DOI:10.25092/baunfbed.842141

J. BAUN Inst. Sci. Technol., 23(1), 141-150, (2021)

New Δ_q^v -difference operator and topological features

Abdulkadir KARAKAŞ*, Mahir Salih Abdulrahman ASSAFI

Siirt University Faculty of Arts and Sciences, Department of Mathematics, Kezer Campus, Siirt.

Geliş Tarihi (Received Date): 20.04.2020 Kabul Tarihi (Accepted Date): 14.10.2020

Abstract

We extended Δ^{v} by using difference operator Δ_{q}^{v} . We generated the difference sequence space $l_{p}(\Delta_{q}^{v})$ and investigated some of their properties. We showed that, if $l_{p}(\Delta_{q}^{v})$ is supplied with an proper norm $\|.\|_{p,\Delta_{q}^{v}}$ then it will be a Banach space. We further more showed that, the sequence spaces $\left(l_{p}(\Delta_{q}^{v}), \|.\|_{p,\Delta_{q}^{v}}\right)$ and $\left(l_{p}, \|.\|_{p}\right)$ are linearly isometric. At the end of this studies, it was shown that $l_{p}(\Delta_{q}^{v}) \subset l_{p}(\mathcal{M}, \Delta_{q}^{v})$. The family of the Orlicz functions \mathcal{M} is coincides the Δ_{2} – condition.

Keywords: Difference sequence spaces, isometric sequence spaces, sequence spaces.

Yeni Δ_q^{ν} -fark operatörü ve topolojik özellikleri

Öz

 Δ_q^v fark operatörünü kullanarak Δ^v 'yi genişlettik. $l_p(\Delta_q^v)$ fark dizi uzayını oluşturduk ve bazı topolojik özelliklerini inceledik. Eğer $l_p(\Delta_q^v)$ uygun bir $\|.\|_{p,\Delta_q^v}$ normu verilirse bunun bir Banach uzayı olacağını gösterdik. Ayrıca $\left(l_p(\Delta_q^v), \|.\|_{p,\Delta_q^v}\right)$ ve $\left(l_p, \|.\|_p\right)$ dizi uzaylarının lineer izometrik olduklarını gösterdik. Çalışmanın sonunda ise $l_p(\Delta_q^v) \subset l_p(\mathcal{M}, \Delta_q^v)$ olduğu gösterildi. Orlicz fonksiyonlarının ailesi \mathcal{M} , Δ_2 –şartı ile örtüşmektedir.

^{*} Abdulkadir KARAKAŞ, kadirkarakas21@hotmail.com, <u>https://orcid.org/ 0000-0002-0630-8802</u> Mahir Salih Abdulrahman ASSAFI, mahersalih2015@gmail.com, <u>https://orcid.org/0000-0002-6666-8877</u>

Anahtar kelimeler: Fark dizi uzayları, izometrik dizi uzayları, dizi uzayları.

1. Introduction

Let c, l_{∞} and c_0 be the Banach spaces of convergent, bounded and null sequences $u = (u_k)_1^{\infty}$ respectively with complex terms, normed by

$$\|u\|_{\infty}=\sup_{k}|u_{k}|,$$

where $k \in \mathbb{N}$.

Kızmaz [1] presented the difference sequence spaces,

$$U(\Delta) = \left\{ u = (u_k) : \Delta u \in U \right\}$$

for U = c, and l_{∞}, c_0 where

 $\Delta u = (\Delta u_k) = (u_k - u_{k+1})$. We have the norm for these Banach spaces as:

$$\left\|u\right\|_{\Delta} = \left|u_{1}\right| + \left\|\Delta u\right\|_{\infty}.$$

Çolak and Et [2] have extended the spaces $U(\Delta)$ to the $U(\Delta^{\nu})$ for $U = c, l_{\infty}$ and c_0 . Let U be any sequence spaces and defined

$$U(\Delta^{\mathsf{v}}) = \left\{ u = (u_k) : \Delta^{\mathsf{v}} u \in U \right\}$$

where $v \in \mathbb{N}$ and $\Delta^{v} u = ((\Delta \circ \Delta^{v-1})u_{k})$ for all $k \in \mathbb{N}$ and prove that $c(\Delta^{v}), l_{\infty}(\Delta^{v})$ and $c_{0}(\Delta^{v})$ are Banach spaces with the norm

$$\Delta^{\nu} u_{k} = \sum_{t=0}^{\nu} (-1)^{t} {\binom{\nu}{t}} u_{k+t}, \ \left\| u \right\|_{\Delta^{\nu}} = \sum_{i=1}^{\nu} \left\| u_{i} \right\| + \left\| \Delta^{\nu} u \right\|_{\infty}.$$

Karakaş et al. [3] have defined the sequence spaces $c(\Delta_q), l_{\infty}(\Delta_q)$ and $c_0(\Delta_q)$. He also presented

$$\Delta_q u = (\Delta_q u_k) = (q u_k - u_{k+1})$$

for $q \in \mathbb{N}$. Karakaş et al. [4] have presented

$$U(\Delta_q^v) = \left\{ u = (u_k) : \Delta_q^v u \in U \right\}$$

for $U = c, l_{\infty}$ and c_0 , where $q, v \in \mathbb{N}$. They showed that the spaces $U(\Delta_q^v)$ are Banach spaces by:

$$||u||_{\Delta_q^v} = \sum_{i=1}^v |u_i| + ||\Delta_q^v u||_{\infty},$$

where

$$\Delta_q^{\nu} u = (\Delta_q^{\nu} u_k) = (q \Delta_q^{\nu-1} u_k - \Delta_q^{\nu-1} u_{k+1})$$

and

$$\Delta_q^{\nu} u = (\Delta_q^{\nu} u_k) = \sum_{t=0}^{\nu} (-1)^t {\binom{\nu}{t}} q^{\nu-t} u_{k+t}.$$

Recently, Peralta [5] has studied $l_p(\Delta^v)$ and investigated the topological features of this space. In this work, we choose $p \in [1, \infty)$. By ω , we denote the space of all sequences

$$u = (u_k)$$
, for $u_k \in \mathbb{C}$ and all $k \in N$. Taken $u \in \omega$, describe $||u||_p = \left(\sum_{k=1}^{\infty} |u_k|^p\right)^{\frac{1}{p}}$

and let

$$l_p = \left\{ u = (u_k) : \left\| u \right\|_p < \infty \right\}.$$

The linear operator $\Delta_q^v: \omega \to \omega$ is presented recursively as the composition $\Delta_q^v = \Delta_q \circ \Delta_q^{v-1}$ for $v \ge 2$ and $q \in \mathbb{N}$. It is obvious that for $u \in \omega$ and $v \ge 1$ we have the following Binomial representation

$$\Delta_q^{\nu} u_k = \sum_{t=0}^{\nu} (-1)^t {\binom{\nu}{t}} q^{\nu-t} u_{k+t}$$

for all $k \in \mathbb{N}$.

Let $v \in \mathbb{N}$ and define the sequence space $l_p(\Delta_q^v)$ by

$$l_p(\Delta_q^v) = \left\{ u = (u_k) : \Delta_q^v u \in l_p \right\}.$$

The sequence spaces are Banach spaces normed by

$$\|u\|_{p,\Delta_{q}^{\nu}} = \left(\sum_{i=1}^{\nu} |u_{i}|^{p} + \|\Delta_{q}^{\nu}\|_{p}^{p}\right)^{\gamma_{p}}$$
(1.1)

For Euler difference sequence spaces and sequence spaces generated by a sequence of Orlicz functions, the reader can consult Altay and Polat [6], Altay and Başar [7] and Qamaruddin and Saifi [8], respectively.

2. Main results

Theorem 2.1. The sequence space $l_p(\Delta_q^{\nu})$ is a Banach space with the norm $\left\|\cdot\right\|_{p,\Delta_q^{\nu}}$.

Proof: Let $(u^{(n)}) = ((u_k^{(n)}))$ is a Cauchy sequence in $l_p(\Delta_q^v)$. Thus, for $\varepsilon > 0$ we may find a positive integer N such that

$$\left\|\boldsymbol{u}^{(n)}-\boldsymbol{u}^{(r)}\right\|_{p,\Delta_q^{\boldsymbol{\nu}}}<\varepsilon$$

whenever $n, r \ge N$. In other words, we have

$$\left(\sum_{i=1}^{\nu} \left| u_i^{(n)} - u_i^{(r)} \right|^p + \left\| \Delta_q^{\nu} u^{(n)} - \Delta_q^{\nu} u^{(r)} \right\|_p^p \right)^{\frac{1}{p}} < \varepsilon ,$$

for $n, r \ge N$.

Since

$$\left|u_{i}^{(n)}-u_{i}^{(r)}\right| \leq \left\|u^{(n)}-u^{(r)}\right\|_{p,\Delta_{q}^{v}}$$

for i = 1, 2, 3, ..., v and

$$\left\|\Delta_{q}^{v}u^{(n)}-\Delta_{q}^{v}u^{(r)}\right\|_{p}\leq\left\|u^{(n)}-u^{(r)}\right\|_{p,\Delta_{q}^{v}}.$$

Therefore, $(u_i^{(n)})$ and $(\Delta_q^v u^{(n)})$ are Cauchy sequences in \mathbb{C} and l_p , respectively. The completeness of the spaces \mathbb{C} and l_p show the existence of elements $y_i \in \mathbb{C}$, i = 1, 2, 3, ..., v, and $z = (z_k) \in l_p$ such that

$$\lim_{n} |u_i^{(n)} - y_i| = 0 \tag{2.1}$$

for i = 1, 2, 3, ..., v and

$$\lim_{n} \left\| \Delta_{q}^{v} u^{(n)} - z \right\|_{p} = 0.$$
(2.2)

Since

$$\left|\Delta_q^{\mathsf{v}} u_k^{(n)} - z_k\right| \leq \left\|\Delta_q^{\mathsf{v}} u^{(n)} - z\right\|_p$$

we get

$$\left|\Delta_q^v u_k^{(n)} - z_k\right| \to 0$$

as $n \to \infty$ for all $k \in \mathbb{N}$ by equation (2.2).

We obtain a recursive formula for $\lim_{n} u_{v+i}^{(n)}, i \ge 1$, as $n \to \infty$. We have

$$(-1)^{\nu} u_{\nu+1}^{(n)} = \Delta_q^{\nu} u_1^{(n)} - \sum_{t=0}^{\nu-1} (-1)^t {\binom{\nu}{t}} q^{\nu-t} u_{\nu+1}^{(n)}$$

and so

$$w_{\nu+1} := \lim_{n} u_{\nu+i}^{(n)} = (-1)^{\nu} \left(z_1 - \sum_{t=0}^{\nu-1} (-1)^t {\nu \choose t} q^{\nu-t} y_{\nu+1} \right)$$

Assume that $w_{v+1}, ..., w_{v+k-1}, 1 < k \le v$, have been established. Where

$$w_{v+i} : \lim_{n} u_{v+i}^{(n)}, i = 1, 2, ..., k-1.$$

Using these, we acquire, for $1 < k \le v$

$$w_{\nu+k} := \lim_{n} u_{\nu+k}^{(n)} = (-1)^{\nu} \begin{pmatrix} z_k - \sum_{t=0}^{\nu-k} (-1)^t {\nu \choose t} q^{\nu-t} y_{t+k} \\ -\sum_{t=1}^{k-1} (-1)^{\nu-k+t} {\nu \choose \nu-k+t} q^{k-t} w_{\nu+t} \end{pmatrix}$$

On the other side, for k > v we get

$$(-1)^{\nu} u_{\nu+k}^{(n)} = \Delta_q^{\nu} u_k^{(n)} - \sum_{t=0}^{\nu-1} (-1)^t {\binom{\nu}{t}} q^{\nu-t} u_{\nu+k}^{(n)}.$$

So that

$$w_{\nu+k} \coloneqq \lim_{n} u_{\nu+k}^{(n)} = (-1)^{\nu} \left(z_k - \sum_{t=0}^{\nu-1} (-1)^t {\nu \choose t} q^{\nu-t} w_{k+t} \right).$$

Let $w = (y_1, ..., y_v, w_{v+1}, w_{v+2}, ...)$. We assert that $w \in l_p(\Delta_q^v)$, that is, $\Delta_q^v w \in l_p$. First, show that

$$(\Delta_{q}^{\nu}w)_{1} = \sum_{t=0}^{\nu-1} (-1)^{t} {\binom{\nu}{t}} q^{\nu-t} y_{t+1} + (-1)^{\nu} w_{\nu+1}$$
$$= \sum_{t=0}^{\nu-1} (-1)^{t} {\binom{\nu}{t}} q^{\nu-t} y_{t+1} + \left[z_{1} - \sum_{t=0}^{\nu-1} (-1)^{t} {\binom{\nu}{t}} q^{\nu-t} y_{t+1} \right]$$
$$= z_{1}$$

Also, for $k = 2, 3, \dots, v$. We get

$$(\Delta_q^{\nu} w)_k = \sum_{t=0}^{\nu-k} (-1)^t {\binom{\nu}{t}} q^{\nu-t} y_{t+k} + \sum_{t=\nu-k+1}^{\nu-1} (-1)^t {\binom{\nu}{t}} q^{\nu-t} w_{t+k} + (-1)^{\nu} w_{\nu+k}$$
$$= z_k$$

Similarly, for k > v we acquire

$$(\Delta_q^{\nu} w)_k = \sum_{t=0}^{\nu-1} (-1)^t {\binom{\nu}{t}} q^{\nu-t} w_{t+k} + (-1)^{\nu} w_{\nu+k}$$

= z_k .

Thus we have presented that $\Delta_q^v w = z \in l_p$. It remains to prove that

$$\left\| u^{(n)} - w \right\|_{p, \Delta_q^v} \to 0 \text{ as } n \to \infty$$

Then, we obtain

$$\begin{split} &\lim_{n} \left\| u^{(n)} - w \right\|_{p,\Delta_{q}^{\nu}}^{p} = \lim_{n} \left(\sum_{k=1}^{\nu} \left| u_{k}^{(n)} - y_{k} \right|^{p} + \left\| \Delta_{q}^{\nu} u^{(n)} - \Delta_{q}^{\nu} w \right\| \right) \\ &= \sum_{k=1}^{\nu} \lim_{n} \left| u_{k}^{(n)} - y_{k} \right|^{p} + \lim_{n} \left\| \Delta_{q}^{\nu} u^{(n)} - z \right\|_{p}^{p} \\ &= 0. \end{split}$$

This is proof of the theorem.

Theorem 2.2. The sequence spaces $\left(l_p(\Delta_q^v), \|.\|_{p,\Delta_q^v}\right)$ and $\left(l_p, \|.\|_p\right)$ are linearly isometric.

Proof: Take in to consideration the map $T: l_p(\Delta_q^v) \to l_p$ given by Ty = u, where $y = (y_k) \in l_p(\Delta_q^v)$ and $u = (u_k)$ with

$$u_k = \begin{cases} y_k, & \text{if } 1 \le k \le v; \\ \Delta_q^v y_{k-v}, & \text{if } k > v. \end{cases}$$

The linearity of the difference operator Δ refers the linearity of T. If $y \in l_p(\Delta_q^v)$ and Ty = u, then

$$\begin{split} \|Ty\|_{p}^{p} &= \|u\|_{p}^{p} = \sum_{k=1}^{\nu} |y_{k}|^{p} + \sum_{k=\nu+1}^{\infty} \left|\Delta_{q}^{\nu} y_{k-\nu}\right|^{p} \\ &= \sum_{k=1}^{\nu} |y_{k}|^{p} + \sum_{k=1}^{\infty} \left|\Delta_{q}^{\nu} y_{k}\right|^{p} \\ &= \|y\|_{p,\Delta_{q}^{\nu}}^{p} < \infty. \end{split}$$

This demonstrates that *T* is well-defined and it is also norm preserving. We presented that T is one-to-one and onto. Assume that Ty = 0. Then, we obtain

$$\Delta_q^v y_k = 0 \text{ for all } k \ge 1, \tag{2.3}$$

$$y_1 = y_2 = \dots = y_v = 0.$$
 (2.4)

We show that the difference equation (2.3) with initial conditions (2.4) refers that $y_k = 0$ for all $k \ge 1$, that is, y = (0, 0, ...). Therefore, *T* is one-to-one.

Assume that $u = (u_k) \in l_p$. Describe the sequence $y = (y_k)$ as follows. Let $y_k = u_k$ for $u_{k+\nu} = \Delta_q^{\nu} u_k, k = 1, 2, ..., \nu$.

The succeeding terms of the sequence y is then showed recursively by

$$y_{\nu+1} = (-1)^{\nu} \left[u_{\nu+1} - \sum_{t=0}^{\nu-1} (-1)^{t} {\binom{\nu}{t}} q^{\nu-t} u_{t+1} \right]$$
$$y_{\nu+k} = (-1)^{\nu} \left[u_{\nu+k} - \sum_{t=0}^{\nu-k} (-1)^{t} {\binom{\nu}{t}} q^{\nu-t} u_{t+k} - \sum_{t=1}^{k-1} (-1)^{t} {\binom{\nu}{t-k+t}} q^{k-t} y_{\nu+t} \right], \quad 1 < k \le \nu$$

and

$$y_{\nu+k} = (-1)^{\nu} \left[u_{\nu+k} - \sum_{t=0}^{\nu-1} (-1)^t {\nu \choose t} q^{\nu-t} y_{t+k} \right], \quad k > \nu.$$

Utilizing a similar argument as in the proof of the previous theorem, we prove that

$$\Delta_q^v y_k = u_{k+v}$$

for $k \in \mathbb{N}$. Therefore it follows that Ty = u.

Thus, we obtain

$$\begin{split} \left\| \Delta_q^v y \right\|_p^p &= \sum_{k=1}^\infty \left| \Delta_q^v y_k \right|^p \\ &= \sum_{k=1}^\infty \left| u_{k+v} \right|^p \\ &= \left\| u \right\|_p^p < \infty. \end{split}$$

So that $y \in l_p(\Delta_q^v)$. Since T is onto, $l_p(\Delta_q^v)$ and l_p are linearly isometric.

Definition 2.3. An Orlicz function is a continuous, convex function and nondecreasing $M:[0,\infty) \to [0,\infty)$ such that M(z)=0, if and only if z=0, M(u)>0, and $M(u) \to \infty$ as $u \to \infty$. *M* is said to fulfil Δ_2 -condition if there exists a positive constant *K* such that $M(2z) \le KM(z)$ for all $z \ge 0$. Let $\mathcal{M}=(M_k)$ be a sequence of Orlicz functions meeting the Δ_2 -condition [9]. An Orlicz function *M* has been defined in [10] also see [11] for a more general representation in thise direction in the following from:

$$M(u) = \int_{0}^{u} p(t)dt$$

where p, know as the kernel of M, is right-differentiable for $t \ge 0$, p(t) > 0, p(0) = 0 for t > 0, p is nondecreasing, and $t \to \infty$, $p(t) \to \infty$.

Lindenstrauss and Tzafriri [12] have utilized the view of Orlicz function to find the sequence space,

$$l_{p}(\mathcal{M}) = \left\{ u = (u_{k}) : \sum_{k=1}^{\infty} \left| M_{k} \left(\left| u_{k} \right| / \rho \right) \right|^{p} < \infty, \text{ for some } \rho > 0 \right\},\$$

which is a Banach Spaces with respect to the norm

$$||(u_k)|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} |M_k(|u_k|/\rho)| \le 1 \right\}.$$

The space $l(\mathcal{M})$ is closely related to space l_p , which is an Orlicz sequence space with $M(u) = |u|^p$, for $1 \le p < \infty$.

Describe the sequence spaces as:

$$l_{p}(\mathcal{M}) = \left\{ u = (u_{k}) : \sum_{k=1}^{\infty} \left| M_{k} \left(\left| u_{k} \right| / \rho \right) \right|^{p} < \infty, \text{ for some } \rho > 0 \right\},\$$

and

$$l_p(\mathcal{M}, \Delta_q^{\nu}) = \left\{ u = (u_k) : \Delta_q^{\nu} u \in l_p(\mathcal{M}) \right\}.$$

Theorem 2.4. Let $\mathcal{M} = (M_k)$ be a sequence of Orlicz functions fulfil the Δ_2 – condition. If

$$\sum_{k=1}^{\infty} \left| M_k \left(\left| u_k \right| / \rho \right) \right|^p < \infty$$
(2.5)

for all $t, \rho > 0$ then $l_p(\Delta_q^v) \subset l_p(\mathcal{M}, \Delta_q^v)$.

Proof: Assume that condition (2.5) exists and let $u = (u_k) \in l_p(\Delta_q^v)$. Then, we get

$$\sum_{k=1}^{\infty} \left| \Delta_q^v u_k \right|^p < \infty.$$
(2.6)

The convergence of

$$\sum_{k=1}^{\infty} \left| \Delta_q^v \boldsymbol{u}_k \right|^p < \infty$$

implies that

 $\lim_{k} \left| \Delta_{q}^{v} u_{k} \right| = 0.$

Thus, we can find $n \in \mathbb{N}$ such that $\left| \Delta_q^v u_k \right| \le 1$ for all $k \ge N$.

Let

$$K = \max\left\{\left|\Delta_q^{\nu} u_1\right|, \dots \left|\Delta_q^{\nu} u_{N-1}\right|, 1\right\}.$$

Then $\left|\Delta_{q}^{v}u_{k}\right| \leq K$ for all $k \in \mathbb{N}$. For $\rho > 0$, utilizing the monotonicity of M_{k} , we get $M_{k}\left(\left|\Delta_{q}^{v}u_{k}\right|/\rho\right) \leq M_{k}\left(K/\rho\right)$ for all $k \in \mathbb{N}$.

This inequality shows that

$$\sum_{k=1}^{\infty} \left| M_k \left(\left| \Delta_q^v u_k \right| / \rho \right) \right|^p \leq \sum_{k=1}^{\infty} \left| M_k \left(K / \rho \right) \right|^p.$$

This estimate proves that $\Delta_q^v u \in l_p(\mathcal{M})$ that is, $u \in l_p(\mathcal{M}, \Delta_q^v)$. By equation (2.5) Therefore, the inclusion $l_p(\Delta_q^v) \subset l_p(\mathcal{M}, \Delta_q^v)$ holds.

3. Results and discussion

Peralta [5] studied $l_p(\Delta_q^v)$ and checked the topological properties of this space. Later Karakaş et al. [4] defined difference operator Δ_q^v . We used Peralta' s [5] studies and extented it by used the generalized difference operator Δ_q^v . We generated the difference sequence space $l_p(\Delta_q^v)$ and $\|\cdot\|_{p,\Delta_q^v}$, and investigated some of their properties. We showed that, if $l_p(\Delta_q^v)$ is equipped with an appropriate norm $\|\cdot\|_{p,\Delta_q^v}$ is a Banach space. We further more showed that, the sequence spaces $(l_p(\Delta_q^v), \|\cdot\|_{p,\Delta_q^v})$ and $(l_p, \|\cdot\|_p)$ are linearly isometric. It is shown that $l_p(\Delta_q^v) \subset l_p(\mathcal{M}, \Delta_q^v)$. Where \mathcal{M} a family of Orlicz functions, is coincides the Δ_2 – condition.

References

- [1] Kizmaz, H., On certain sequence spaces, **Canadian Mathematical Bulletin**, 24, 169-176, (1981).
- [2] Çolak, R. and Et, M., On some generalized difference sequence spaces and related matrix transformations, **Hokkaido Mathematical Journal**, 26, 3, 483-492, (1997).
- [3] Karakaş, A., Altın, Y. Et, M., On some topological properties of a new type difference sequence spaces, Advancements In Mathematical Sciences, Proceedings of the International Conference on Advancements in Mathematical Sciences (AMS-2015), Fatih University, Antalya, 144, (2015).
- [4] Karakaş, A., Altın, Y. and Çolak, R., On some topological properties of a new type difference sequence spaces, International Conference on Mathematics and Mathematics Education (ICMME-2016), Firat University, Elaziğ-Turkey, 167-168, (2016).
- [5] Peralta, Isometry of a sequence space generated by a difference operator, **International Mathematical Forum,** 5, 42, pp. 2077-2083, (2010).
- [6] Altay, B. and Polat, H., On some new Euler difference sequence spaces, **Southeast Asian Bull. Mathematics.**, 30, 209-220, (2006).
- [7] Altay, B., Başar, F., The matrix domain and the fine spectrum of the difference operator Δ on the sequence space l_p , 0 Communications in Mathematics and Applications, 2, 2, 1-11, (2007).
- [8] Qamaruddin and Saifi, A. H., Generalized difference sequence spaces defined by a sequence of Orlicz functions, **Southeast Asian Bull. Mathematics**, 29, 1125-1130, (2005).
- [9] Kamthan, P. K., Gupta, M., Sequence Spaces and Series, Marcel Dekker Inc. Newyork, (1981).
- [10] Krasnoselskii, M. A., and Rutickii, Y. B., Convex Functions and Orlicz Spaces, **Groningen, Netherlands**, (1961).
- [11] Kamthan, P. K., Convex functions and their applications, Journal of Istanbul University Faculty of Science. A Series, 28, 71-78, (1963).
- [12] Lindenstrauss, J. and Tzafriri, L., On Orlicz sequence spaces, Israel Journal. Mathematics, 10, 3, 379-390, (1971).