

 Celal Bayar University Journal of Science

 Volume 17, Issue 4, 2021, p 447-452
 Doi: 10.18466/cbayarfbe.835945 Ö. Aydın

447

Celal Bayar University Journal of Science

AES Encrypted Real-Time Video Stream and Image Transmission from

ESP32-CAM

Pınar Savaştürk
1

, Ömer Aydın
2*

, Gökhan Dalkılıç
3

1
Gebze Technical University, Faculty of Engineering, Computer Engineering, Kocaeli, Turkey

2
Manisa Celal Bayar University, Faculty of Engineering, Electrical and Electronics Engineering, Manisa, Turkey

3
Dokuz Eylul University, Faculty of Engineering, Computer Engineering, İzmir Turkey

*omer.aydin@deu.edu.tr

*Orcid: 0000-0002-7137-4881

Received: 04.12.2020

Accepted: 7 November 2021

DOI: 10.18466/cbayarfbe.835945

Abstract

With the development of the technology, the demand for security has increased. Security comes to the

forefront due to the increase in data produced and transmitted in real time. In this study, improvements in

the security of video data transmitted in real time are proposed. Data encrypted with advanced encryption

standard (AES) was transferred to the local server from the ESP32-Cam module. The encrypted data

transferred was decrypted on the local server, so the user was able to access the video. In this way, the

security level of the data transmitted live between the parties has been increased. Our motivation in this

study is that the number of applications proposed on real-time systems is not too much.

Keywords: Arduino, AES, ESP32-CAM, encrypted image transmission, Nodejs, secure video

transmission, security

1. Introduction

Along with the new technologies developed, the

security of the systems installed with these technologies

has also gained great importance. Security is critical,

especially in systems with the live and continuous data

flow. For example, systems with real-time data flow,

such as images and videos, have gained importance.

Therefore, a security layer has been added to increase

security in the transfer of video and image data in this

study. The security layer was realized on the ESP32-

CAM module and the Web Server.

The main purpose of this study is to ensure that the

video and image data transmitted between the parties

over the wireless network are confidential. Two basic

approaches were emphasized to create confidentiality.

The first approach is to send the image and video data

from the ESP32-CAM module by shifting. In this way,

attackers who want to receive data flowing on the Wi-Fi

network can only access modified, pointless and

unformed data. In this method, the transmitted data can

be made to an extent incomprehensible. The Web

Server, which receives shifted data, on the contrary,

accesses the original data received by the camera when

it performs the inverse shift operation. This way, the

Web Server can process incoming data on localhost.

In the second approach, data sent from the camera

module are encrypted with an encryption algorithm such

as advanced encryption standard (AES). Then,

encrypted data is sent to the other party. Received data

is decrypted on the Web Server and processed on

localhost. In this way, the data flowing through the

ESP32-CAM become more incomprehensible than

shifting. In this process, it is necessary to make sure that

the webserver decrypts the encrypted data in accordance

with the encryption method on the camera module.

In both of these approaches, the security of the data has

been increased by the possibility to re-create the original

image or video, because the algorithms used are

lossless.

2. Related Works

Secure elements were used to secure four-quarter IoT

device architecture, in a study presented by Urien [1].

This architecture includes a radio system on chip (SoC),

a secure element that processes transport layer security

(TLS) packets and acts as an identity module, a

mailto:*omer.aydin@deu.edu.tr
https://orcid.org/0000-0003-0680-1717
https://orcid.org/0000-0002-7137-4881
https://orcid.org/0000-0002-0130-1716

 Celal Bayar University Journal of Science

 Volume 17, Issue 4, 2021, p 447-452
 Doi: 10.18466/cbayarfbe.835945 Ö. Aydın

448

sensor/actuator and a general-purpose unit (GPU). The

system they recommend is a low cost, low energy and

safe. This system can be developed in the future using

the block chain structure. This is a structure that is not

in the current architecture. It will offer the possibility to

be used in a public blockchain structure.

One of the structures that offers high security [2] uses a

separate architecture. According to this structure, TLS

server running in a secure element is used to make the

established communication channels safer on a wireless

network. Matters such as mutual communication

security and correctness are examined more carefully

with this structure. Besides, since transmission control

protocol (TCP), which is one of the layered structure

protocols, is used, the whole system is gathered under a

standard. In this way, the common channels of the

system are fully communicated. One point that can be

added to this structure is that it can be included in this

structure is the live video stream. In this way, an

important chain link may have been added to the

system.

With the platform of developing IoT devices, the

security part has become more and more important.

Communication protocols, which are part of this whole

[3], are of great importance. A structure, which contains

the message queuing telemetry transport (MQTT)

protocol, has been modelled and implemented to

provide security with special encryption structures. A

situation similar to the sender-receiver structure has

been revealed. With this structure, which is defined as

secure MQTT (SMQTT), the approach that security can

be increased to higher levels has been revealed. Also, if

this structure can be applied to live stream data,

performance analysis can be made, and the architecture

can be tested on different scenarios.

Yerlikaya and Dalkılıç [4] proposed the authentication

and authorization mechanism in their study. Their

scheme uses HMAC-based one-time password (HOTP)

for device authentication addition to the open

authorization (OAuth 2.0) protocol [5, 6].

Aydın and Erhan proposed a study of secure

communication for ESP-Eye. This study presented a

method of security for the camera, wireless

communication module and face recognition. A

comprehensive solution was not presented in this study

[7].

A model containing protocol bases has been introduced

in the structure [8] established to ensure secure video

transmission. This mechanism provided remarkably

useful results. In addition, the performance results

obtained for the transmission of video packages reveal

the efficiency of the study. If this mechanism can be

provided with less costly modules, it will find more

usage and application areas in practice.Video transfer on

the DJI Tello drone and analysis of the images obtained

with structures such as optical character recognition

(OCR), single shot multibox detector (SSD) have

revealed remarkable results [9]. According to these

results, the images obtained are analyzed and

meaningful structures are revealed. In addition,

presenting and expressing the obtained structures in a

meaningful way increase the importance of the study. It

is very critical to receive, process and present the

following image for the drones, which are remote

control devices. These goals were successfully

implemented in the study. In addition, if the security

mechanism were added to the parts of the entire model,

the transmitted images was secured.

In the literature, there are many studies on the encoding

and transmission of pictures and moving picture

experts’ group (MPEG) videos [10-12, 14-16, 18]. It is

also presented in various security and privacy related

applications that are used and will work in such

applications [13, 17, 19, 20].

3. Video or Image Transmission

Video transmission and display process on most

systems are very important. In this study, it is aimed to

make a secure video or image transfer system. To

achieve this goal, the image must first be taken by

ESP32-CAM module. This module acts as a data

provider. The feature has been installed when

customizing the module for this usage. To display the

image taken from the module, it joined to a common

network.

When the ESP32-CAM module is connected to a

common network, it provides an Internet protocol (IP)

address to broadcast. This network is a common

network, including the Web Server. Within the scope of

this study, the ESP32-CAM module and the desktop

computer where the Web Server is installed are

connected to the same access point. The user that we

assume as an observer, connects to an access point via

his/her computer. This access point is the same device

that the ESP32-CAM and Web Server Provider Device

connects to. In this way, both the observer and the

camera module are connected to the same network.

Once this partnership is achieved, the logs are observed

in the web browser with the IP address provided by the

ESP32-CAM. During this development, the necessary

implementations for the ESP32-CAM module were

made by Arduino IDE 1.8.12 version and Web Server

was made by NodeJS with 10.16.3 version. A special-

purpose library was used to show live streaming data

while making the necessary improvements.

4. Shifted Data Transfer and Render

A model for sending the data by shifting is detailed as

the first approach in the subsections. This model is

vulnerable. The shifted data is sent, and the original data

is obtained by a reverse process on the receiver side.

 Celal Bayar University Journal of Science

 Volume 17, Issue 4, 2021, p 447-452
 Doi: 10.18466/cbayarfbe.835945 Ö. Aydın

449

4.1 ESP32-CAM Module Side

The libraries used when developing the ESP32-CAM

module are as follows: “esp_camera.h”, “WiFi.h”,

“ArduinoWebSockets.h” and “camera_pins.h”. The

camera model of the module has been chosen as

CAMERA_MODEL_AI_THINKER. The service set

identifier (SSID) and the password of the modem to

which the camera module is connected are set by default

in the Arduino code development. To send data from the

module to the Web Server, the host and port number of

the Websocket have been determined. The IP address to

host the Websocket has been provided. While

determining this IP address, "ipconfig" command was

run on the device that is running a Web Server (this

device is a Windows 10 desktop). The "IPv4 address"

obtained as a result of executing “ipconfig” command is

the address that hosts the Websocket. The specified

Websocket server port number in the Arduino code is

8888. Subsequently, the client object for the Websocket

is created in "WebSocket Client" type.

After necessary configuration settings and parameters

are set for the camera module, a successful connection

of the module to the web server is ensured.

Subsequently, the websocket server host address (IPv4

address) and the specified websocket server port

provide a connection to the websocket client. After the

connection is successful, the camera is ready to send

data to the server.

At this point, modifications of the data are required for

shifting data transmission. The data type received from

the camera module is in a special struct like

“camera_fb_t”. The “buf” parameter of this struct

corresponds to the pixel data received from the camera.

The raw form of the data taken from the camera is in

“char” pointer type.

When a 32-bit left shift operation is applied to this data,

the payload (i.e. real-time streaming data) coming from

the camera becomes incomprehensible. After the shift

operation, the client is in binary type; the shifted

payload and the size of this payload are sent.

4.2 Web Server Side

The Web Server side was developed on “Node.js”.

Some components were used in the development

process. These components are: ‘path’ [21], ‘express’

[22] and ‘ws’ [23]. Port number 8888 was determined as

a Web Server port. On the other hand, 8000 was

determined as hypertext transfer protocol (HTTP) port.

After the Web Server made the necessary connections,

it started to listen to the data from the camera module.

Here, the reverse shift operation was applied after the

stream from the camera was handled. Then, the stream

data ready for rendering were sent to the hypertext

markup language (HTML) page by the client for

display.

4.3 Rendering Page Side

The rendered page is a HMTL page [24]. This page

creates the connection to the Web Server and waits for

the messages from there. It casts the data from the

buffer type to the blob type and assigns it to the object

created with "img" tags so, the image can be seen by

this HTML page.

4.4 Order of Operations

The process is in the following order:

1. The Arduino code is assigned to the ESP32-CAM

module.

2. The file path containing the Node.js codes, created

as a web server, is accessed from the "Node.js

command prompt" screen.

3. In "Node.js command prompt" screen, the server is

run using the "node <filename.js>" command.

4. The Chrome web browser runs on the computer

where Web Server is running. Then, the "IPv4

address:8000/client" URL is accessed (IPv4 address

is the address hosted on the web server).

5. Data flow is triggered by resetting the ESP32-CAM

module.

5. Shifted Encrypted Data Transfer and Render

Under this section, it is suggested to add a security layer

that is not included in the system mentioned in the

previous subsections. Now let's explain this model and

how to add the security layer.

5.1 ESP32-CAM Module Side

Some additional libraries have been used in the shifted

encrypted data transfer and creation process for the

ESP-32 Cam module side. These libraries can be listed

as “AES.h”, “base64.h”, “iostream”, “stdio.h” and

“string.h”. Everything is done as described in "shifted

data" section (Section 4) until the data is taken from the

camera module. After the data reaches, the processes

differ.

Each of the received data is stored as "HEX" in

"unsigned int" type. All of the stored data is too large to

be encrypted. Therefore, the data are divided into 256-

and 200-byte blocks.

Firstly, each divided block goes through base64

encoding operation by using the initial vector. The

cipher text, secret key, and initial vector, encoded with

base64, are subjected to 128-bit AES encryption. Parts

of payload that are converted into encrypted form are

sent to the Web Server one by one.

 Celal Bayar University Journal of Science

 Volume 17, Issue 4, 2021, p 447-452
 Doi: 10.18466/cbayarfbe.835945 Ö. Aydın

450

5.2 Web Server Side

In addition to the operations given in the "shifted data"

section, "crypto-js" is used by the Web Server. On the

server, the encryption key is shared with the ESP32-

CAM module side.

Each block of the data coming from the camera module

handles on the server side. Since the camera module

sends the data in binary format, the incoming data is

first converted to the "Base64" data type. The data

converted to the appropriate format is decrypted with an

initial vector and key. Since the streaming data comes

piece by piece, it is brought together in accordance with

order of arrival.

The type of incoming data must be in accordance with

the JPEG data format. The header formats of the data,

which are decoded and gathered, are checked to see if

there is any interference between the data transmission.

Finally, it is sent to the HTML page to be rendered.

The operations to be applied after this process is the

same as the subsections "Rendering Page Side" and

"Order of Operations" which are under the "Shifted

Data Transfer and Render" section.

5.3 General Diagram

In Figure 1, you can see the process flowchart of the

secure video transmission process with ESP32-CAM.

Figure 1. Flowchart of the secure video transmission

process with ESP32-CAM.

Figure 2 gives an overview of all the process steps

described in the previous sections.

Figure 2. General diagram of the encrypted payload

transfer.

The encrypted payload contained in the segmented

buffer is sent to the Web server over the ESP-32 CAM.

On a webserver, all encrypted payload is decrypted, and

the webserver combines them in order. Finally,

decrypted whole buffer is sent to the client (web

browser).

6. Results and Discussion

You can find the general structure of the system and test

results in the subsections below.

6.1 General Structure

In this study, the operations and experiments were

carried out by using the ESP32-CAM IoT device.

Figure 3. ESP32-CAM and web server transmission

diagram.

On the system given in Figure 3, the ESP32-CAM

module is acting on a server and the image was taken at

the local host of the computer connected to the same

network. In this state, the device sends received image

to the web server and the browser renders the image.

The structure established in this way has a security flaw.

The image or video file is transmitted over the wireless

network without a security layer. Since it does not have

a security layer, it is vulnerable to malicious people.

Another disadvantage of this structure is that only one

client who wants to obtain the images or video from the

camera can reach them. Another problem encountered

in this structure is the format of the file sent from the

ESP32-CAM module to the web server. It is not

possible to encrypt and send the file and decrypt it by

the web server. Because the IoT module and Web

Server are programmed on the same device. Therefore,

it is not possible to determine and apply a dividing line

between them.

 Celal Bayar University Journal of Science

 Volume 17, Issue 4, 2021, p 447-452
 Doi: 10.18466/cbayarfbe.835945 Ö. Aydın

451

Figure 4. Separated ESP32-CAM and local server

diagram.

Figure 5. ESP32-CAM and local server

communication.

As shown in Figures 4 and 5, a different approach has

been taken to address the previously mentioned flaw.

Instead of keeping the server on ESP32-CAM, server

was designed as a separated computer connected on the

same network, so the only task of the camera module is

sending the video or picture. This computer is acting as

a server and took over the task of rendering in the

browser. In this way, the camera module is able to send

the encrypted file. On the computer, the server set up as

Node.js is able to decrypt and render the incoming file.

As a result of this design, an extra security layer has

been added to the system for a critical process such as

an image or video transfer. Moreover, this system

enables more than one client to receive images at the

same time.

6.2. Test Results

In Table 1, a comparison table was given. Response

times are shown when encryption is performed for

image transfer and when encryption is not performed.

Each tuple in Table 1 represents images that mean

packages of the same size. Each of these tuples

represents different images. The average Wi-Fi speed of

the modem used is 30 MBits/s. Encrypted data has the

same size as plain data to avoid growth in transferring

data.

The time when data is sent from the ESP32-CAM

module is determined at the start time for each

calculated time. On the other hand, the end time is

obtained when the server sends the data to the HTML

page. Within this period when encryption is proceeded,

there are processes such as encryption, transmission,

decryption of the payload and combination of the

buffers that come with coordination. The image that is

not encrypted has only the payload that is sent during

the transfer and the server has to handle the incoming

message.

Table 1. Comparison table for encrypted and non-

encrypted image transfer durations.

Transferred

Image Packages

Non-Encrypted

Image Transfer

and Render

Durations (ms)

Encrypted

Image Transfer,

Decryption and

Render

Durations (ms)

Package_1 2169 4597

Package_2 203 5462

Package_3 512 5205

Package_4 756 4975

Package_5 650 4870

Package_6 924 5634

Package_7 712 4989

Package_8 618 4782

Package_9 569 5084

Package_10 878 4829

7. Conclusion

The number of IoT devices is increasing and their usage

areas are expanding. These devices can capture images

and videos. This image or video data obtained is

transmitted over wireless networks. This situation

brings along various security problems. There are many

challenges in ensuring security, especially for live and

streamed data. There are some studies in the literature to

find a solution to this and to secure communication. In

this context, this study has been put forward to ensure

the secure transmission of video and images from IoT

devices. ESP32-CAM was used in the study. ESP32-

CAM has the ability to shoot video and images. It can

also communicate by connecting to a network with a

wireless connection. As the first approach, the image

and video data obtained were shifted and transmitted in

this way. There are problems in the structure of this

model and in the security of the transmitted data.

Therefore, a second model has been proposed.

Structural changes have been made in this model and

the transmitted data is encrypted with AES. In addition,

the comparison of the transmission durations was given

in order to compare the two models in the study.

As a result, with the structure established in the second

model, a more secure system against attacks has been

introduced. This model makes an important contribution

to the security of IoT devices that are lightweight in

terms of hardware resources.

Author’s Contributions

Pınar SAVAŞTÜRK: Wrote the draft manuscript,

prepare the system, and made the experiments.

Ömer AYDIN: Assisted in analysis on the structure,

supervised the experiment’s progress, made result

 Celal Bayar University Journal of Science

 Volume 17, Issue 4, 2021, p 447-452
 Doi: 10.18466/cbayarfbe.835945 Ö. Aydın

452

interpretation, helped in manuscript preparation, made

the manuscript ready for the journal, took part in the

journal submission and following the journal process.

Gökhan DALKILIÇ: Served as the consultant in the

execution of the whole process. He supervised in the

process of the preparation of the manuscript, revealed

the main idea, made criticism, and made the proof

reading in language.

Ethics

There are no ethical issues after the publication of this

manuscript.

References

1. Urien, P. An Innovative Four-Quarter IoT Secure Architecture

Based on Secure Element, In 2018 14th International Wireless
Communications & Mobile Computing Conference (IWCMC),

Limassol, 25-27 June, 2018, pp. 1074-1080. Doi:

10.1109/IWCMC.2018.8450435

2. Urien, P. An innovative security architecture for low cost low

power IoT devices based on secure elements: A four quarters security
architecture, In 2018 15th IEEE Annual Consumer Communications

& Networking Conference (CCNC), Las Vegas, 12-15 January, 2018,

pp. 1-2. Doi: 10.1109/CCNC.2018.8319309

3. Singh, M, Rajan, M, Shivraj, V, Balamuralidhar, P. Secure MQTT

for Internet of Things (IoT), In 2015 Fifth International Conference on
Communication Systems and Network Technologies, Gwalior, 746–

751, 4-6 April, 2015. Doi: 10.1109/CSNT.2015.16

4. Yerlikaya, Ö, Dalkılıç, G. Authentication and authorization

mechanism on message queue telemetry transport protocol. In 2018
3rd International conference on computer science and engineering

(UBMK), 2018, pp. 145-150. IEEE.

5. Windley, PJ. 2015. API access control with OAuth: Coordinating

interactions with the Internet of Things, IEEE Consumer Electronics

Magazine, 4:52-58.

6. Fremantle, P, Aziz, B. OAuthing: Privacy-enhancing federation for

the Internet of Things, In 2016 Cloudification of the Internet of Things
(CIoT), 2016, pp. 1-6, doi: 10.1109/CIOT.2016.7872911.

7. Aydın, Ö, Erhan, İİ. 2021. Video or Image Transmission Security
for ESP-EYE IoT device used in Business Processes. Yönetim Bilişim

Sistemleri Dergisi, 7(1): 1-9. Retrieved from

https://dergipark.org.tr/tr/pub/ybs/issue/63606/857203

8. Radu, D, Cretu, A, Avram, C, Astilean, A, Parrein, B. Video

content transmission in a public safety system model based on flying

Ad-hoc networks. In 2018 IEEE International Conference on
Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca,

24-26 May, 2018, pp. 1-4. doi: 10.1109/AQTR.2018.8402713

9. Mirando Pinto, LG, Mora-Camino, F, de Brito, PL, Brandão

Ramos, AC, Castro Filho, HF. A SSD – OCR Approach for Real-
Time Active Car Tracking on Quadrotors, In 16th International

Conference on Information Technology-New Generations (ITNG

2019), Las Vegas, 1-3 April 2019, pp. 471-476. Doi: 10.1007/978-3-
030-14070-0_65

10. Maniccam, S, Nikolaos, G. 2004. Image and video encryption
using SCAN patterns, Pattern Recognition, 37(4): 725-737. doi:

10.1109/30.920426

11. Yi, X, Tan, CH, Slew, CK, Syed, MR. 2001. Fast encryption for
multimedia. IEEE Transactions on Consumer Electronics, 47(1):

101-107.

12. Tosun, AS, Feng, WC. Efficient multi-layer coding and encryption

of MPEG video streams, In 2000 IEEE International Conference on

Multimedia and Expo. ICME2000, New York, NY, 30 July-2 August,
2000, pp. 119-122. Doi: 10.1109/ICME.2000.869559

13. Choo, E, Lee, J, Lee, H, Nam, G. SRMT: A lightweight
encryption scheme for secure real-time multimedia transmission, In

2007 International Conference on Multimedia and Ubiquitous

Engineering (MUE'07), Seoul, 26-28 April, 2007, pp. 60-65. Doi:
10.1109/MUE.2007.194.

14. Qiao, L, Nahrstedt, K. A new algorithm for MPEG video
encryption, In First International Conference on Imaging Science

System and Technology, Las Vegas, Nevada, USA, 30 June- 3 July,

1997, pp. 21-29.

15. Tang, L. Methods for encrypting and decrypting MPEG video

data efficiently. In Fourth ACM international conference on
Multimedia, Boston Massachusetts USA, November, 1996, pp. 219-

229.

16. Sikora, T. 1997. MPEG Digital Video Coding Standard. IEEE

Signal Processing Magazine, 14(5): 82-100. Doi: 10.1109/79.618010

17. Shannon, CE. 1949. Communication Theory of Secrecy Systems,

The Bell System Technical Journal, 28(4):656-715. Doi:

10.1002/j.1538-7305.1949.tb00928.x

18. Spanos, GA, Maples, T. B. Security for real-time MPEG

compressed video in distributed multimedia applications, In 1996
IEEE Fifteenth Annual International Phoenix Conference on

Computers and Communications, Scottsdale, AZ, USA, 27-29 March,
1996, pp. 72-78. Doi: 10.1109/PCCC.1996.493615

19. Adam, JA. 1992. Cryptography = privacy?. IEEE Spectrum, 29(8):
29-35. Doi: 10.1109/6.144533

20. Spanos, GA, Maples, TB. Performance Study of a Selective
Encryption Scheme for the Security of Networked, Real-Time Video,

In Fourth International Conference on Computer Communications and

Networks - IC3N'95, Las Vegas, NV, USA, 20-23 September, 1995.
DOI: 10.1109/ICCCN.1995.540095

21. Internet: Nodejs.org, https://nodejs.org/api/path.html (accessed at
17.09.2021).

22. Internet: Fast, unopinionated, minimalist web framework for
Node.js, https://expressjs.com/ (accessed at 17.09.2021).

23. Internet: ws: a Node.js WebSocket library,
https://github.com/websockets/ws (accessed at 17.09.2021).

24. Graham, I. S. (1995). The HTML sourcebook. John Wiley &
Sons, NY United States. ISBN: 978-0-471-11849-7

