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Abstract 

 

Systems of first order differential equations have been arisen in science and engineering. Specially, the 

systems of normalized linear differential equations appear in differential geometry and kinematics 

problems. Since it is difficult to find solutions to these equations analytically, numerical methods are 

needed for the approximate solutions. In this study, we find the approximate solutions of the Frenet-Like 

system with variable coefficients upon the initial conditions by means of a matrix method related to the 

truncated Bernoulli series. This method transforms the mentioned problem into a system of algebraic 

equations by using the matrix relations and collocation points; so, the required results along with the 

solutions are obtained and the usability of the method is discussed. 

 

Keywords: Approximate Solutions, Bernoulli polynomials and series, Curves of constant breadth, 

Matrix Methods, Systems of first order differential equations. 

 

1. Introduction 

 

The systems of differential equations in the normal form 

usually appear in the concept of differential geometry. 

For instance, a system of differential equations 

characterizing 4E  spherical curves can be given as 
 

        , , ,
d df dg

f g f
ds ds ds


   = = − + = −                 (1) 

 

where s  is arc parameter, ( ) ( )1/s s =  is curvature 

diameter; ,   and   are curvatures and, ( )f s  and 

( )g s  are in the class of 
2C [1,2]. 

The system charactering curves of constant breadth are 

the same type and can be given as 

 

     
d

d





=  , 

d

d


 


= − +  , ,

d

d





= −            (2) 

where ( ) ( )
0

s

s s ds =   and ( )  , ( )   and ( )   

are the coefficients of the curve [3,4]. 

Besides, the well known Serret-Frenet Equations 

dt
n

ds
=  , 

2

dn
t b

ds
 = − +  , 

2 ,
db

n
ds

= −  

 

lead us to the system of differential equations [5,6]: 

      1

2

d

ds


=  , 2

1 3

d

ds


 = − + , 3

2 ,
d

ds


= −         (3) 

where 1  and 2  are Euclidean curvatures. The 

solution of this system also gives as a criterian for 

periodicity of a space curve. Since the normal systems 

(1), (2) and (3) same type, it is possible to form them as 

                        

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1
2

2
1 3

3
2

.

dy
a x y x

dx

dy
a x y x b x y x

dx

dy
b x y x

dx


= 




= − + 



= − 


      (4) 

 

Also the normal system is obtained as 

 

                          

1 1 2 2

1
1

2
2

,

dT
k N k N

ds

dN
k T

ds

dN
k T

ds


= + 




= − 



= − 


                           (5) 

where 
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( )1 cosk  =  , ( )2 sink  =  and T T= , 

1 cos sinN N B = − , 2 sin cosN N B = −  for the 

Bishop frame. It can be shown that  

 

( ) 2 2

1 2s k k = + , ( ) 2

1

arctan
k

s
k


 

=  
 

 and 

( )
( )d s

s
s


 = −  [7]. 

These type systems given in (4) and  (5) which are 

called Frenet-Like system is a class of linear differential 

equations in normal form 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1
11 1 12 2 13 3 1

2
21 1 22 2 23 3 2

3
31 1 32 2 33 3 3

,

dy
P s y s P s y s P s y s g s

ds

dy
P s y s P s y s P s y s g s

ds

dy
P s y s P s y s P s y s g s

ds


= + + + 




= + + + 



= + + + 


 (6) 

or briefly  

( ) ( ) ( )
3

1

j

jk k j

k

dy
P s y s g s

ds =

= + + ;          1,2,3j =  

where ( )kjP s  and ( )g s  are functions on interval 

0 a s b    . 

 

In this study, we have developed a method based on 

Bernoulli polynomials to solve system of linear 

differential equations. Also this method has been used 

to solve high-order linear differential-difference 

equations, linear delay difference equations with 

variable coefficients and mixed linear Fredholm integro-

differential-difference equations, hyperbolic partial 

differential equations, Helmholtz equations and general 

functional integro-differential equations with hybrid 

delays [8-13]. Also many numerical methods have been 

developed to solve similar equation models [14-20].  

We firstly consider the system of differential equations 

in normal form (6) with the initial conditions 

 

      ( ) ( ) ( )1 1 2 2 3 3, , ;0 .y a y a y a a s b  = = =             (7) 

A matrix method is developed to find the approximate 

solution set in the truncated Bernoulli series form 

              ( ) ( )
0

; 0
N

j jn n

n

y s a B s a s b
=

=    ,              (8) 

where jna , 1, 2,3j =  are unknown Bernoulli 

coefficients, j , 1, 2,3j =  are the given real constants 

and ( )nB s , 0,1,.., .n N=  Bernoulli polynomials are 

defined by [21] 

( )

01 !

xt

n n

t
n

B xte
t

e n



=

=
−

  

or 

                       
0

( ) ; (0).
n

n r

n r r r

r

n
B x b x b B

r

−

=

 
= = 

 
              (9) 

 

Also, an explicit formula for the Bernoulli polynomials 

is given by 

 

                          ( ) ( )1 ,n nB s nB s−
 =                             (10) 

where ( )0 1B s =  , ( )0 1B s = , ( )1

1

2
B s s= − , ( )1 1B s =  

 

2. Fundamental matrix relations and Bernoulli 

matrix method 

 

In this section, a new matrix technique is devoloped by 

considering Taylor and Bernoulli collocation methods 

[22-23] to obtain the approximate solution of the system 

(6) under the condition (7). For this aim, we compose 

the matrix form of (6), (7) and (8); firstly the matrix 

form of (6) can be expressed as  

 

        ( ) ( ) ( ) ( ); 0 ,Y s P s Y s G s a s b = +              (11) 

where 

( )

( )

( )

( )

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1
11 12 13

2 21 22 23

31 32 33
3

, ,

y s P s P s P s

Y s y s P s P s P s P s

P s P s P sy s

 
  
   = =   
    

 

 

( )
( )
( )
( )

1

2

3

y s

Y s y s

y s

 
 

=  
 
 

, ( )
( )
( )
( )

1

2

3

g s

G s g s

g s

 
 

=  
 
 

. 

 

Then the matrix form of (8) can be written as 

 

                 ( ) ( )j jy s B s A= , ( )1,2,3 ,j =                  (12) 

where 

( ) ( ) ( ) ( )0 1 NB s B s B s B s =   , 

( )0 1 2

T

j j j j jNA a a a a s =   . 

 

Also by using the expressions (10) and (12), we have 

the matrix form  

               
( ) ( )

( ) ( ); 1,2,3 ,

j j

j

y s B s A

B s DA j

 =

= =
         (13) 

where 

0 1 0 0

0 0 2 0

0 0 0 0 N

0 0 0 0 0

 
 
 
 =
 
 
 
 

D  . 

By using the matrix relations (12) and (13) into the 

matrices ( )Y s  and ( )Y s , the following matrix forms 

are obtained as 
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( )
( )
( )
( )

( )
( )
( )

( )

( )

( )

( )

( )

( )
( )
( )

( )

1 1

2 2

3 3

1
1

2 2

3
3

,

,

y s B s A

Y s y s B s A B s A

y s B s A

y s B s DA

Y s y s B s DA B s DA

B s DAy s

   
   

= = =   
   
   

 
  
   = = =  
    

 

  (14) 

where 

( )
( )

( )
( )

0 0

0 0

0 0

B s

B s B s

B s

 
 

=  
 
 

 , 

( )
( )

( )
( )

0 0

0 0 ,

0 0

B s D

B s D B s D

B s D

 
 

=  
 
 

 

1

2

3

A

A A

A

 
 

=
 
  

, 

0

1

j

j

j

jN

a

a
A

a

 
 
 =
 
 
  

 , 1, 2,3j = . 

By substituting the collocation points defined by 

( ), 0,1,...,i

b a
s a i i N

N

−
= + = , 

into Eq. (11) along with (14), we gain the system of 

matrix equations  

( ) ( ) ( ) ( )i i i iY s P s Y s G s = +  , ( )0,1,..., ,i N=  

or briefly, the fundamental matrix equation 

          ( ) ,Y PY G BD PB A G = +  − =          (15) 

where 

( )
( )

( )

( )
( )

( )

0 0

0 1

0 0

0 0
, ,

0 0 N N

P s G s

P s G s
P G

P s G s

   
   
   = =
   
   
      

 

( )
( )

( )

( )
( )

( )

0 0

1 1
,

N N

Y s B s A

Y s B s A
Y BA

Y s B s A

  
  
  = = =
  
  
     

 

( )

( )
( )

( )

( )

( )

( )

00

1 1 .

N
N

B s DAY s

Y s B s DA
Y s BDA

Y s B s DA

  
  

    = = =  
  
      

 

In Eq. (13), the full dimensions of the matrices 

, , ,BD P B A , and G  are ( ) ( )3 1 3 1 ,N N+  +

( ) ( ) ( ) ( )3 1 3 1 ,3 1 3 1N N N N+  + +  + , ( )3 1 1N +   and 

( )3 1 1N +  , respectively. 

The fundamental matrix equation (15) corresponding to 

Eq. (4) can be written in the compact form 

                        WA G=  or  ; ,W G                            (16) 

where 

pqW BD PB w = − =    ; ( ), 1,2,...,3 1 .p q N= +  

The matrix equation (16) corresponds to a system of a 

linear algebraic equations in ( )3 1N +  unknown 

Bernoulli coefficients. 

 

By using the initial conditions defined by (7) and the 

matrix relation ( )Y s  in (14), we obtain the matrix form 

for the conditions as 

                    ( ) ( ); ,B a A B a  =                        (17) 

where 

( )
( )

( )
( )

0 0

0 0

0 0

B a

B a B a

B a

 
 

=  
 
 

 , 

1

2

3



 



 
 

=
 
  

. 

Consequently, we obtain the new following augmented 

matrix for the problem (6)-(7) by replacing the row 

matrices (17) with the rows involving the coefficients 

10 20,a a  and 30a  of the matrix (16): 

                           ;W G 
 

  or WA G= .                      (18) 

If rank W = rank   =
 
W;G N+1, the unknown 

Bernoulli coefficient matrix can be written as 

( )
-1

A = W G  and the approximate solution in the 

Bernoulli matrix form is obtained as 

( ) ( ) ,Y s B s A=  

or 

( ) ( )
0

N

j jn n

n

y s a B s
=

  . 

3. Results and Discussion 

 

In this section two examples are given to demonstrate 

the applicability of this method. These examples have 

been calculated by using Matlab.  

Example 1. Consider the system of first-order linear 

differential equations 

      

( )

( ) ( )

( )

21

2

2

1 3

3

2 1

dy
xy x x

dx

dy
xy x y x

dx

dy
y x x

dx

= −

= − +

= − + +

                     0 1,x      (19) 

with the initial conditions 

( ) ( ) ( )1 2 30 1, 0 0, 0 1y y y= = =  which has the exact 

solution ( ) ( ) ( )1 2 31, , 1y x y x x y x x= = = + . 
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The approximate solution is ( ) ( )
2

0

,j jn n

n

y s a B s
=

=  

1, 2,3j = . The collocation points for 2N =  are 

computed as 1 2 3

1
0, , 1

2
x x x

 
= = = 

 
.  

The fundamental matrix equation is 

 

( ) ,WA BD PB A G= − =  

where 

0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1 1

BD

− 
 

−
 
 −
 
 
 =
 
 
 
 
 
 
 

, 

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0

2

1
0 0 0 0 1 0 0 0

2

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0

P

 
 
 
 −
 
 
 
 

=
 −
 
 −
 
 
 

−
 
 − 

, 

1 1
1 0 0 0 0 0 0

2 6

1 1
0 0 0 1 0 0 0

2 6

1 1
0 0 0 0 0 0 1

2 6

1
1 0 0 0 0 0 0 0

12

1
.0 0 0 1 0 0 0 0

12

1
0 0 0 0 0 0 1 0

12

1 1
1 0 0 0 0 0 0

2 6

1 1
0 0 0 1 0 0 0

2 6

1 1
0 0 0 0 0 0 1

2 6

B

 
− 

 
 −
 
 
 −
 
 
 −
 
 
 = −
 
 

− 
 
 
 
 
 
 
 
 
  

 

The augmented matrix for this fundamental matrix 

equation is calculated as 

0 1 1 0 0 0 0 0 0 ; 0

1 1
0 0 0 0 1 1 1 ; 0

2 6

1 1
0 0 0 1 0 1 1 ; 1

2 6

1 1 1
0 1 0 0 0 0 0 ;

2 24 4

1 1 1
0 0 1 0 1 0 ; 0

[ ; ] .2 24 12

1 3
0 0 0 1 0 0 1 0 ;

12 2

1 1
0 1 1 1 0 0 0 ; 1

2 6

1 1 1 1
1 0 1 1 1 ; 0

2 6 2 6

1 1
0 0 0 1 0 1 1 ; 2

2 6

W G

− 
 
 − − −
 
 
 − −
 
 

− − 
 
 

− − =
 
 

− 
 
 − − − −
 
 
 − − −
 
 
 
 

 

From equation (17), we obtain the matrix form of the 

initial conditions 

 

  
( )

1 1
1 0 0 0 0 0 0 ; 1

2 6

1 1
0 ; 0 0 0 1 0 0 0 ; 0

2 6

1 1
0 0 0 0 0 0 1 ; 1

2 6

B 

 
− 

 
   = −   
 
 −
  

. 

 

From equation (18), the new augmented matrix based 

on the conditions is calculated as 

 
1 1

1 0 0 0 0 0 0 ; 1
2 6

1 1
0 0 0 1 0 0 0 ; 0

2 6

1 1
0 0 0 0 0 0 1 ; 1

2 6

1 1 1
0 1 0 0 0 0 0 ;

2 24 4

1 1 1
; 0 0 1 0 1 0 ; 0

2 24 12

1 3
0 0 0 1 0 0 1 0 ;

12 2

1 1
0 1 1 1 0 0 0 ; 1

2 6

1 1 1 1
1 0 1 1 1 ; 0

2 6 2 6

1 1
0 0 0 1 0 1 1 ; 2

2 6

W G

 
− 

 
 −
 
 
 −
 
 
 − −
 
 

  = − −  
 
 

− 
 
 

− − − − 
 
 

− − −
 
 

 

.




 

Solving this system, the unknown Bernoulli coefficient 

matrix is obtained as 

1 3
1 0 0 1 0 1 0

2 2

T

A
 

=  
 

 . 

By substituting the Bernoulli coefficient matrix into 

equation (12), we obtain the approximate solution set 

( ) ( ) ( )1 2 31, , 1y x y x x y x x= = = +  which is the exact 

solution. 
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Example 2. Consider the curve   3

1: 0, 2 E →  given by 

( )
3 3 2

, ,
3 3 2

s s s
s s

 
= + 
 

 . 

The system of differential equations in the normal form 

corresponding to curve  is as follows [24] 

     

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 3

2 1

3 1

2 cos 2 2 sin 2

2 cos 2 . (20)

2 sin 2

s s s s s

s s s

s s s

  

 

 

 = − +

 = −

 =

 

The approximate solution set of this problem is solved 

using Bernoulli Collocation method with the initial 

conditions  ( )1 0 1 =  , ( )2 0 2 =  and ( )3 0 3 = . For 

initial conditions value of distance d is 

2 2 2

1 2 3 12 3.464101615.d   = − + + =   [16] 

Solving the problem (20) in the same way as Section 2 

for 3N = , we get  

( ) 3

1

211.1592106 15.4680213

18.7854967 0.999999995

s

s

s s −= +

+
 

( ) 3

2

210.77765 26.4167678

15.1614944 2

s s s

s

 = − +

+
 

( ) 3

3

210.1776605 13.7259918

17.6088868 2.99999997.

s

s

s s −= +

+
 

Hence the value of distance d  for obtained approximate 

solution is  

2 2 2 12 3.464101615
1 2 3

d   = − + + =   . 

Let's briefly summarize the results given in this article 

as follows: 

In section 1, the problem and Bernoulli polynomials 

have been introduced. In section 2, the matrix relations 

of the given problem has been obtained and Bernoulli 

matrix method has been developed. In section 3, two 

examples have been considered to demonstrate accuracy 

of the method. In section 4, obtained results have been 

examined and the advantage of the method have been 

highlighted. 

 

4. Conclusion 

 

In this study, system of Frenet-Like differential 

equations which arise in differential geometry as a 

model for linear equation systems are discussed. To 

solve this equation system, a numerical methos has been 

developed. This method is based on Bernoulli 

polynomials and collocations points. To demonstrate the 

applicability of the present method, two examples have 

been considered. Obtained results have been showed 

that the method is suitable for the solutions of 

differential equation systems. One of the important 

advantages of this method is that solutions are obtained 

very easily and practically by using computer programs. 

Since linear differential equations are encountered in 

many physics, chemistry, biology and engineering 

problems, this method can be extended another models 

with small modifications, which is another advantage of 

the method.  
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