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ABSTRACT. We present and investigate a new subclass of meromorphic uni-
valent functions described by the Rapid operator in this study. Coefficient
inequalities is discussed, as well as distortion properties, closure theorems,
Hadamard product. After this, integral transforms for the class 3* (9, o, p, 0, u)
are obtained.

1. INTRODUCTION

Let ¥ stands for the function class of the form

1 oo
N(h) = - R, te N=1{1,23, - 1
0=+ it ( ) 1)
analytic in the punctured unit disc Y* ={he C:0 < || <1} =T\ {0}.

A function X € ¥ given by is said to be meromorphically starlike of order o
if it satisfies the following:

of- ()} 0en

for some (0 < p < 1). We say that R is in the class ¥*() of such functions.
Similarly a function X € ¥ given by is said to be meromorphically convex of
order p if it satisfies the following:

§R{— <1+w>}>g, (he)
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for some (0 < p < 1). We say that R is in the class 3;(9) of such functions.
Akgul |1}2], Miller [8], Pommerenke [9], Royster [10], Aydogan and Sakar |4}5,/11]
and Venkateswarlu et al. |[14,/15,/16] have all studied the class 3*(p) and numerous
other subclasses of 3 extensively.
For functions X € ¥ given by and g € ¥ given by

1 oo
h) = - beht

g( ) h + ; (2
we define the Hadamard product of X and g by
1 o0

N g)(h) = + beh'.
(R g)(h) h+e:21a£ ¢
Jung et al. defined the integral operator on normalised analytic functions in [6]

and Lashin [7] updated their operator for meromorphic functions in the following
manmner:

Lemma 1. For X € X given by , if the operator SZ 1Y — X is defined by

1 7 —t
GN :—/ 6+1 TN )
S (h) A= )@+ 1) t"" e (th)dt, (2)
0
0<pu<1,0<0<1and heT) then

1 o
SOR(h) = 7 + ) 6(0, pach’ (3)

0=1

where ¢,(0, ) = (1 — u)”l Ff‘e(gi—;f) and I is the familiar Gamma function.

Using the equation , it is easily seen that
A(SAR(R)) =SS "R(R) — (n+1)SAR(A), (0 < p < 1,0 <O < 1). (4)
We define a new subclass X*(9, o, p, 0, 1) of ¥ based on Sivaprasad Kumar et
al. [13] and Venkateswarlu et al. [14] ¥*(9, o, p, 0, 1) of 3.

Definition 2. For 0 <9 <1, 0> 0, 0 < o < &, we let ¥*(9, 0, 9,0, 1) be the
subclass of ¥ consisting of functions of the form and satisfying the analytic

condition

N DR
T\ T O)SINE) + ph(SINR)Y

B(SOR(R))2(SON ()"
(1= 9)SIN(R) + ph(SIR(R))

+1].
()

The following lemmas are needed to prove our findings [3].

Lemma 3. Ifn is a real number and w is a complex number then

Rw)znelwt (-] —lw-(1+n)]=0.
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Lemma 4. Ifw is a complex number and n,{ are real numbers then
“R(w) > llw+ 1| +1 < =R (w(L+ L) + Le”) >n, (-7 < < 7).

The key purpose of this paper is to look at some traditional geometric function
theory properties for the class of geometric functions, such as coefficient bounds, dis-
tortion properties, closure theorems, Hadamard product, and integral transforms.

2. COEFFICIENT ESTIMATES

We obtain required and adequate conditions for a function Y to be in the class
in this section.

Theorem 5. Let X € X be given by (I)). Then X € *(9, 0, 0,6, 1) iff

oo

DA+ = Dp)lle+1) + (0 +Dge(0, m)ae < (1= D)(1 - 20).  (6)
{=1

Proof. Let X € X*(¢4, 0, p, 0, 11). Then by Deﬁnitionand using Lemma It suffices
to demonstrate that

I G
(T = O)SER(R) + oh(SERR)Y

m

1+ge“’)+ge”} >0, (-7 < 0<m). (7)

For convenience
C(h) = — [R(SIN(R)) 2 (SIR(R))"] (1 + 0c')
= 0e™ [(1 = ©)SER() + Ph(SN(R))']
D(h) =(1 — p)SER(h) + ph(S;R(R))".
That is, the equation is equivalent to
We only need to prove that in light of Lemma
[C(h) + (1 =9)D(n)| - [C(h) — (1 + ) D(R)] = 0.
Therefore
[C(h) + (1 - ﬁ)D(ﬁ)l
>(2=0)(1 = 20) 5 = > 10— (1= D[+ p(¢ = 1)]6,(0, paclhl

(=1
- QZ (€+ D[+ o€ = 1))y (0, )ac| bl

and [C(h )—( +9)D(n)|
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oo

<01 = 20) g7 + DI+ (L4 DL+ 000 = V)60, phac
(=1

+QZ (C+ D1+ (= D))oy (0, wac|hl".

It is to show that
|C(h) + (1 —=9)D ()I—\C( ) — (1 +9)D(h)]

>2(1 —9)(1 — 2p) Iﬁl 22 [(C+9)(1 + (€ — 1)), (0, p)ag|h|*

—20) (L+1)(1+ (L= 1)p)¢,(0, p)ac|hl*
(=1
>0, by the given condition @

Conversely suppose X € X*(9, g, p, 6, 1). Then by Lemma we have .
The inequality is reduced to when the values of h are chosen on the positive
real axis

[(1=2p)(1 = 9)(1 + 0e™)] 55 + ;_O)l{ﬁ +0e (0 +1) + 9L + (£ — 1)]y (6, p)h

(1-20) % + §°: [+ (€ — 1)]64(6, j)aght=1

Since R(—e??) > —|e?| = —1, the above inequality is reduced to

[(1=20)(1 =) (1 + 0e”)]3z + ;Of {6+ 0(t+1) + }1 + (¢ = 1]y (0, w)aer
R =1

f—1

(1-20)% + gﬁl 1+ o€ — 1]y (6, p)rt=1

We obtained the inequality @ by letting r — 1~ and using the mean value theorem.

O
Corollary 6. If X € X*(¢, 0, p,0, 1) then
(1 —9)(1 - 2p)
ST o DI+ o) + 0+ 216u@ 1) ¥
The estimate is sharp for the function

4 h
he 14— D1+ o) + (9 + 0)]¢e(0, 1)
We get the following corollary by taking o = 0 in Theorem

> 0.
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Corollary 7. If X € (9, 0,0, 1) then
1-49

ap < . 10
S (R R (s PN 1o
3. DISTORTION THEOREM
Theorem 8. If X € 3*(¥, 0, p,0, 1) then for 0 < |h| =7 < 1,
L (-9 -2) L (1-9)-2)
- — r <|R(R)| < - . 11
R N T A R R N O K
This estimate is sharp for the function
1 _ _

' (20+9+1)6,(0, p)

Proof. Since R(h) = + + > aght, we have

i=
:}+ia4r2<l+ria5 (13)
"= o =1 .

Since £ > 1, (20+ 9 +1)1(0, ) < [1+ (¢ — D][{(1 + 0) + (¢ + V)] $¢(0, p), using
Theorem [5}, we have

[y

(20+0+ 1)1 (0,1) Y _ar <Y [1+p( = D][L(1+ o) + (0 + V)],(6, )
=1 =1
(1 (1 - 2p)
—9)(1—2p)

;‘Z‘”— 2g+19+ Dér(0.1)°
Using the above mequahty in , we have
1, 20 .
r 20+ 0+ )¢y (0, 1)
1 0-90-2)
r 2e+9+1)¢i(0,p)

The estimate is sharp for the function R(h) = § + %h. O

R(R)] <

and |N(h)| >

We omit the proof of the following corollary since it is similar to that of Theorem

B
Corollary 9. If X € ¥*(14, 0, 0,0, 1) then

L (-9 -2) L (-9 - 20)
2 B0t e NS E T G ot D6,

The estimate is sharp for the function given by .
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4. CLOSURE THEOREMS

Let the function R; be defined, for j =1,2,--- ,m, by

1 o0
Nj(h) = 7 + Zag’jhé, agj > 0. (14)
(=1

Theorem 10. Let the functions 8;,j7 =1,2,--- ,m defined by be in the class
% (¢, 0, 0,0, ). Then the function h defined by

h(h) = 711 +3 Zae,j (15)

=1
also belongs to the class X*(19, 0, p, 0, ).

Proof. Since N;,j = 1,2,---,m are in the class £*(9, g, p,0, 1), it follows from
Theorem [5] that

oo

[1+p(f = DI+ 0) + (0 + D)0, par; < (1= I)(1 - 2p),
{=1

for every j =1,2,--- ,m. Hence

D [+ e = D]+ 0) + (0 + D)) g0, 1) Zae,y
(=1

= *Z (Z +p(C— DL+ o) + (Q+19)]¢e(9,ﬂ)ae,j>
/=1
< (1—=9)(1-2p).

From Theorem (@, it follows that h € ¥*(¥, 0, p, 0, 1).
Hence the proof. O

Theorem 11. The class ¥*(¢, o, p, 0, 1) is closed under convex linear combina-
tions.

Proof. Let the functions R;,5 =1,2,--- ,m defined by be in the class ¥* (9, o, p, 0, 1t).
Then one need only show that function

h(h) =Ny (h) + (1 —¢)Ry(R), 0<¢ <1 (16)
is in the class ¥* (¥, o, p, 0, ). Since for 0 < ¢ <1,

D*\H

= 1S s + (1= ara i, ()
=1
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with the assistance of the Theoremfs, we have

oo

D I+ ot = DI+ 0) + (0 + 9]0, w)sars + (1 = <)ar]
£=1

<1 =9)(1=2p) + (1 =)A= 9)(1 - 2p)
=(1-9)(1-2p),
which implies that h € ¥*(9, 0, , 0, 1). O
Theorem 12. Let £ > 0. Then $*(¥, 0, 9,0, 1) € N(o,§), where
— 1-— 1
c=1- (292+(1z9 +191))(+ (12?)1(9)& f)Zp) | (18)
Proof. If X € ©*¢(19, 0, 9,0, 1) then
i [+ p(¢ = DI + o) + (0 + )]y (0, 1)
2 (- 0)(1—29)
We need to find the value of £ such that

ap < 1.

o0

3 [((d + o) +1(94g )]0 (0, 1)

ap < 1.
(=1
Thus it is sufficient to show that
[€(1 + 0) + (e + O]be(0, 1) _ [L+ (¢ = D][L(L + 0) + (0 + 9)]dy(6, 1)
1-¢ - (1=9)(1-2p)

Then
£<1- ((+ 1)1 =9)(1—2p)(1+0)
T [+ el =D+ o)+ (e + )]+ (1 -9)(1—2p)
Since
Gt)=1- ((+ DA =91 -20)(1 + 0)

1+ =DM+ o)+ (e+I)]+ (1 —9)(1-2p)
is an increasing function of ¢, £ > 1, we obtain

2(1 -9)(A —2p)(1 + o)
(0+0+1)+(1—-9)(1—-2p)

E<G)=1-

Theorem 13. Let ¥y(h) = + and

& (1= 9)(1 - 29) g
M) = D D o F s e 2 )

Then R is in the class ¥* (¥, o, p, 0, 1) iff can be expressed in the form

N(h) = wele(h), (20)
£=0
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o0
where wy >0 and > wp = 1.
(=0

Proof. Assume that

N(h) = i OJgNg(ﬁ)
£=0

R (1 - 9)(1~ 2p) :
B DL e Y (e ey P A
Then it follows that
i (14 (¢ = DL+ 0) + (0 + )]0, 1) (1-9)(1—2p) 1t
— (1-9)(1-2p) (L4 (€ = DL+ 0) + (0 + V)]e(0, 1)

:ngzlfwogl
=1

which implies that 8 € 3*(¢, o, p, 6, p).

On the other side, assume that the function RN defined by be in the class
N € X9, 0,0,0, ). Then

"< (1 - 9)(1 - 2) |
T [+ =D+ o) + (0 + )]0, 1)
Setting
_ [+ (= D] + o) + (0 + V)], (0, 1)
Wy = Gy,
(1=9)(1-2p)
where .
wop=1-— ng,

£=0

N can be expressed in the form , as can be shown. ([l

Corollary 14. The extreme points of the class X*(1, 0, 9,0, 1) are the functions
No(h) = + and

1 (1-9)(1—2p) ¢
Re(h) = 5 + [1+ p(¢—D][E(L+ 0) + (0 + V)]0, 1) "

(21)

5. MODIFIED HADAMARD PRODUCTS

Let the functions X;(j = 1,2) defined by . The modified Hadamard product
of Ny and N, is defined by

(Ry # Vo) (h) = % + ) asiagsh’ = Ry #Xy)(h). (22)
(=1
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Theorem 15. Let the function R,;(j = 1,2) defined by be in the class X*(9, 0, p, 0, 1).
Then Ry x Rg € X*(9, 0, p, 0, 1), where
2(1 —9)*(1 —2p)(1 + o)

P I 2B+ (1 0)2(1 - 2p) (23)

The estimate is sharp for the functions R;(j = 1,2) given by

1 (1-=9)(1-2p) .
Ni(h)=—-+ h, (1 =1,2). 24
=5t Ger o+ e VY 2
Proof. Using the same method that Schild and Silverman [12] used earlier, we need
to find the largest real parameter ¢ such that

(oo}

1 ¢ — D@ 0
5 Lrelt D0+ 0t OO, 1 o
=1
Since N; € ¥*(¥, 0, 0,0, 1), § = 1,2, we readily see that
o [L+ p(f = D][EL + ) + (o + Y]y (6, 1)
2 1—-9)1-20) s =1
and
o~ [L+p(f = D][EL + o) + (o + V]y(6, 1)
2 1—0)(1-20) a2 =1
By Cauchy- Schwarz inequality, we have
o [1+ p(f— D) UIRC
S Lo AL O+ 0400 sz 1.
=1
Then merely demonstrating that is necessary
o~ [L+ p(¢ = D][EQ + 0) + (0 + ¢)]¢4 (0, 1)
; (1—9)(1—2) Ao
o~ [L+p(f = D][EL + 0) + (0 + V], (6, 1)
> (1= 0)(1 — 2) Ve

or equivalently that

[L(1+0) + (e +9)(1 —¢)
Vaeiags < [L(1+0)+ (0 + (1 —1)

Hence, it light of the inequality (26]), then merely demonstrating that is necessary
(1-9)(1-29) 0+ 0+ e+ 01— o)
[1+ @l = DI+ o) + (e +D]ge(0, 1) — [E(1+0) + (2 +¢l(1 = V)

It follows from that

(27)

o<1 (1-9)*(1-2p) 1 +0)(+1)
T [T+ e =D+ 0) + (0 +912¢(0, ) + (1 = 0)%(1 — 2p)
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Now defining the function E(#),
(1-9)*(1—2p)(1 +0)(£+1)
[14 (¢ =D+ o) + (0 + IP¢e(6, 1) + (1 = 9)*(1 — 2p)
We see that E(¢) is an increasing of ¢, ¢ > 1. Therefore, we conclude that
2(1 - 9)*(1 — 2p)(1 + o)
(20+9+1)%¢y (0, 1) + (1 = 9)*(1 — 2p)’
Hence the proof. O

E()=1-

p<El)=1-

The following theorem is obtained using arguments close to those used in the

proof of

Theorem 16. Let the function Xy defined by (14)) be in the class ¥*(¥, 0, p, 0, 1).
Suppose also that the function Ny defined by (14) be in the class X*(p, ¥, 0, ,0, ).
Then z\21 * NQ ex” (€7 197 0, 9’ :u“)a where

21 -9)(A —p)(1 —2p)(1 + o)

T G I D et DG (-2 D

The estimate is sharp for the functions X;(j = 1,2) given by

1 (1—9)(1 —2p)
Ny (h) = % + (20+ 9+ 1)¢,(6, )

and

h 2o+p+1)60(0,p)

Theorem 17. Let the function X;(j = 1,2) defined by be in the class X* (¥, o, p, 0, ).
Then the function

1 oo
h(h) = n + Z(a%,l + a%,2)he (29)
=1

belongs to the class ¥*(g,9, o, p, 0, 1), where

o 41— 9201 20)(1 1 o)
T @t I (0 T 201 0)2(1 -~ 2p) (30)

The estimate is sharp for the functions X;(j = 1,2) given by ([24).

Proof. By using Theorem [5| we obtain

L+ ol = DI+ 0) + (0 + D], 1)\ 5
2{ (1= 0)(1-29) } o

= (14 p(e— DI+ 0) + (0 + D]o0 )
S;{ ([ m— ““}Sl

31)
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and
[ [+ (= DI+ 0) + (o + D]en(0. )
;;{ (R (s m— }““
[+ (e = D] +0) + (0 + DéeBp) |
<§:{ Wy ey <1 )
It follows from and . that
1 [ - DI+ o) + e+ D00\ 5 |
;;2{ Wt ag R () <1

Therefore, we need to find the largest £ such that
[1+p(¢ = DI+ 0) + (o + )], (0, 1)

(1—-¢e)(1—2p)
! { [+ p(¢ — DL+ 0) + (0 + )¢, (60, 1) }2
-2 (1 =91 -2p) ’
that is

<1— 201 = 9)*(1 = 2p)(1 + o) (£ + 1)
T 14 p( - DI+ o) + (0 + )20, 1) +2(1 - 9)2(1 - 2p)°

Gl = 1- 2(1 —9)2(1 — 20)(1 + 0)(£ + 1)
[1+p( = D]+ o) + (0 + )¢ (0, 1) +2(1 = 9)*(1 — 2¢)
is an increasing function of ¢, £ > 1, we obtain
A(L—9)*(1 —2p)(1 + o)
o+ 0+ 12,8, 1) + 2(1 — 0)2(1 — 29)
and hence the proof. ([

e<G(1) =

6. INTEGRAL OPERATORS

Theorem 18. Let the functions N given by be in the class (9, 0, 0,0, 1).
Then the integral operator

1
F(h) = c/ucN(uh)du, O<u<l, ¢>0 (33)
0

is in the class X*(9, o, p, 0, 1), where

f—1- 2¢(1—=9)(1+ o)
(c+2)(20+0+1)+c(1-9)

The estimate is sharp for the function R given by .
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Proof. Let X € ¥*(¥, 0, p, 0, ). Then
1
F(h) :c/ucN(uh)du
0
1 > c y)
L rrerte

Thus it is enough to show that
o <[L+ p(¢ = DL+ 0) + (0 +&)]¢ (6, 12)

= ((+ct+1)(1-61-2p) ge < L.
Since N € ¥*(9, o, p, 0, 1), then

o [1+ o(f = DI + 0) + (0 + D)o (0, 1)

2 ) T

From and , we have

l(1+o0)+(e+8] _ [l(1+0) + (0e+9)]

Crer D¢ = =)
Then
£<1— c(1—=9)(C+1)(1+ )
hS C+c+1)[l(1+0)+(0+9)] +c(1—1)
Since
Y(l)=1- (1 =9)(¢+1)(1 + o)

C+c+ 1)1+ 0)+ (0 + )]+ c(1—9)
is an increasing function of ¢, ¢ > 1, we obtain
2¢(1 —9)(1 + o)

=YD=l Gt o+ D) £ el =)

and hence the proof.

7. CONCLUSION

869

This research has introduced a new subclass of meromorphic functions defined
by Rapid operator and studied some basic properties of geometric function theory.
Accordingly, some results to coefficient estimates, distortion properties, closure
theorems, hadamard product and integral transforms have been considered, inviting

further research for this field of study.
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