these traditional methods provided by Vivone et 

al. (Vivone et al., 2015) and available online (Open 

Remote Sensing, 2016).   

Figure 1. Workflow of the processing steps and methods used 

Figure 2. The architecture of, (a) the PNN, (b) improved MSDCNN method (red boxes indicates modified kernels). 

Overview of the Deep Learning Network Architectures 

For the traditional fully connected networks, each neuron 

takes the outputs of all neurons from the previous layer 

as the input and feeds its output to all the neurons of the 

next layer. Thus, the network includes a large number of 

parameters (weights and biases), which results in a 

computationally expensive training process. The 

Convolutional Neural Networks (CNN) overcome this 

problem as in CNN each neuron only has a limited 

receptive field by using the filters (also called the kernel, 

such as 5x5 or 9x9) to slide over the image spatially and 

to compute the dot products. This structure enables 

sharing the weights and bias (parameters of the filter) in 

the same layer, thus, greatly reduces the computational 

overloads. 

CNN-based pan-sharpening (PNN) 

The initial PNN pan-sharpening method was motivated 

by the image super-resolution network, which is named 

as SRCNN (Dong et al., 2016). For the convolutional 

neural networks inside the architecture, the Rectified 

Linear Units (ReLU) is used as the activation function, 

which can be described as: 

𝑓(𝑥) = max(0, 𝑥)       (1) 
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The ReLU function can be activated only when the units 

are positive and zero. For the negative units, called the 

dead neurons, the gradient will be always in the off state 

as zero. Thus, Leaky ReLU was proposed. Leaky ReLU 

can be described as: 

𝑓(𝑥) =  {
𝛼𝑥    𝑓𝑜𝑟   𝑥 < 0 
𝑥      𝑓𝑜𝑟 𝑥 ≥ 0

       (2) 

Where, α corresponds to a small negative slope constant  

(0.01) that fixes off state problem of the RELU. 

The CNN-based pan-sharpening (PNN) method uses the 

same three-layer convolutional networks as presented in 

the study of Dong et al. (Dong et al., 2016), but replaces 

the 1x1 kernel of the middle layer with 5x5 kernel. Thus, 

the architecture of PNN can be described as in Figure 

2(a). 

Improved MSDCNN pan-sharpening 

Motivated by the application of residual network, a 

method with skip connection, which is named as 

Multiscale and multi-depth convolutional neural 

networks (MSDCNN), was proposed (Yuan et al., 2018). 

The MSDCNN model includes two subnetworks: a 

shallow three-layer CNN with the same architecture as in 

the study of Cheng et al. (Cheng et al., 2014), and a deep 

CNN with two multiscale convolutional layer blocks. In 

the original structure of MSDCNN, the shallow 

subnetwork consists three convolutional layers with 64 

kernels in the first layer and the deep subnetwork 

contains the multiscale blocks and the skip connection. 

In Yuan et al. (Yuan et al., 2018), three different 

architectures compared and the above-mentioned version 

proved to be the most effective one. 

Figure 3.  The architecture of PSGAN method. 

This research proposes an improved version of 

MSDCNN architecture to make it suitable with the 

Pleiades satellite images. The modified architecture 

keeps using a similar design as the PNN model for 

shallow subnetwork by replacing the 1x1 kernels in the 

middle layer with the 5x5 kernels. In the deep 

subnetwork, the first 7x7 kernel is replaced with an 

11x11 kernel. Moreover, NDVI and NDWI index data 

are added to the dataset in order to observe the effect of 

additional data on the pan-sharpening process (Yang et 

al., 2018). The architecture of the implementation is 

given in Figure 2(b). 

PSGAN pan-sharpening 

Motivated by the application of the Generative 

Adversarial Networks (GANs) introduced by 

Goodfellow et al. (Goodfellow and Pouget-Abadie, 

2014), a PSGAN model that applies the GAN to the pan-

sharpening task was proposed in Liu et al. (X. Liu et al., 

2018a). The architecture of the PSGAN is presented in 

Figure 3. 

The generator that takes down-sampled MS image and 

PAN image as the input and produces the fake pan-

sharpened images and the original multispectral images 

are regarded as the real images, which is compatible with 

the dataset produced with Wald protocol. Discriminator 

detects whether the processed images are from the 

Generator or real images. The interpolation and 

normalization methods were modified in the 

implementation of PSGAN to perform a comparative 

evaluation with the other DL models. 

Data and pre-processing 

In this research, very high-resolution (VHR) satellite 

images acquired by the Pleiades satellite were used in 

training and testing phases. Pleiades image provides 0.5 

m spatial resolution for panchromatic image and 2.0 m 

spatial resolution for the multispectral image with 4 

bands in the visible and NIR portions of the 

electromagnetic spectrum with 12-bit radiometric 

resolution. For additional independent testing, 

Worldview 2 and Worldview 3 satellite images were 

used. Worldview 2 provides 0.4 m and 1.6 m spatial 

resolution for panchromatic image and multispectral 

image, while Worldview 3 provides 0.3 m and 1.2 m 

spatial resolutions respectively. Both sensors have an 11-

bit radiometric resolution (AIRBUS, 2020) 

(DigitalGlobe, 2020). 

Table 1 provides the details of the image dataset used for 

training and test processes. Two Pleiades scenes 

covering different regions of Turkey were used as the 

training datasets. One scene covers Istanbul, Turkey, 

which has a size of 10160 × 10540 pixels at the MS 

scale. The other one covers Iznik, Turkey, which has a 

size of 10036 × 10136 pixels at the MS scale. For the 

training, the PAN image and MS image were split into 

57602 patches separately. For the pre-processing, the 

normalization was applied to make sure the data range is 

between 0 and 1. 

In addition, spectral indices added to the input data to 

see if it can improve the resulting performance (Nouri et 

al., 2013). In this research the NDVI and NDWI indices 

were applied on the training dataset. 
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Table 1. Detailed information about dataset used in training and test procedures. 

Sensor Area Patches 
Input size Output size 

Mode MS PAN HRMS 

Training Reduced resolution Pleiades 
Istanbul 

Iznik 
57602 60x60x4 240x240 60x60x4 

Testing 

Reduced resolution Pleiades Bursa 200 200x200x4 800x800 200x200x4 

Full resolution 

Pleiades 

Worldview2/ 
Worldview3 

Bursa 

Washington DC 
Tripoli 

100/65/65 200x200x4 800x800 800x800x4 

*Pleiades satellite image data provided by ITU – CSCRS under the licence of AIRBUS Defence and Space, while the Worldview

satellite image data is open access by Maxar and can be downloaded from: http://www.digitalglobe.com/samples?search=Imagery 

Another Pleiades image scene that covers Bursa, Turkey 

was used as the test image and is completely 

independent of the training dataset. For the reduced 

resolution experiments, 200 patches with a size of 

200×200×4 pixels for the MS image and 800×800 pixels 

for the PAN image were used. For the full resolution 

experiments (full resolution experiment), 100 patches 

from Pleiades image, 65 patches from Worldview 2 and 

65 patches from Worldview 3 were used with a patch 

size of 200×200×4 pixels for the MS images and 

800×800 pixels for the PAN images. The patches were 

generated with use of tiling tool of the GDAL library. 

Quantitative Evaluation Metrics 

Metrics for Reduced Resolution Experiments 

Wald et al. (Wald et al., 1997), provided important 

properties to verify the quality of the synthesis images. 

For instance, (a) once the synthesis image is degraded to 

its original resolution, it should be as identical as 

possible to the original image; (b) the synthesis image 

should be as identical as possible to the high-resolution 

multispectral image if it could be acquired by the sensor. 

One of the important assessment metrics to evaluate the 

spectral quality of the pan-sharpened image is 

Correlation Coefficient (CC), which presents the 

similarity between structures of the original MS images 

and the pan-sharpened image (Panchal and Thakker, 

2015). CC can be defined as in Eq. 3: 

CC(R, F) =  
∑ (𝑅𝑚𝑛−�̅�)(𝐹𝑚𝑛−�̅�)𝑚𝑛

√(∑ (𝑅𝑚𝑛−�̅�)2
𝑚𝑛 )(∑ (𝐹𝑚𝑛−𝐹)2

𝑚𝑛 )
         (3) 

where �̅� and �̅� are the mean of the images that are fused 

(F) and reference (R). The value of CC ranges from 0 to 

1, where higher values represent the better correlation. 

Several full-reference metrics were proposed for the 

assessment of the spatial and spectral distortions of the 

fused images for reduced resolution images. These can 

be listed as the Universal Image Quality Index (Q-index) 

(Zhou and Bovik, 2002), Root Mean Square Error 

(RMSE), Erreur Relative Globale Adimensionnelle de 

Synthese (ERGAS) (J. G. Liu, 2000) and the spectral 

angle mapper (SAM) (Yuhas et al., 1992). 

Metrics for Full Resolution Experiments 

For evaluating the full-resolution images, a single index 

named as QNR (Quality with No Reference) was 

proposed. QNR index is the product of the complements 

of the spatial and spectral distortion indices and it varies 

in the range of 0 and 1, where the optimal value is 1. 

QNR can be written as follows: 

𝑄𝑁𝑅 ≜ (1 − 𝐷𝜆)𝛼(1 − 𝐷𝑠)𝛽       (4) 

where 𝐷𝜆  is the Spectral Distortion Index derived from

the difference of inter-band Q values described in the 

previous part from the pan-sharpened MS bands (written 

as {𝐺�̂�}
𝐼=1

𝐿
) and the low-resolution MS bands (written as 

{𝐺�̃�}
𝐼=1

𝐿
). Thus 𝐷𝜆 is defined as in Eq. 5:

𝐷𝜆 ≜ √
1

𝐿(𝐿−1)
∑ ∑ |𝑄(𝐺�̂� , 𝐺�̂�) − 𝑄(𝐺�̃� , 𝐺�̃�)|

𝑃𝐿
𝑟=1⏟
𝑟≠1

𝐿
𝐼=1

𝑃
  (5) 

𝐷𝑠 is the Spatial Distortion Index defined as in Eq. 6:

𝐷𝑠 ≜ √
1

𝐿
∑ |𝑄(𝐺�̂� , 𝑃) − 𝑄(𝐺�̃� , �̃�)|

𝑞𝐿
𝐼=1

𝑃
         (6) 

Where, P is the PAN image, and �̃�  is a spatially 

degraded PAN image at the size of the original MS 

image. Both  𝐷𝑠  and 𝐷𝜆  alters in [0, 1] and obtains the

best value zero when two vectors are identical.  

Results 

Reduced Resolution Experiments 

Pan-sharpening requires high spatial resolution PAN 

band and high spectral resolution MS image to generate 

a fused image to achieve high resolution both in spectral 

and spatial domains. Due to the nature of the problem, 

the reference original pan-sharpened image does not 

exist, thus the Wald protocol is applied to the dataset to 

produce reduced resolution dataset for the training of the 

CNN architectures and to use the full resolution MS 

images as the reference data (Wald et al., 1997). As the 

first step of the Wald protocol, down sampling is 

performed according to the spatial resolution ratio of the 

PAN and MS images. Secondly, the down-sampled MS 

image is up sampled to the original size of the MS 

image. In the next step, the down sampled PAN and 4-

band MS images are stacked together to obtain 5-band 

data. In this step, the spectral index products can be 
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added to the dataset as in the study of (Masi et al., 2016), 

such as the Normalized Difference Vegetation Index 

(NDVI) and Normalized Difference Water Index 

(NDWI) to increase the amount of input data for the 

CNN (Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, 

D.W.; Harlan., 1974) (Gao, 1996). The original MS 

image is used as the reference image throughout the 

training.  

The training process applied with the use of reduced 

resolution Pleiades dataset and tests were performed on 

the independent reduced resolution datasets with an 

optimization of kernel size and activation functions. 

Besides, spectral indices such as Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference 

Water Index (NDWI) that computed from the 

multispectral images were added to data layers in order 

to investigate the effect of indices on the pan-sharpening 

task. In addition, the effects of the L1 and L2 loss 

functions on training process tested in the scope of this 

research.  

Table 2. Parameters used in model training step. 
Network Learning rate Epochs Optimizer 

PNN_indices_L1 0.001 100 SGD 

PNN_indices_L2 0.001 300 SGD 

PNN_noindices_L1 0.001 200 SGD 

PNN_noindices_L2 0.001 300 SGD 

MSDCNN_indices_L1 0.001 50 SGD 

MSDCNN_indices_L2 0.001 100 SGD 

MSDCNN_noindices_L1 0.001 100 SGD 

MSDCNN_noindices_L2 0.001 150 SGD 

PSGAN_L1 0.0002 200 Adam 

PSGAN_L2 0.0002 50 Adam 

Table 3. Accuracy metric and correlation coefficient results of reduced resolution experiments with Pleiades dataset. 

With Reference Metrics Correlation Coefficient 

 Method Q↑ SAM↓ ERGAS↓ RMSE↓ Red Green Blue NIR Average 

PRACS 0.968 2.266 2.552 63.875 0.799 0.859 0.836 0.655 0.788 

PCA 0.895 6.042 5.146 162.641 0.948 0.944 0.940 0.958 0.948 

Indusion 0.943 2.953 3.878 104.463 0.885 0.891 0.883 0.883 0.885 

IHS 0.972 2.936 3.863 76.828 0.890 0.842 0.791 0.957 0.870 

Brovey 0.971 2.093 3.233 78.774 0.932 0.887 0.825 0.937 0.895 

PNN_indices_L1 0.980 1.935 1.653 44.900 0.976 0.978 0.966 0.976 0.974 

PNN_indices_L2 0.977 2.203 1.825 48.354 0.970 0.974 0.952 0.973 0.967 

PNN_noindices_L1 0.979 1.945 1.643 45.292 0.975 0.978 0.969 0.975 0.974 

PNN_noindices_L2 0.976 2.297 1.895 49.687 0.968 0.972 0.952 0.972 0.966 

MSDCNN_indices_L1 0.981 1.923 1.653 44.468 0.975 0.978 0.966 0.976 0.974 

MSDCNN_indices_L2 0.976 2.236 1.878 49.218 0.964 0.971 0.947 0.972 0.964 

MSDCNN_noindices_L1 0.980 1.931 1.638 45.036 0.976 0.977 0.969 0.975 0.974 

MSDCNN_noindices_L2 0.976 2.304 1.899 49.696 0.968 0.972 0.952 0.972 0.966 

PSGAN_L1 0.981 2.012 2.226 54.805 0.954 0.954 0.937 0.978 0.956 

PSGAN_L2 0.956 2.772 4.222 57.689 0.952 0.962 0.940 0.974 0.957 

All of the DL based pan-sharpening models were trained 

in the Tensorflow DL framework (Tensorflow, 2015) 

over reduced resolution training dataset. With the 

Tensorflow supported by a GPU (Graphics Processing 

Unit, NVIDIA GeForce GTX 1060 3GB), the training 

process costs almost 10 hours for the PNN model, 14 

hours for the improved MSDCNN model and 10 hours 

for PSGAN model. The learning rate, epoch number and 

optimizer information of the PNN, MSDCNN and 

PSGAN training process are provided in Table 2. 

Quantitative assessment 

The performance of the DL based and traditional pan-

sharpening algorithms was evaluated on 200 patches for 

the reduced resolution experiments. According to Table 

3, DL based methods provided better results than 

traditional methods. Although traditional methods 

provided quite closer accuracy with DL based methods 

in terms of Q metric, the accuracy improvement is 

significant in favour of DL based methods for SAM, 

ERGAS and RMSE metrics.  

Moreover, the DL based methods trained with L1 loss 

function provided better performance than the same 

methods trained with L2 loss function in almost all 

cases. For the PNN and MSDCNN models, 

implementations with NDVI and NDWI indices perform 

better than the standard implementations for the Q, 

SAM, and RMSE metrics, whereas for the ERGAS 

metric, the standard implementation provided better 

results than the indices added implementation. PSGAN 

with L1 provided the highest performance in terms of Q 

metric. For SAM and RMSE, MSDCNN with indices 

and L1 loss function performed the best. Table 3 also 

presents the CC metric that calculated for spectral bands 

of the results with reference to the bands of the reference 

MS images. According to CC metric MSDCNN-

noindices-L1, PNN-noindces-L1, MSDCNN-noindices-

L1, PNN-noindces-L1, PSGAN-L1 combina-tions 

provided the highest correlation for red, green, blue and 

NIR bands, respectively. The highest average correlation 

derived from all bands were obtained by PNN and 

MSDCNN implementations with no indices and L1 loss 
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function. These results indicate the superiority of DL 

based methods over the traditional ones. 

Visual interpretation and CC based assessment 

In addition to metric based evaluation, the results 

obtained from the pan-sharpening algorithms evaluated 

visually as the colour representation and object 

sharpness are important considerations, which should be 

judged by human perception. For this purpose, three 

patches were selected to perform a visual and statistical 

evaluation in a reduced resolution dataset, which 

represents industrial areas, agricultural and vegetated 

lands and a heterogeneous area with mixed land cover 

characteristics respectively. Moreover, the spectral 

correlation between analysis results and the original MS 

reference image was tested with the use of CC metric for 

each band for these patches. The CC metric has the 

advantage of being effective in case of bias between pan-

sharpening results and reference data. 

In the first patch, the traditional methods injected the 

spatial details well especially for the rooftops of the 

industrial buildings, while DL based methods present 

closer looks to the original MS data, which is the 

reference for the expected result (Figure 4). The deep 

methods with L2 loss function resulted in blur effects 

when compared to L1. In addition, data set with no 

indices provided a more realistic colour representation. 

According to CC results, the DL methods provided a 

higher correlation with the reference MS image when 

compared to traditional methods for all bands, where the  

PSGAN L1 combination reached the highest score 

(Table 4). 

In the second patch that covers agricultural and 

vegetated lands, the Indusion, IHS and Brovey methods 

completely injected the spatial details from the PAN 

image and they provide sharpest visual results, while 

there is an obvious blur problem in PCA and PRACS 

method results (Figure 5 (c-g)). The MSDCNN L1 

method provides the best visual match with reference 

MS followed by the PNN L1 method. For this patch, 

PSGAN provided sharper results but distortions in the 

colour tones are observable (Figure 5 (h-q)). According 

to CC analysis results, there is an obvious increment in 

correlation with DL methods. MSDCNN L1 algorithms 

provided highest scores followed by PNN L1, which is 

in line with visual inspections (Table 4).  

The last patch consists of a heterogeneous region with 

small housings, roads, vegetated areas, and bare lands 

(Figure 6). For the traditional methods, spatial detail 

injection is high except the PRACS method, which 

provides similar visual quality as the reference data 

(Figure 6 (d)) and higher CC value when compared to 

other methods (Table 4). The DL methods outperformed 

the traditional methods with noticeable improvement in 

CC values for all bands and PSGAN L1 method 

provided the highest CC value and a balanced spectral 

similarity – spatial detail injection performance (Figure 6 

(p)). PSGAN method is followed by MSDCNN 

noindices L1 and PNN noindices L1. 

Table 4. Correlation Coefficient results of reduced resolution Pleiades experiments for different land cover schemas. 

Land Cover Type Industrial Urban Agriculture and Vegetation 

Methods / Bands Red Green Blue NIR Red Green Blue NIR Red Green Blue NIR 

PCA 0.947 0.946 0.945 0.946 0.868 0.856 0.856 0.901 0.895 0.930 0.907 0.615 

PRACS 0.970 0.968 0.969 0.944 0.917 0.907 0.907 0.917 0.940 0.937 0.938 0.963 

Indusion 0.953 0.952 0.951 0.931 0.852 0.851 0.844 0.828 0.840 0.845 0.842 0.868 

HIS 0.970 0.963 0.957 0.919 0.897 0.856 0.823 0.894 0.860 0.791 0.752 0.966 

Brovey 0.973 0.968 0.964 0.871 0.909 0.878 0.846 0.855 0.917 0.860 0.805 0.944 

PNN_indices_L1 0.996 0.996 0.993 0.957 0.985 0.979 0.967 0.949 0.969 0.974 0.968 0.978 

PNN_indices_L2 0.994 0.994 0.991 0.950 0.981 0.974 0.960 0.944 0.962 0.968 0.950 0.974 

PNN_noindices_L1 0.996 0.996 0.995 0.957 0.985 0.980 0.972 0.948 0.969 0.975 0.968 0.978 

PNN_noindices_L2 0.993 0.994 0.992 0.950 0.979 0.975 0.964 0.945 0.961 0.969 0.950 0.974 

MSDCNN_indices_L1 0.996 0.995 0.993 0.959 0.985 0.979 0.967 0.953 0.969 0.975 0.968 0.978 

MSDCNN_indices_L2 0.993 0.994 0.991 0.949 0.978 0.972 0.958 0.941 0.959 0.964 0.944 0.973 

MSDCNN_noindices_L1 0.996 0.996 0.995 0.957 0.986 0.980 0.972 0.948 0.969 0.974 0.970 0.978 

MSDCNN_noindices_L2 0.993 0.995 0.992 0.951 0.980 0.976 0.964 0.945 0.961 0.970 0.950 0.974 

PSGAN_L1 0.999 0.999 0.998 0.986 0.990 0.989 0.985 0.972 0.919 0.925 0.915 0.965 

PSGAN_L2 0.997 0.997 0.996 0.978 0.987 0.984 0.979 0.964 0.927 0.952 0.921 0.963 
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Figure 4. Reduced resolution experiment results for industrial area. (a) PAN Image; (b) Original MS; (c) PCA MS; (d) 

PRACS MS; (e) Indusion MS; (f) IHS MS; (g) Brovey MS; (h) PNN-indices-L1; (i) PNN-indices-L2; (j) PNN-

noindices-L1; (k) PNN-noindices-L2; (l) MSDCNN-indices-L1; (m) MSDCNN-indices-L2; (n) MSDCNN-noindices-

L1; (o) MSDCNN-noindices-L2; (p) PSGAN-L1; (q) PSGAN-L2.   

Figure 5. Reduced resolution experiment results for agricultural lands and vegetated areas. (a) PAN Image; (b) Original 

MS; (c) PCA MS; (d) PRACS MS; (e) Indusion MS; (f) IHS MS; (g) Brovey MS; (h) PNN-indices-L1; (i) PNN-

indices-L2; (j) PNN-noindices-L1; (k) PNN-noindices-L2; (l) MSDCNN-indices-L1; (m) MSDCNN-indices-L2; (n) 

MSDCNN-noindices-L1; (o) MSDCNN-noindices-L2; (p) PSGAN-L1; (q) PSGAN-L2.   
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Figure 6. Reduced resolution experiment results for urban areas. (a) PAN Image; (b) Original MS; (c) PCA MS; (d) 

PRACS MS; (e) Indusion MS; (f) IHS MS; (g) Brovey MS; (h) PNN-indices-L1; (i) PNN-indices-L2; (j) PNN-

noindices-L1; (k) PNN-noindices-L2; (l) MSDCNN-indices-L1; (m) MSDCNN-indices-L2; (n) MSDCNN-noindices-

L1; (o) MSDCNN-noindices-L2; (p) PSGAN-L1; (q) PSGAN-L2. 

Full Resolution Experiments 

The full resolution experiments were performed with the 

full-resolution images where the PAN and MS image has 

0.5m and 2m spatial resolution respectively. The 100 

patches that belong to the Bursa region, which is 

independent of the training region. This experiment is 

important to evaluate the performance of the pan-

sharpening models in original resolution conditions, 

which is the main purpose. Moreover, Worldview 2 and 

Worldview 3 datasets were evaluated in full resolution 

mode to test the transferability of the approaches across 

different sensors. 

Quantitative assessment 

The quantitative assessment results of Pleiades images 

are presented in Table 5.   

Table 5. Accuracy metric and correlation coefficient results of full resolution experiments with Pleiades dataset. 

Without Reference Metrics Correlation Coefficient 

QNR↑ D_s↓ D_lambda↓ Red Green Blue NIR Average 

PRACS 0.885 0.092 0.034 0.944 0.957 0.958 0.709 0.892 

PCA 0.805 0.150 0.056 0.991 0.983 0.984 0.992 0.988 

Indusion 0.879 0.063 0.056 0.872 0.866 0.870 0.871 0.870 

IHS 0.608 0.280 0.174 0.833 0.765 0.661 0.989 0.812 

Brovey 0.671 0.223 0.149 0.929 0.841 0.703 0.962 0.859 

PNN_indices_L1 0.811 0.086 0.113 0.965 0.966 0.962 0.982 0.969 

PNN_indices_L2 0.827 0.079 0.105 0.956 0.957 0.906 0.986 0.951 

PNN_noindices_L1 0.821 0.077 0.111 0.956 0.953 0.951 0.981 0.960 

PNN_noindices_L2 0.808 0.060 0.142 0.950 0.942 0.913 0.988 0.948 

MSDCNN_indices_L1 0.810 0.085 0.115 0.959 0.956 0.953 0.981 0.962 

MSDCNN_indices_L2 0.830 0.076 0.104 0.955 0.960 0.902 0.987 0.951 

MSDCNN_noindices_L1 0.821 0.079 0.109 0.955 0.951 0.951 0.981 0.959 

MSDCNN_noindices_L2 0.806 0.085 0.115 0.948 0.941 0.913 0.988 0.948 

PSGAN_L1 0.872 0.074 0.059 0.954 0.951 0.931 0.977 0.953 

PSGAN_L2 0.769 0.104 0.146 0.902 0.904 0.874 0.967 0.912 
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Table 6. Accuracy metric results of full resolution experiments with Worldview-2 and Worldview-3 image. 

Worldview-2 Worldview-3 

QNR↑ D_s↓ D_lambda↓ CC↑ QNR↑ D_s↓ D_lambda↓ CC↑ 

PCA 0.806 0.167 0.033 0.952 0.737 0.249 0.021 0.949 

PRACS 0.891 0.096 0.014 0.872 0.789 0.196 0.019 0.967 

Indusion 0.789 0.134 0.089 0.890 0.790 0.166 0.054 0.883 

IHS 0.782 0.192 0.033 0.954 0.718 0.266 0.027 0.944 

Brovey 0.769 0.169 0.074 0.770 0.645 0.242 0.146 0.592 

PNN_indices_L1 0.850 0.061 0.095 0.935 0.864 0.065 0.077 0.946 

PNN_indices_L2 0.844 0.062 0.100 0.931 0.878 0.066 0.061 0.941 

PNN_noindices_L1 0.845 0.092 0.069 0.954 0.884 0.072 0.048 0.952 

PNN_noindices_L2 0.846 0.085 0.075 0.952 0.855 0.086 0.065 0.948 

MSDCNN_indices_L1 0.848 0.060 0.097 0.941 0.875 0.059 0.071 0.946 

MSDCNN_indices_L2 0.843 0.063 0.101 0.929 0.884 0.059 0.061 0.941 

MSDCNN_noindices_L1 0.852 0.091 0.063 0.953 0.891 0.064 0.048 0.951 

MSDCNN_noindices_L2 0.835 0.087 0.085 0.952 0.855 0.082 0.068 0.949 

PSGAN_L1 0.880 0.048 0.076 0.936 0.869 0.038 0.096 0.937 

PSGAN_L2 0.815 0.064 0.129 0.942 0.869 0.038 0.097 0.944 

Table 7. Correlation Coefficient results of Worldview 2 and Worldview 3 dataset for different land cover schemas. 

Agriculture andVegetation Urban Water 

Methods/ Bands Red Green Blue NIR Red Green Blue NIR Red Green Blue NIR 

PCA 0.987 0.999 0.995 0.703 0.972 0.941 0.960 0.598 0.985 0.985 0.992 0.875 

PRACS 0.999 0.998 0.998 0.997 0.960 0.949 0.956 0.989 0.996 0.995 0.995 0.989 

Indusion 0.799 0.775 0.791 0.772 0.892 0.892 0.893 0.889 0.940 0.939 0.939 0.958 

IHS 0.934 0.871 0.841 0.995 0.897 0.846 0.812 0.962 0.880 0.838 0.794 0.996 

Brovey 0.979 0.925 0.879 0.979 0.921 0.877 0.844 0.916 0.937 0.884 0.819 0.987 

PNN_indices_L1 0.986 0.982 0.984 0.994 0.963 0.961 0.975 0.961 0.965 0.964 0.967 0.994 

PNN_indices_L2 0.983 0.981 0.959 0.995 0.972 0.967 0.968 0.972 0.969 0.966 0.956 0.995 

PNN_noindices_L1 0.984 0.980 0.985 0.993 0.961 0.961 0.965 0.964 0.967 0.967 0.968 0.994 

PNN_noindices_L2 0.978 0.969 0.963 0.996 0.975 0.966 0.966 0.970 0.970 0.963 0.959 0.996 

MSDCNN_indices_L1 0.986 0.981 0.983 0.993 0.964 0.960 0.976 0.961 0.968 0.965 0.973 0.994 

MSDCNN_indices_L2 0.984 0.983 0.962 0.995 0.975 0.969 0.969 0.975 0.967 0.969 0.953 0.996 

MSDCNN_noindices_L1 0.984 0.977 0.985 0.993 0.962 0.961 0.967 0.963 0.967 0.965 0.969 0.994 

MSDCNN_noindices_L2 0.977 0.970 0.963 0.996 0.973 0.967 0.966 0.970 0.970 0.963 0.959 0.996 

PSGAN_L1 0.955 0.956 0.927 0.991 0.980 0.976 0.981 0.986 0.977 0.972 0.974 0.994 

PSGAN_L2 0.882 0.913 0.877 0.964 0.957 0.949 0.958 0.970 0.963 0.963 0.963 0.994 
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Figure 7. Full resolution experiment results for agricultural lands and vegetated areas. (a) PAN Image; (b) Original MS; 

(c) PCA MS; (d) PRACS MS; (e) Indusion MS; (f) IHS MS; (g) Brovey MS; (h) PNN-indices-L1; (i) PNN-indices-L2; 

(j) PNN-noindices-L1; (k) PNN-noindices-L2; (l) MSDCNN-indices-L1; (m) MSDCNN-indices-L2; (n) MSDCNN-

noindices-L1; (o) MSDCNN-noindices-L2; (p) PSGAN-L1; (q) PSGAN-L2. 

According to QNR and D_Lambda metrics PRACS, 

Indusion and PSGAN_L1 methods provided the highest 

performance with similar scores. Regarding the DL 

methods, each method with the L1 loss function 

provided better performance than the L2 loss function 

for QNR and Lambda metrics. On the other hand, the L2 

Loss function provided better performance than the L1 

Loss function for the D_s metric.  

Figure 8.  Full resolution experiment results for urban areas. (a) PAN Image; (b) Original MS; (c) PCA MS; (d) PRACS 

MS; (e) Indusion MS; (f) IHS MS; (g) Brovey MS; (h) PNN-indices-L1; (i) PNN-indices-L2; (j) PNN-noindices-L1; (k) 

PNN-noindices-L2; (l) MSDCNN-indices-L1; (m) MSDCNN-indices-L2; (n) MSDCNN-noindices-L1; (o) MSDCNN-

noindices-L2; (p) PSGAN-L1; (q) PSGAN-L2. 
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Table 5 presents the CC metrics derived from all patches 

in the independent full resolution dataset. According to 

this evaluation, the PRACS method provided the highest 

CC value for all bands and for average. The deep 

learning-based methods, especially with the L1 loss 

function, followed the PRACS with very close CC 

values.The quantitative assessment results of 

Worldview-2 and Worldview-3 images including the 

average of CC metric are presented in Table 6. 

According to results of Worldview dataset, the PRACS 

method provided the highest performance for traditional 

methods. There is an obvious improvement with DL 

based methods for the QNR metric and D_s metric, 

while worse results achieved for D_lambda metric. 

Moreover, DL methods provided stable and high CC 

values around 0.95, however CC is variable across the 

traditional methods. 

Visual interpretation and CC based assessment 

Similar to the reduced resolution data experiments, three 

patches were selected to visually interpret the 

performance of methods. In addition, CC metrics were 

calculated for each band of the patches. The first patch 

covers agricultural lands and forest areas, the second 

patch covers a heterogeneous region with urban areas, 

agricultural lands and roads and the third patch cover 

bare lands, vegetation, small housings, and water body.  

For the first patch, the PRACS and PCA provided high 

spectral similarity with the original MS data, however, 

the spatial detail injection performance was lower when 

compared to DL methods (Figure 7 (c, d)). The 

remaining conventional methods failed both in spectral 

and spatial aspects for this patch (Figure 7 (e, f, and g)). 

For DL methods, PNN and MSDCNN methods provided 

good performance in spectral similarity and results with 

L1 loss function provided sharper images. PSGAN_L1 

method also provided good spatial detail injection, but 

colour tone deformation was evident. The CC metrics 

are in agreement with the visual interpretation results 

and PCA and PRACS provided highest scores, however, 

PNN, MSDCNN and PSGAN_L1 methods also provided 

very close values to these methods (Table 7). 

For the second patch, all of the DL methods provided 

good balance between spatial detail injection and 

spectral conservation, while no indices and L1 loss 

function combinations provided slightly better 

performance especially for the textural information of 

the forest area and colour representation of the bare 

lands (Figure 8 (h-q)). According to the evaluation of 

traditional methods, PCA method suffered from blur 

effect and Indusion resulted in colour distortion, while 

remaining methods provided similar performance with 

deep learning based methods (Figure 8 (c-g)). The deep 

learning based methods provided high CC values where 

PSGAN_L1 provided highest scores in RGB bands. The 

PRACS provided similar CC performance with the DL 

methods (Table 7).  

In the last patch, PRACS and PCA methods provided 

balanced trade-off between the spectral similarity and 

spatial detail injection, while Indusion method suffered 

from colour distortion and HIS, Brovery methods 

injected spatial detail in a way that unwanted fine – 

grained texture is evident in the visuals (Figure 9 (c-g)).  

Figure 9. Full resolution experiment results for water areas. (a) PAN Image; (b) Original MS; (c) PCA MS; (d) PRACS 

MS; (e) Indusion MS; (f) IHS MS; (g) Brovey MS; (h) PNN-indices-L1; (i) PNN-indices-L2; (j) PNN-noindices-L1; (k) 

PNN-noindices-L2; (l) MSDCNN-indices-L1; (m) MSDCNN-indices-L2; (n) MSDCNN-noindices-L1; (o) MSDCNN-

noindices-L2; (p) PSGAN-L1; (q) PSGAN-L2.   
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Figure 10. Full resolution experiment results for Worldview-2 image patch. (a) PAN Image; (b) Original MS; (c) PCA 

MS; (d) PRACS MS; (e) Indusion MS; (f) IHS MS; (g) Brovey MS; (h) PNN-indices-L1; (i) PNN-indices-L2; (j) PNN-

noindices-L1; (k) PNN-noindices-L2; (l) MSDCNN-indices-L1; (m) MSDCNN-indices-L2; (n) MSDCNN-noindices-

L1; (o) MSDCNN-noindices-L2; (p) PSGAN-L1; (q) PSGAN-L2.   

DL methods provided satisfactory results; however, 

there is a colour distortion with L2 loss function, which 

results in greenish looks (Figure 9 (h-q)). According to 

CC metrics, PRACS provided high values for all bands 

followed by PCA for only RGB bands. The Indusion 

method also provided very high CC values, which 

contradicts with visual inspection. DL methods mostly 

provided high values and stable characteristics through 

all bands (Table 7). When the results obtained from 

Worldview dataset are investigated, it can be stated that 

PNN and MSDCNN architectures provided similar 

performances when compared to Pleiades dataset.  

Figure 11. Full resolution experiment results for Worldview 3 image patch. (a) PAN Image; (b) Original MS; (c) PCA 

MS; (d) PRACS MS; (e) Indusion MS; (f) IHS MS; (g) Brovey MS; (h) PNN-indices-L1; (i) PNN-indices-L2; (j) PNN-

noindices-L1; (k) PNN-noindices-L2; (l) MSDCNN-indices-L1; (m) MSDCNN-indices-L2; (n) MSDCNN-noindices-

L1; (o) MSDCNN-noindices-L2; (p) PSGAN-L1; (q) PSGAN-L2.   
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Figure 12. Full resolution experiment results for Worldview-3 image patch. (a) PAN Image; (b) Original MS; (c) PCA 

MS; (d) PRACS MS; (e) Indusion MS; (f) IHS MS; (g) Brovey MS; (h) PNN-indices-L1; (i) PNN-indices-L2; (j) PNN-

noindices-L1; (k) PNN-noindices-L2; (l) MSDCNN-indices-L1; (m) MSDCNN-indices-L2; (n) MSDCNN-noindices-

L1; (o) MSDCNN-noindices-L2; (p) PSGAN-L1; (q) PSGAN-L2. 

Thus, it provided good level of transferability to the new 

sensor dataset with different spatial resolutions and 

spectral characteristics (Figures 10, 11 and 12). On the 

other hand, PSGAN method suffered from colour 

distortion, which indicates the lack of transferability to a 

new sensor data with current training schema. 

Discussion and Conclusion 

The results of the research indicated that DL methods 

provide more stable and balanced results in both spectral 

and spatial domains. On the other hand, the performance 

of the convolutional methods is variable across different 

landscape characteristics. Secondly, the addition of the 

spectral indices to the training dataset did not provide 

remarkable improvement in the learning according to 

both reduced resolution and full resolution experiments. 

The results showed that the L1 loss function is more 

effective than the L2 loss function in training. The PNN 

and modified version of MDSCNN provided satisfactory 

performance in most of the experiments but faced some 

blur effect in few cases. The PSGAN_L1 algorithm 

provided satisfactory and promising results with 

balanced performance in different conditions and high 

and stable CC values in all bands of the image. However, 

with independent test with Worldview dataset, it faced 

colour distortion problems, which can be considered as 

lack of transferability over different sensor data. 

Nevertheless, when trained with data from different 

sensors, PSGAN can be a good candidate for pan-

sharpening algorithm for satellite images that includes 

more than four multispectral bands, such as Landsat 8 

OLI. 

The deep learning-based approaches are quite promising 

in various image processing problems including the pan-

sharpening, which plays a very important role in the 

remote sensing field. In this research, the most popular 

deep learning-based pan-sharpening approaches trained 

with Pleiades VHR satellite images to obtain pan-

sharpened images. Besides, several traditional 

algorithms were applied to the dataset to perform a 

comparative evaluation. The accuracy analysis was 

performed on reduced resolution and full resolution 

datasets that are independent of the training dataset. The 

results were evaluated by use of several accuracy indices 

and visual interpretation. Results informed that the PNN, 

modified MSDCNN and PSGAN provided promising 

results. The advantage gained by the deep learning 

methods is their balanced performance in the spectral 

and spatial domain across different landscapes and high 

correlation with original multispectral data for all bands, 

which is not the case for conventional methods in 

general. PRACS method performed the best among 

traditional algorithms according to quantitative and 

visual evaluation results and provided balanced 

performance except some blur problems in few cases. 

Further studies are planned to enlarge the training dataset 

with images from different satellites and construct a deep 

learning-based pan-sharpening framework that can deal 

with data from various sensors. 

Acknowledgements 

The authors acknowledge the support of the ITU Center 

for Satellite Communications and Remote Sensing (ITU-

CSCRS) by providing Pleiades satellite images for this 

research. 



Wang et al.,  / IJEGEO 8(2):150- 165 (2021)

164 

References 

Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A. (2002). 

Context-driven fusion of high spatial and spectral 

resolution images based on oversampled 

multiresolution analysis. IEEE Transactions on 

Geoscience and Remote Sensing. doi.org/ 

10.1109/TGRS.2002.803623. 

Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A., Selva, 

M. (2003). An MTF-based spectral distortion 

minimizing model for pan-sharpening of very high 

resolution multispectral images of urban areas. 2nd 

GRSS/ISPRS Joint Workshop on Remote Sensing and 

Data Fusion over Urban Areas, URBAN 2003. 

doi.org/10.1109/DFUA.2003.1219964 

AIRBUS. (2020). Pleiades Products. 

https://www.intelligence-airbusds.com/optical-and-

radar-data/#pleiades 

Chavez Jr., P. S., Yaw Kwarteng, A. (1989). Extracting 

spectral contrast in Landsat Thematic Mapper image 

data using selective principal component analysis. 

Photogrammetric Engineering and Remote Sensing. 

Cheng, M., Wang, C., Li, J. (2014). Sparse 

representation based pansharpening using trained 

dictionary. IEEE Geoscience and Remote Sensing 

Letters. doi.org/10.1109/LGRS.2013.2256875 

Choi, J., Yu, K., Kim, Y. (2011). A new adaptive 

component-substitution-based satellite image fusion 

by using partial replacement. IEEE Transactions on 

Geoscience and Remote Sensing. 

doi.org/10.1109/TGRS.2010.2051674 

Christian Ledig  Ferenc Huszar, L. T. (2017). Photo-

Realistic Single Image Super-Resolution Using a 

Generative Adversarial Network. 19. 

Çeli̇k, O., Gazi̇oğlu, C. (2020). Coastline Difference 

Measurement (CDM) Method. International Journal 

of Environment and Geoinformatics, 7(1), 1-5.doi. 

10.30897/ijegeo.706792. 

DigitalGlobe. (2020). Tools and Resources. 

http://www.digitalglobe.com/resources. 

Dong, C., Loy, C. C., He, K., Tang, X. (2016). Image 

Super-Resolution Using Deep Convolutional 

Networks. IEEE Transactions on Pattern Analysis 

and Machine Intelligence. 

doi.org/10.1109/TPAMI.2015.2439281 

Erdem, F., Avdan, U. (2020). Comparison of Different 

U-Net Models for Building Extraction from High-

Resolution Aerial Imagery. International Journal of 

Environment and Geoinformatics, 7(3), 221-227. 

doi.10.30897/ijegeo.684951  
Gao, B. (1996). NDWI—A Normalized Difference 

Water Index for Remote Sensing of Vegetation 

Liquid Water From Space. Remote Sensing of 

Environment, 266(April), 257–266. 

doi.org/10.1016/S0034-4257(96)00067-3 

Gillespie, A. R., Kahle, A. B., Walker, R. E. (1987). 

Color enhancement of highly correlated images. II. 

Channel ratio and “chromaticity” transformation 

techniques. Remote Sensing of Environment. 

https://doi.org/10.1016/0034-4257(87)90088-5 

Goodfellow, I. J., and Pouget-Abadie, J. (2014). 

Generative Adversarial Nets. Veterinary Immunology 

and Immunopathology, 155(4), 270–275. 

https://doi.org/10.1016/j.vetimm.2013.08.005 

He, K., Zhang, X., Ren, S., Sun, J. (2015). Deep 

Residual Learning for Image Recognition. 

doi.org/10.1109/CVPR.2016.90 

Kang, X., Li, S., Benediktsson, J. A. (2014). 

Pansharpening with Matting Model. IEEE 

Transactions on Geoscience and Remote Sensing. 

doi.org/10.1109/TGRS.2013.2286827 

Khan, M. M., Chanussot, J., Condat, L., Montanvert, A. 

(2008). Indusion: Fusion of multispectral and 

panchromatic images using the induction scaling 

technique. IEEE Geoscience and Remote Sensing 

Letters, 5(1), 98–102.doi.org/10.1109/LGRS.2007. 

909934 

Laben, C. Brower, B. . (2000). Process for enhancing the 

spatial resolution of multispectral imagery using pan-

sharpening. United States Patent 6. 

https://doi.org/10.1074/JBC.274.42.30033.(51) 

Liu, J. G. (2000). Smoothing Filter-based Intensity 

Modulation: A spectral preserve image fusion 

technique for improving spatial details. International 

Journal of Remote Sensing. 

doi.org/10.1080/014311600750037499 

Liu, J. G. (2010). Smoothing Filter-based Intensity 

Modulation : A spectral preserve image fusion 

technique for improving spatial details. 1161. 

doi.org/10.1080/014311600750037499 

Liu, X., Wang, Y., and Liu, Q. (2018a). PSGAN: A 

Generative Adversarial Network for Remote Sensing 

Image Pan-Sharpening. 1–5. 

doi.org/10.1109/ICIP.2018.8451049 

Liu, X., Wang, Y., Liu, Q. (2018b). Remote Sensing 

Image Fusion Based on Two-Stream Fusion 

Network. Lecture Notes in Computer Science 

(Including Subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 

10704 LNCS, 428–439. https://doi.org/10.1007/978-

3-319-73603-7_35 

Masi, G., Cozzolino, D., Verdoliva, L., Scarpa, G. 

(2016). Pansharpening by convolutional neural 

networks. Remote Sensing. 

doi.org/10.3390/rs8070594 

Nencini, F., Garzelli, A., Baronti, S., Alparone, L. 

(2007). Remote sensing image fusion using the 

curvelet transform. Information Fusion. 

doi.org/10.1016/j.inffus.2006.02.001 

Nouri, H., Beecham, S., Anderson, S., and Nagler, P. 

(2013). High spatial resolution WorldView-2 

imagery for mapping NDVI and its relationship to 

temporal urban landscape evapotranspiration factors. 

Remote Sensing, 6(1), 580–602. 

doi.org/10.3390/rs6010580 

Open Remote Sensing. (2016). A Critical Comparison 

among Pansharpening Algorithms. 

http://openremotesensing.net/ 

Ozcelik, F., Alganci, U., Sertel, E., Unal, G. (2020). 

Rethinking CNN-Based Pansharpening: Guided 

Colorization of Panchromatic Images via GANs. 

IEEE Transactions on Geoscience and Remote 

Sensing, 1–16. doi.org/10.1109/tgrs.2020.3010441 

Ozturk, O., Saritürk, B., Seker, DZ. (2020). Comparison 

of Fully Convolutional Networks (FCN) and U-Net 



Wang et al.,  / IJEGEO 8(2):150- 165 (2021)

165 

for Road Segmentation from High Resolution 

Imageries. International Journal of Environment and 

Geoinformatics, 7(3), 272-279.doi.10.30897/ 

ijegeo.737993 

Palsson, F., Ulfarsson, M. O., Sveinsson, J. R. (2020). 

Model-Based Reduced-Rank Pansharpening. IEEE 

Geoscience and Remote Sensing Letters. 

doi.org/10.1109/LGRS.2019.2926681 

Panchal, S., Thakker, R. (2015). Implementation and 

Comparative Quantitative Assessment of Different 

Multispectral Image Pansharpening Approaches. 

Signal and Image Processing : An International 

Journal, 6(5), 35–48. doi.org/10. 

5121/sipij.2015.6503 

Pohl, C., Van Genderen, J. L. (1998). Review article 

Multisensor image fusion in remote sensing: 

Concepts, methods and applications. In International 

Journal of Remote Sensing (Vol. 19, Issue 5). 

doi.org/10.1080/014311698215748 

Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; 

Harlan., J. C. (1974). Monitoring the vernal 

advancement and retrogradation (green wave effect) 

of natural vegetation. 1–8. 

Scarpa, G., Vitale, S., Cozzolino, D. (2018). Target-

Adaptive CNN-Based Pansharpening. IEEE 

Transactions on Geoscience and Remote Sensing. 

doi.org/10.1109/TGRS.2018.2817393 

Shettigara, V. K. (1992). A generalized component 

substitution technique for spatial enhancement of 

multispectral images using a higher resolution data 

set. Photogrammetric Engineering and Remote 

Sensing. doi.org/10.1038/050073a0 

Tensorflow. (2015). https://www.tensorflow.org/ 

Tonbul, H., Kavzoglu, T. (2020). A Spectral Band Based 

Comparison of Unsupervised Segmentation 

Evaluation Methods for Image Segmentation 

Parameter Optimization. International Journal of 

Environment and Geoinformatics, 7(2), 132-139. 

doi.10.30897/ijegeo.641216 

Tu, T.-M., Su, S.-C., Shyu, H.-C., Huang, P. S. (2001). 

A new look at IHS-like image fusion methods. 

Information Fusion. doi.org/10.1016/S1566-

2535(01)00036-7 

Vivone, G., Alparone, L., Chanussot, J., Dalla Mura, M., 

Garzelli, A., Licciardi, G. A., Restaino, R., Wald, L. 

(2015). A critical comparison among pansharpening 

algorithms. IEEE Transactions on Geoscience and 

Remote Sensing. doi.org/10.1109/TGRS.2014. 

2361734 

Wald, L., Ranchin, T., Mangolini, M. (1997). Fusion of 

satellite images of different spatial resolutions : 

Assessing the quality of resulting images. 

Photogrammetric Engineering and Remote Sensing. 

Wei, Y., Yuan, Q. (2017). Deep residual learning for 

remote sensed imagery pansharpening. RSIP 2017 - 

International Workshop on Remote Sensing with 

Intelligent Processing, Proceedings. 

doi.org/10.1109/RSIP.2017.7958794 

Yang, X., Jian, L., Yan, B., Liu, K., Zhang, L., Liu, Y. 

(2018). A sparse representation based pansharpening 

method. Future Generation Computer Systems, 

88(June), 385–399. doi.org/10.1016/j.future.2018. 

04.096 

Yin, H. (2015). Sparse representation based 

pansharpening with details injection model. Signal 

Processing. doi.org/10.1016/j.sigpro.2014.12.017 

Yuan, Q., Wei, Y., Meng, X., Shen, H., Zhang, L. 

(2018). A Multiscale and Multidepth Convolutional 

Neural Network for Remote Sensing Imagery Pan-

Sharpening. IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing. 

doi.org/10.1109/JSTARS.2018.2794888 

Yuhas, R., Goetz, A. F. H., Boardman, J. W. (1992). 

Descrimination among semi-arid landscape 

endmembers using the Spectral Angle Mapper 

(SAM) algorithm. Summaries of the Third Annual 

JPL Airborne Geoscience Workshop, JPL Publ. 92–

14, Vol. 1. 

Zhong, S., Zhang, Y., Chen, Y., Wu, D. (2017). 

Combining component substitution and 

multiresolution analysis: A novel generalized BDSD 

Pansharpening algorithm. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote 

Sensing. doi.org/10.1109/JSTARS.2017.2697445 

Zhou, W., Bovik,  a C. (2002). A universal image quality 

index. Signal Processing Letters, IEEE. 

doi.org/10.1109/97.995823 

Zhu, X. X., Bamler, R. (2013). A sparse image fusion 

algorithm with application to pan-sharpening. IEEE 

Transactions on Geoscience and Remote Sensing. 

https://doi.org/10.1109/TGRS.2012.2213604 




