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ON CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS OF
COMPLEX ORDER ASSOCIATED WITH PASCAL

DISTRIBUTION SERIES

Bilal ŞEKER and Sevtap SÜMER EKER
Department of Mathematics, Faculty of Science, Dicle University, Diyarbak¬r, TURKEY

Abstract. In this study, by establishing a connection between normalized
univalent functions in the unit disc and Pascal distribution series, we have
obtained the necessary and su¢ cient conditions for these functions to belong
to some subclasses of univalent functions of complex-order. We also determined
some conditions by considering the integral operator for these functions.

1. Introduction

Let A stand for the standard class of analytic functions of the form

f (z) = z +
1X
k=2

akz
k; z 2 U = fz 2 C : jzj < 1g : (1)

Moreover, let S be the class of functions in A, which are univalent in U (see [5]).
The necessary and su¢ cient condition for a function f 2 A to be called starlike

of complex order 
 (
 2 C� = C n f0g) is f(z)
z 6= 0; z 2 U, and

Re

�
1 +

1




�
zf 0(z)

f(z)
� 1
��

> 0; (z 2 U): (2)

We denote the class of these functions with S�(
). The class S�(
) introduced
by Nasr and Aouf [10].
The necessary and su¢ cient condition for a function f 2 A to be called convex

function of order 
 (
 2 C�), that is f 2 C(
) is f 0(z) 6= 0 in U and

Re

�
1 +

1




�
zf 00(z)

f 0(z)

��
> 0; (z 2 U): (3)
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850 B. ŞEKER, S. SÜMER EKER

The class C(
) was introduced by Wiatrowski [15]. It follows from (2) and (3)
that for a function f 2 A we have the equivalence

f 2 C(
), zf 0 2 S�(
):

For a function f 2 A, we say that it is close-to-convex function of order 
 (
 2
C�), that is f 2 R(
), if and only if

Re

�
1 +

1



(f 0(z)� 1)

�
> 0; (z 2 U):

The class R(
) was studied by Halim [6] and Owa [11].
Let T � A represent the functions of the form

f (z) = z �
1X
k=2

akz
k; (ak � 0): (4)

Many important results for the class T have been given by Silverman [14]. A
lot of consequences have obtained by researchers about the functions in the class
T . Using the functions of the form f (z) = z �

P1
k=n+1 akz

k, Alt¬ntaş et al. [2]
de�ned following subclasses of A(n), which generalizes the results of Nasr et al.
and Wiatrowski [10, 15], and obtained several results for this class. It is clear that
for n = 1, we obtain the class T .

De�nition 1. [2] Let Sn(
; �; �) denote the subclass of T consisting of functions
f which satisfy the inequality���� 1


�
zf 02f 00(z)

�zf 0(z) + (1� �)f(z) � 1
����� < �;

(z 2 U; 
 2 C�; 0 < � � 1; 0 � � � 1):
Also let Rn(
; �; �) denote the subclass of T consisting of functions f which satisfy
the inequality ���� 1
 (f 0(z) + �zf 00(z)� 1)

���� < �;
(z 2 U; 
 2 C�; 0 < � � 1; 0 � � � 1):

We note that

Sn(
; 0; 1) � S�n(
) and Rn(
; 0; 1) � Rn(
):

Recently, it has been established a power series that its coe¢ cients were prob-
abilities of the elementary distributions such as Poisson, Pascal, Binomial, etc.
Many researchers have obtained several results about some subclasses of univalent
functions using these series. (see, for example [1, 3, 7, 8, 9, 12,13] )
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A variable x is said to have the Pascal distribution if it takes on the values
0; 1; 2; 3; ::: with the probabilities (1� q)r, qr(1�q)

r

1! , q2r(r+1)(1�q)r
2! ,

q3r(r+1)(r+2)(1�q)r
3! ,..., respectively, where q and r are parameters. Hence

P (X = k) =

�
k + r � 1
r � 1

�
qk(1� q)r; k 2 f0; 1; 2; :::g:

Recently, El-Deeb et al. [4] introduced the following power series whose coe¢ -
cients are probabilities of the Pascal distribution and stated some su¢ cient con-
ditions for the Pascal distribution series and other related series to be in some
subclasses of analytic functions.

Kr
q(z) := z +

1X
k=2

�
k + r � 2
r � 1

�
qk�1(1� q)rzk (5)

(z 2 U; r � 1; 0 � q � 1):
Now let us introduce the following new power series whose coe¢ cients are prob-

abilities of the Pascal distribution.

�rq(z) := 2z �Kr
q(z) = z �

1X
k=2

�
k + r � 2
r � 1

�
qk�1(1� q)rzk (6)

(z 2 U; r � 1; 0 � q � 1):
It is clear that �rq(z) is in the class T . Note that, by using ratio test we deduce

that the radius of convergence of the power series Kr
q(z) and �

r
q(z) are in�nity.

We will need the following Lemmas from Alt¬ntaş et al. [2] to prove our main
results.

Lemma 2. [2] Let the function f 2 A(n), then f is in the class Sn(
; �; �) if and
only if

1X
k=n+1

[�(k � 1) + 1] (k + �j
j � 1) ak � �j
j: (7)

Lemma 3. [2] Let the function f 2 A(n), then f is in the class Rn(
; �; �) if and
only if

1X
k=n+1

k [�(k � 1) + 1] ak � �j
j: (8)

Throughout this paper, we suppose that n = 1 for the functions in the classes
Sn(
; �; �) andRn(
; �; �) and we will write S1(
; �; �) = S(
; �; �) andR1(
; �; �) =
R(
; �; �) for brie�y.
In the present paper, we established necessary and su¢ cient conditions for the

functions that coe¢ cients consist of Pascal distribution series to be in S(
; �; �)
and R(
; �; �). Also, we studied similar properties for integral transforms related
to these series.
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2. Main Results

Theorem 4. �rq(z) given by (6) is in the class S(
; �; �) if and only if

q2r(r + 1)�

(1� q)2 +
qr(��j
j+ �+ 1)

1� q � �j
j(1� q)r: (9)

Proof. To prove that �rq 2 S(
; �; �), according to Lemma 2, it is su¢ cient to show
that

1X
k=2

[�(k � 1) + 1] (k + �j
j � 1)
�
k + r � 2
r � 1

�
qk�1(1� q)r � �j
j: (10)

We will use the following very known relation

1X
k=0

�
k + r � 1
r � 1

�
qk =

1

(1� q)r ; 0 � q � 1:

and the corresponding ones obtained by replacing the value of r with r � 1,r + 1
and r + 2 in our proofs.
By making calculations on the left hand side of the inequality (10) we obtain,

1X
k=2

[�(k � 1) + 1] (k + �j
j � 1)
�
k + r � 2
r � 1

�
qk�1(1�q)r

= (1� q)r
" 1X
k=2

�
k + r � 2
r � 1

�
qk�1�(k � 1)(k � 2) +

1X
k=2

�
k + r � 2
r � 1

�
qk�1�j
j

+
1X
k=2

�
k + r � 2
r � 1

�
qk�1(k � 1)(��j
j+ �+ 1)

#

= (1� q)r
"
q2

1X
k=3

�
k + r � 2
r + 1

�
qk�3�r(r + 1) +

1X
k=2

�
k + r � 2
r � 1

�
qk�1�j
j

+q
1X
k=2

�
k + r � 2

r

�
qk�2r(��j
j+ �+ 1)

#

= (1� q)r
"
q2

1X
k=0

�
k + r + 1

r + 1

�
qk�r(r + 1) +

1X
k=0

�
k + r � 1
r � 1

�
qk�j
j � �j
j

+q
1X
k=0

�
k + r

r

�
qkr(��j
j+ �+ 1)

#

=
q2r(r + 1)�

(1� q)2 +
qr(��j
j+ �+ 1)

1� q + �j
j [1� (1� q)r] :
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Therefore the inequality (10) holds if and only if

q2r(r + 1)�

(1� q)2 +
qr(��j
j+ �+ 1)

1� q + �j
j [1� (1� q)r] � �j
j;

which is equivalent to (9). This completes the proof. �
Upon letting � = 0 and � = 1, Theorem 4 yields the following result.

Corollary 5. �rq(z) given by (6) is in the class S(
; 0; 1) � S�(
) if and only if

qr

(1� q)r+1 � j
j:

Taking � = 0 and 
 = � = 1, we obtain the following corollary.

Corollary 6. �rq(z) given by (6) is in the class S(1; 0; 1) � S� if and only if
qr

(1� q)r+1 � 1:

Theorem 7. �rq(z) given by (6) is in the class R(
; �; �) if and only if
q2r(r + 1)�

(1� q)2 +
qr(1 + 2�)

1� q + 1� (1� q)r � �j
j: (11)

Proof. To prove that �rq 2 R(
; �; �), according to Lemma 3, it is su¢ cient to show
that

1X
k=2

k [�(k � 1) + 1]
�
k + r � 2
r � 1

�
qk�1(1� q)r � �j
j: (12)

Now,using the same method as in the proof of Theorem 4, we obtain

1X
k=2

k [�(k � 1) + 1]
�
k + r � 2
r � 1

�
qk�1(1� q)r

= (1� q)r
" 1X
k=2

�
k + r � 2
r � 1

�
qk�1�(k � 1)(k � 2)

+
1X
k=2

�
k + r � 2
r � 1

�
qk�1(k � 1)(1 + 2�) +

1X
k=2

�
k + r � 2
r � 1

�
qk�1

#

= (1� q)r
"
q2

1X
k=3

�
k + r � 2
r + 1

�
qk�3�r(r + 1) + q

1X
k=2

�
k + r � 2

r

�
qk�2r(1 + 2�)

+
1X
k=2

�
k + r � 2
r � 1

�
qk�1

#
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= (1� q)r
"
q2

1X
k=0

�
k + r + 1

r + 1

�
qk�r(r + 1) + q

1X
k=0

�
k + r

r

�
qkr(1 + 2�)

+
1X
k=0

�
k + r � 1
r � 1

�
qk � 1

#

=
q2r(r + 1)�

(1� q)2 +
qr(1 + 2�)

1� q + 1� (1� q)r:

Therefore the inequality (12) holds if and only if

q2r(r + 1)�

(1� q)2 +
qr(1 + 2�)

1� q + 1� (1� q)r � �j
j:

This completes the proof. �

As a special case of Theorem 7, if we put � = 0 and � = 1, we arrive at the
following result.

Corollary 8. �rq(z) given by (6) is in the class R(
; 0; 1) � R(
) if and only if

qr

1� q + 1� (1� q)
r � j
j:

Taking � = 0 and 
 = � = 1, we obtain the following corollary.

Corollary 9. �rq(z) given by (6) is in the class R(1; 0; 1) � R(1) if and only if

qr

1� q + 1� (1� q)
r � 1:

3. Integral Operators

In this section, we will give analog results for the integral operators de�ned as
follows:

Hr
q (z) =

Z z

0

�rq(t)

t
dt (13)

where �rq(t) is given by (6).

Theorem 10. Hr
q (z) given by (13) is in the class S(
; �; �) if and only if

�qr

(1� q) +
(1� �)(�j
j � 1)(1� q)

q(r � 1)
�
1� (1� q)r�1

�
� �j
j(1� q)r + ��j
j+ 1� � � �j
j:

(14)
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Proof. From (13), we can write

Hr
q (z) =

Z z

0

�rq(t)

t
dt = z �

1X
k=2

�
k + r � 2
r � 1

�
qk�1(1� q)r z

k

k
: (15)

According to Lemma 2, it is enough to show that
1X
k=2

[�(k � 1) + 1] (k + �j
j � 1)
k

�
k + r � 2
r � 1

�
qk�1(1� q)r � �j
j: (16)

Using the assumption (14), a simple computation shows that
1X
k=2

[�(k � 1) + 1] (k + �j
j � 1)
k

�
k + r � 2
r � 1

�
qk�1(1�q)r

= (1� q)r
" 1X
k=2

�
k + r � 2
r � 1

�
qk�1�(k � 1) +

1X
k=2

�
k + r � 2
r � 1

�
qk�1(��j
j � �+ 1)

+
1X
k=2

�
k + r � 2
r � 1

�
qk�1

(1� �)(�j
j � 1)
k

#

= (1� q)r
"
q

1X
k=2

�
k + r � 2

r

�
qk�2�r +

1X
k=2

�
k + r � 2
r � 1

�
qk�1(��j
j � �+ 1)

+
(1� �)(�j
j � 1)

q(r � 1)

1X
k=2

�
k + r � 2
r � 2

�
qk

#

= (1� q)r
(
�qr

1X
k=0

�
k + r

r

�
qk + (��j
j � �+ 1)

" 1X
k=0

�
k + r � 1
r � 1

�
qk � 1

#

+
(1� �)(�j
j � 1)

q(r � 1)

" 1X
k=0

�
k + r � 2
r � 2

�
qk � 1� q(r � 1)

#)

=
�qr

(1� q) + (��j
j � �+ 1) [1� (1� q)
r]

+
(1� �)(�j
j � 1)

q(r � 1) [(1� q)� (1� q)r � q(r � 1)(1� q)r]

=
�qr

(1� q) +
(1� �)(�j
j � 1)(1� q)

q(r � 1)
�
1� (1� q)r�1

�
��j
j(1� q)r+��j
j+1��:

From (14), we conclude that Hr
q (z) 2 S(
; �; �). This completes the proof. �

Theorem 11. Hr
q (z) given by (13) is in the class R(
; �; �) if and only if

qr�

(1� q) + 1� (1� q)
r � �j
j: (17)
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Proof. Since

Hr
q (z) = z �

1X
k=2

�
k + r � 2
r � 1

�
qk�1(1� q)r z

k

k
; (18)

according to Lemma 3, it is enough to show that
1X
k=2

k [�(k � 1) + 1]
k

�
k + r � 2
r � 1

�
qk�1(1� q)r � �j
j: (19)

Using the assumption (17), some simple computations shows that
1X
k=2

k [�(k � 1) + 1]
k

�
k + r � 2
r � 1

�
qk�1(1� q)r

= (1� q)r
" 1X
k=2

�
k + r � 2
r � 1

�
qk�1�(k � 1) +

1X
k=2

�
k + r � 2
r � 1

�
qk�1

#

= (1� q)r
"
q
1X
k=2

�
k + r � 2

r

�
qk�2�r +

1X
k=2

�
k + r � 2
r � 1

�
qk�1

#

= (1� q)r
"
q�r

1X
k=0

�
k + r

r

�
qk +

1X
k=0

�
k + r � 1
r � 1

�
qk � 1

#

=
qr�

(1� q) + 1� (1� q)
r

From (17), we conclude that Hr
q (z) 2 R(
; �; �). This completes the proof. �
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