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ABSTRACT. In this work, we discuss and introduce the novel literature about
Raina—convex function and its algebraic properties. In addition, we elaborate
and investigate Hermite-Hadamard and Fejér—type inequalities for newly dis-
cussed definition. Finally, using the newly introduced definition, we find and
prove amazing new integral type inequalities and applications for mean to pos-
itive real numbers. The amazing techniques and wonderful ideas of this paper
may inspire and motivate for further activities and research in this direction
furthermore.

1. INTRODUCTION

During the whole of the 20*" century, an enormous and extreme research activity
was done and fruitful ideas and magnificent results were obtained in mathematical
analysis, functional analysis , convex analysis, mathematical economics and non—
linear optimization. But interesting and tremendous book namely “Inequalities”,
which is written by Hardy, Littlewood and Polya. This book has played an el-
egant role in popularization and importance of the subject of convex functions.
The modern and amazing viewpoint on convexity entails a powerful, enlighten and
distinguish interaction between analysis and geometry, which makes and enables
the readers to shear a sense of excitement. The theory of convexity encompasses
a large variety of classes of convex functions like functions, s—convex, p—convex,
log—convex, h—convex, quasi convex and exponential type convex functions while it
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is good to understand and what they have in common, it is of equal importance to
look inside their own field. The theory of convexity also played a magnificent act
in the advances of theory of inequalities. Inequalities have a lot of applications in
statistical problems, probability and numerical quadrature formulas. Due to rich
and paramount history, convex analysis and inequalities have become an attrac-
tive, interesting and absorbing field for the researchers and for the attention of the
reader, see [L}[3]4}/8,9.16}/18+22].

In recent years, many researchers working in the direction of convexity and gener-
alized convexity of Raina type using meaningful ideas and magnificent techniques
to bring a new dimension to mathematical analysis and applied mathematics with
different features in the literature. Interested readers see the references |2}/7}/14,(15].
So that is the main aim and motivation of our work. Before we start, we need
the following necessary known definitions and literature and throughout the paper,
“(H-H)” means Hermite-Hadamard inequality and “diff mapp” means differential

mapping.

2. PRELIMINARIES

In this section we recall some basic definitions.
Definition 1. [10/ A (: 5 — Z is called convez, if
C(rm1+ (1 = K)72) < KC(T1) + (1 = K) ((72), (1)
holds ¥ 71,79 € 7€ and k € [0, 1].

The well known and remarkable inequality concerning convex function is Hermite—
Hadamard inequality given as:

Theorem 1. [6] If ¢ : 5 = [T1,T2] = Z is a convex function, then

C<7142r72>T2_T1/ (v (71)—56(72) @)

The double inequality is in reverse order if { is a concave function.

Theorem 2. If(: 5 = [11,72] = X% is a convex function, then

<71+T2>/§ du</ v d<w/ ¢ 3)

In 1906, L. Fejér [5] proved the above integral inequality which is known in
the literature as Fejér inequality. Since the researchers have shown interest in the
above inequality and as a result, various generalizations and improvements have
have been appeared in the literature. This inequality has remained an area of great
and vital field for research activities due to its widespread views and robustness
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applications in the field of mathematical and convex analysis.
In 2005, Raina [12] introduced a class of functions defined formally by

+oo
F() = FAOND () § R(k) & )
PN PN ~ F(%k—‘r}\) )

where X = (X(0),...,N(k),...) and s, A > 0, |z| < Z.

If 0 =1, = 0 and R(k) = % for k = 0,1,2,..., where «, 3 and ~ are
parameters which can take arbitrary real or complex values (provided that v #
0,—1,—2,...), and the symbol a; denote the quantity

_ T(a+k)

(o) = o) =afla+1l)...(a+k-1), k=0,1,2,...,

and restrict its domain to |z] < 1 (with z € C), then we have the classical hyperge-
ometric function, that is

Fla.Biviz) =Y~y
Also, if X = (1,1,...) with »r = «, (Re(a) > 0), A = 1, then
400 ok
Eo(x)=S — 2.
(2) kZ:O T(1 + ak)

The above function is called a classical Mittag—Leffler function.

Theorem 3. [11] Suppose ¢ : H# C [0,00) = X be a diff mapp on F° of I such
that ¢" € L[y, T3], where 71,79 € J with 71 < T9. If |C| is convex on [T1, 73],
then

C(Tl ;Tz)_miﬁ /72 C)dv

T1

T1+ T2

c"<2>\+|c"<m>|}.
5)

Theorem 4. [11] Suppose ¢ : A C [0,00) = Z be a diff mapp on F° such that
¢" € LYry,72), where 71,79 € H with 71 < 7. If |¢"|* for £ > 1 is conver on
[T1,T2], then

C(Tl';‘TQ) _ 7-2i7-1 /szg(y)dl/

)
X{(s +HI(—5— )IE> +<

192

< M{l(”(ﬁﬂ—%

(r2 —71)°

w0 ®

sl )
¢ 2 )’Jr 3 )}

<
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Lemma 1. [17] Suppose ¢ : S C XZ — X be a diff mapp on H° such that
¢' € LY[11,72], where 71,79 € H with 71 < 7. If a, 8 € Z, then

OZC(Tl)JFﬂC(Tz)+2*a*5<(71+7’2>_ 1 /m((u)dy:miﬁ 1)
To —T1 )y,

1
X/
0

Lemma 2. [17] For £ >0 and 0 < e < 1,we have
1 ZL+1 1— ZL+1
/|€—H\$d/£:€ +(1-¢)
0
1

T1+ T2

(1—a-— /Q)C/(IQTl + (1 - H)T) + (8 — H)C/(K

T1+ T2

+(1- /@)7’2)] dk.

Z+1 ®)

L2 L1
/n\g—nﬁ’ﬂdﬁzg +(ZL+1+¢e)(1—¢)
0 (Z+1)(ZL+2)

Owing to the aforementioned trend and inspired by the ongoing activities in this
absorbing field, we organize the paper in the following pattern. Firstly, we introduce
Raina—convex function and its properties. Secondly, we debate and investigate (H-
H) and Fejér-type integral inequalities for Riana—convex functions. Furthermore,
we find integral inequalities and applications about fractional calculus regarding
Riana—convex functions.

3. RAINA—CONVEX FUNCTIONS AND ITS PROPERTIES

In this section we are going to add a new definition namely Raina—convex func-
tion and will study some of their algebraic properties..

Definition 2. A function ¢ : € — X is said to be Raina—convex function on 2,
if the following inequality

C(rT1+ (L= R)m2) < ((72) + K FA(C(T1) = ((72)) (9)
holds ¥ [11,72] €  and k € [0,1], where 3¢, A >0 and X = (R(1),R(2),...,R(K)) is
a bounded sequence of positive real no.

Note that when we choose ]:}i)\(C(Tl) —((72)) = ¢(11) — {(72), then Raina—
convex function collapse to the classical convex function.

Theorem 5. Let ,§: A = [r1,72) = Z. If ¢ and & are Raina—convez functions
then

(1) ¢ + & is Raina—convex function.

(#9) For c € Z and (c > 0) then ¢ is Raina—convex function.

Proof. (i) Let ¢ and £ be a Raina—convex functions, then
(C+ &) (k1 + (1 —K)T2)
=((kr1+ (1 —Rr)T2) + &(kT1 + (1 — K)T2)
<C(r2) + 8 FRa(C(T1) = C(72)) + E(T2) + & F 5 (E(T1) — E(72))



NEW HERMITE-HADAMARD TYPE INEQUALITIES 1015

< (CHO(T2) + 5 Fr ((CHE(T1) = (C+E)(72))-
(73) Let ¢ be a Raina—convex function and ¢ € Z, then
(eQ)(kT1+ (1 — K)T2)
= c[{(fﬂ'l +(1- /@)72)]
<c[C(ra) + & Fu A (C(m1) = C(72))]
< (eQ)(T2) +# FRA((eQ)(71) = (c€)(72)),
which completes the proof. O

Theorem 6. Let ¢ : € — _Z be a Raina—convex function and £ : F — X is
non-decreasing function. Then & o ( : H — X is Raina—convez function.

Proof. ¥ 171,72 € £ and k € [0, 1], we have
(€o¢) (k1 + (1 —K)T2)
=&{(C(hT1 + (1 = K)72))

< €|C(T2) + K FLA(C(T1) = ¢(72))

< &(C(r2)) + K€ F(C(m1) = ((72))
= (£0Q)(r2) + K Fra((E0Q)(T1) = (€0 )(2)),
which completes the proof. O

Theorem 7. Let ¢, : A = [11,72] = Z be an arbitrary family of Raina—convex
functions and let ((7) = sup,; (;(7). If 7 = {7 € |[11,72] : {(7) < +o00} # 0, then
HC is an interval and ¢ is Raina—conver function.
Proof. ¥ 71,72 € # and k € [0, 1], we have
C(kr1+ (1 —K)T2)
=sup (; (k71 + (1 — K)72)
J

<sup(; (12) + £ Fi \(sup ¢;(71) — sup ;(2))
J J J

= ((72) + & FRA(C(T1) = ((T2)) < oo,
which completes the proof. O

4. NEW VERSION OF H-H AND FEJER-TYPE INEQUALITIES
Theorem 8. Let ¢ : # C % — X be a Raina—convex function with ( € L*[11.72],
where T1,To € I with 71 < T2, then

1+ 1 ™ 1
(75 )_2(72—71) /T Foerlf(ritra=pm)=C(n)dp < ——— /T C(u()d,;
10




1016 S. 1. BUTT, M. NADEEM, M. TARIQ, A. ASLAM

< C(ra) + 5 FALC(m) = ¢(r2))

Proof. Using @), with p = k71 4+ (1 — k)72, v = (1 = K)T1 + K72 and Kk = 3, we
find that

((2E72) £ (0} o 8o 0~ )

Thus by integrating, we obtain

C(TI;—T2> S/OlC((l_“)Tl""W?)d“—";/ol f§7A(C(I€T1+(1—H)T2)

—C((1=r)T1 + HTQ))dH

1 T2 1 T2
e e I N (RS )
So that
T1+ T2 1 T2 R 1 T2
C( B )_2(72 ) /T1 ]:;4,/\(C(7'1+7'2—M)—C(M))d,u < P /7'1 C(p)dyp.
(11)

This completes the proof of left side of above inequality. For the right side using
p =71 and v =75 in (9), and integrating over [0,1], we have

[ = )+ 5 B — o)) (12)

T2 —T1
By simplification, the inequalities and , we get the inequality . O
Remark 1. Taking fi)\(u —v) = p— v, we reduce to inequality @)

Remark 2. Under the assumption of Theorem @ if we take X = (1,1,...) with
» = a, A =1, we get the following inequality involving classical Mittag—Leffler
function

(T572) = gy [ BalGlr 2= ) = Gl < /:cm()g;

2 T2—7’1) 1 T2 —T1

< ((ra) + 3BalC(r) = {(r2).

Theorem 9. Let { and £ be non-negative generalized convex functions of Raina
type with C¢ € LY, 73], where 71,79 € 3, 71 < To. Then

: /TZ C()&(u)dp < M' (11, 72) (14)

T2 —T1

where

M (71, 72) = C(r2)6(ra) + 5C(ra) Fin (60r1) = €r2)) + g60ra) F2a (cr) = ¢(72))
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2 7 () = o) F2a(e0r) — €6

Proof. Since ¢ and ¢ be a Raina—convex functions, we have
C(wrat (1= m)r2) < C(ra) 5 L5 () = C(r2)
§(kr1+ (1= m)r2) < &(ra) + 1 FL, (60m) — (7))

For all k € [0,1].
¢(r1+ (U= w2 )€ (k1 + (1= W)m2) < Cr2)E(ra) + #C(r2) Fia (80m) — (7))
+r€(ra) F2a () = C(r2)) + 2 FEA(C(r1) = C(72)) FEA(€(r) —&(7)

integrating over [0, 1] both sides, we have
1
/0 C(/-m'l +(1- n)7'2>§(m'1 +(1- H)Tg)dﬂ < ({(72)&(72)
+50(r2) Fia(Er) — €r2) + 560ma) FEa(C0r1) — ()
s P (cr) - ¢m)) B (§<n> —&(r))

Since ¢ and & are non—negative, we have

+ —
then

: /72 C(u)&(p)dp < M'(71,72).

T2 —T1Jr,

O
Remark 3. Tuking fi/\(u— v) = pu—v in above inequality , we get inequality
(1.4) in [15].

Remark 4. Under the assumption of Theorem @ if we take X = (1,1,...) with
» = a, A =1, we get the following inequality involving classical Mittag—Leffler
function

: /TZ C()&(p)dp < M' (11, 72) (15)

T2 —T1 T1
where

M (71, 73) = C(r2)€(ra) + 50(ra) B (E(r2) — €(72)) + 5E(r2) Ba (¢(r1) — ¢(72))
+1Eo¢ (C(ﬁ) - C(T2>)Ea (5(71) - 5(7'2))

3
Theorem 10. Let ¢ be a Raina—convex function with ( € L*[r1, 73], where 71,72 €
H, T1 < Ta, and & : H = [11,T2] = £ be non-negative, integrable symmetric

about ”*T"’ , then

/c pdp < [¢(r2) + 5 FE(ctr) — ¢(r2) /5 o (16)
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Proof. Since ¢ be a Raina—convex function and ¢ is non-negative integrable and
symmetric about Tﬁ” , we find that

/ C % / C d,LL—|— 2C(T1 +7'2—‘1,L)g(7'1 +7'2—u)d,u}

T1
n/l:l

(C( )+ (1 + 72 —u))f(u)du]
_1/” <(Tz—u7 +M—717)+C(N—71T . Tz—MT) £(u)d
_2 T T2 —T1 ! T2 —T1 2 To —T1 ! To —T1 2 e

1

N | =

/:2 (C(Tz) + 2T R () - 4(72)))

. Ty —T1

IA
N |

+ (¢ra) + =1 AL (G(r) —cm»)]g(mw

T2 —T1

< |:C(T2) +5 ]:% /\(C T2 / f d:“ﬂ
which completes the proof. (Il

Remark 5. (i) Taking ‘7:2)\(# —v) =p—v and £(x) = 1, then inequality
reduce to the inequality (@

(ii) Taking fﬁ)/\(u —v) = p— v, then inequality reduce to the inequality (@)
(#31) Under the assumption of Theorem if we take X = (1,1,...) with s = a, A =
1, we get the following inequality involving classical Mittag—Leffler function

[ e < [ee)+ 52 () = <)) [ erdnan)

T1
5. NEW INTEGRAL TYPE INEQUALITIES VIA RAINA-CONVEX FUNCTION

Theorem 11. Suppose ( : H# C % — X be a diff mapp on #° with ' € LY[11, 7],
where 71,79 € S, 71 < Ta. If|¢'(1)|* for £ > 1 is Raina—convex function on [t1, T3]
and 0 < «, B <1 then

af(r1) +B8¢(12)  2—a—B (T1+T2 1 -
2 + 2 <( 2 >_T277’1/ C('u)d'u

(5)* {(1 —2a+20%)' 71 [(6 — 120 + 120%)[¢'(72)|* + (4~ 9a + 120° - 207)

x FA(ICEI =1 r)Y)] " + (1 - 28 +26%)17F[(6 - 126 +126%) (¢ ()"
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}. as)

Proof. In case ¢ > 1, using lemma ({IJ), Raina—convexity of |¢'(z)|* on [r1,72] and
power mean inequality, we have

al(t)+B¢(r2) 2—a—08 /71+ T2 1 T2
2 T C( 2 )rg—rl/ﬁ Cl)ep

S

+(2 =38+ 28%) FEL(C ()l = I (72)1Y)]

<7 / |1_a—ﬁ\‘ (w1 + (1= ) 272

/|/3

7'1 17% 1 / 1+k
< /0|1—a—m|dn) [ =a=m(icea + (55
1 1
< EEA(C 0l =1 ) )an] "+ (18wl

T1+T2

F(1- H)Tz)‘dn]

x| / 18— wl (I )l +EEC ) = 1)) ] ] (19)

using lemma (2)), by simplifications we obtain

/0 1—a—n|<|<’<rz>f+<1§“>fﬁ,A(|<'<n>|f—|<’<72>f)>cm
= <|C/(T2)|Z + % -7'—2,,\(\(/(71 —|¢'(12) ) / [1—a—klds

1 , , 1
3 ZEa (0l = 1) [ el o = s

<|< (ra)l + 5 Fia (Il - |<'<72>|f)> (5-a+a?)
o5 FA(CEE = 1)) [(1- ) + 023 - )]

- %(1 — 20+ 20%)|¢ () [* + %(4 ~9a + 1202 - 20%) F3, (I ()| = I (72) )

and

1 R
/ wn(|<’<m>|f+<2>fiﬁ,k(m'mw|<’<72>f)>dn

1 1
=¢GN [ 18— tant 5 FEA(IC I = IC ) [ ip =
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= ()l ~ = )+ 15 i (I ~ ) (8° + 2+ /)1 - 5))

1 1 .
= 50284287 (ra)| + 5 (2= 38 +28%) 72, (IC ()l = [ (72)I"),
The following above two inequalities substitute into inequality and according
lemma result in inequality (18] for ¢ > 1.

For ¢ =1, from lemma and (2)) it follows that

af(r1) +B8¢(12)  2—a—B (T1+T2 1 T
5 +— C( 5 )—72_71/71 C(p)dp

—T1 ! / K ’ ’

<25 [/ |1—a—n|<<<n>|+<1§ >f§,A<c<n>|—|<<n>|>>dn
1 KR

+ / 18—l (1 (r2)l + 5 Fa (16 (o)l - |¢'<m>|))dn]

T2 —T1

= {(6 — 120 +120%)[¢'(12)] + (4 — 9a +12a% — 20°) F5; \(I¢'(71)] = [¢'(72)])

48
+(6 =128+ 1258%)|¢' ()| + (2 = 36 +26%) F5 5 (I (m1)| — C'(TQ)I)}- (20)

]

Remark 6. (i) Choosing fi)\(u —v) = (u—v), then the inequality collapse
to the inequality (3.1) in [17].

(ii) Under the assumption of Theorem[1d} if we take ¥ = (1,1,...) with = o, A =
1, we get the following inequality involving classical Mittag—Leffler function

ad(m1) +80(r2)  2—a—f (11472 1 "
2 (7 )_7'2—7'1/.,_1 o)y

)%{(1 —%a +2a2)1 % [(6 — 120+ 1202)|¢(72)[* + (4 — 9a + 120 — 20%)

T2 —T1

8

<

1

< (
6
% Bo (I¢(r)l = 1¢'(r2)|) | " + (1= 28+ 282 [(6 - 128 + 126%) ' (r2)

(2 =38+ 28N Ea(IC (r)l = I (m2)19)] " }- (21)

1
€

(ii1) Choosing o = 3 in above Theorem , we derive the following corollary,

Corollary 1. Let ¢ : S C % — R be a diff mapp on H#° with (' € Ly[r1,72],
where 71,79 € S, T1 < To. If |("(w)|* for £ > 1 is Raina—conver function on
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[T1,72] and 0 < « < 1then

Sl + ol + (- ) (P 2) - ] < 2 )
X {(1 — 20420277 [(6— 12a 4 1202)|¢ (2)|¢ (22)

1
[

+ (4= 9a+120% = 20%) F3 (I (70)|) — [¢'(72)]]
+ [(6 — 120+ 1202)[¢' (72)[* + (2 — 3+ 20%) FE (I (1) — IC’(Tz)V)] ‘ }

Remark 7. (i) Choosing fﬁyk(,u —v) = p— v in Corollary , then inequality
(29) collapse to inequality (3.5) in [17].

(i) Under the assumption of Corollary if we take X = (1,1,...) with e =, A=
1, we get the following inequality involving classical Mittag—Leffler function

T”LTQ)— L C(wdu| <

S + ¢ + (1= a)¢ (25

(G @3

T1 — T2

x [(1 —2a -+ 2a?)1—% [(6 ~ 120+ 1202)|¢ (12) ¢

1
2

+ (4= 90+ 120% — 209 Ea((¢'(r0)l") ~ [¢'(r)l]

|-

+ [(6 — 120+ 120%)[¢"(72)[* + (2 = Ba + 20°) Eo (I¢ (1) — |g’(72)\f)} ] :
(4i1) choosing a = 8 = %, %, respectively, in above Theorem , we can obtain the
following inequality,

Corollary 2. Suppose ¢ : S C R — X be a diff mapp on H° with (' € L[y, 2]
where 71,7y € A, T1 < To. If |¢'(p)|* for £ > 1 is Raina—conver function on

[71,72] and 0 < o, B < 1, then
1\7
T277’1
— 24
() e

R

1
2

S

{ 121 (m2)| +9 FS A (o)l = 1 (72)|)]

12 )l +3 B )l = 1¢ () >}f},
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o252 - s [

1
[2

T (9lo> % { [901¢" ()l + 61 FXA(IC (ro)l = I (r2)])]

}.

Remark 8. Under the assumption of Comllary@ if we take X = (1,1,...) with
» = a, A =1, we get the following inequality involving classical Mittag—Leffler

<

)=

+ [901¢/(ra)I 420 FE (¢ ()l = I ()]

function
1 C(Tl)+<(’r2) 7'1+7'2 1 T2 Tg —T1 ]. %
5[ 2 +§( D )} T re—T1 /1 ) < =5 (12) (25)

1
l

x { [121¢(r2)" + 9B (€' ()| = ¢ (r2))]

q\\»—t

- [12|</<m>|‘+3Ea<|<;’<n>| ¢'(72)

[¢(r1) +¢(r2) +4¢(

o
Tl+72 /

2 7'277'

S| =

1
z

IN

W (910) { [90|C/(T2)|£ +6LEL(|C ()l = [¢'(72)]")]

}.

If we choose ¢ =1 in Corollary , then we take the following inequality,

)=

+ |901¢' (72) 1 + 29Ea (I ()| = I (72)1%)]

Corollary 3. Suppose ¢ : S C % — X be a diff mapp on H#° with ¢’ € L[ry, T3]
where 71,79 € S, T1 < T2. If |¢'(1)| is Raina—convez function on [r1,T2)

e ey o

(26)

T2 —
- 16

[2|< (ra)l + Foa (1m0l = 1¢ <m>|)]

‘é[cm # )+ 40 (P2 = —— [ et
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5(72‘77;1) 212l + FEA(IC ()] = ¢ (7)) |

Remark 9. (i) Choosing Fy \(u—v) = (u — v), then inequalities and
reduce to inequalities (3.6) and (3.7) in [17].

(ii) Under the assumption of Corollary@ if we take X = (1,1,...) with e =, A =
1, we get the following inequality involving classical Mittag—Leffler function

e Ry o

T2

= 1;6“ [2|C/(7'2)| + Ea(|C/(T1)| - |C'(72)|)]

IN

(27)

‘é[am )+ 40 (P2 - —— [ et

< 202 T o)) 4 B (1) - 1€ 2))

Theorem 12. Suppose ¢ : H# C % — X be a diff mapp on ° with ' € Li[t1, 7],

where 71,79 € H, T1 < To. If |('(1)|* is Raina—convex function on [r1,7s] and
0<a, <1, then

a¢(t1) +B¢(r2) | 2—a—B (71472 1 "
2 e )_Tg—rl/n Sy

(28)

N

T2 —T1

1
= [2(e+1)(4+2)}

x { (200421 = )+ 2+ 20" ) ¢ (7]

+ <(€ +3—a)(1— )t (20 +4— a)o/“)
< P =1 )] !+ (2620 - 8 + 200+ 28 )

(8741480 -9") B (0@ - 1)l % }

Proof. In case £ > 1, using the property of Raina-convexity of |¢'(1)[¢ on [r1, 73]
and Holder’s inequality

af(t1) +B¢(r2) [ 2—a—B (11 +72 1 2
2 + 2 C( 2 )_7'2—7'1/7.1 C(/J/)d,u

(29)
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T1+ T2

<T2‘“[/ (1= a =)l (e + (1= ) 72 d

T1+T2

7'2—7'

(1 5)72)‘%} <

S ———

1+k

Lol neous
X (|C/(7'2)|€ (—— )]-“jjk(K( )| |C'(Tz)|e))dn]
' KR
”/0 dr)' | /O 18 =l (1 o)l + () FEA (IS (1)l = [¢' (7)) ) di] ]

<o “/ 1= o= wff (I )l + () 72, (1) = ¢ o)) )]

ENC

i {/01 16— #l1(1¢' ) + (5) Fia (Il = 18 (ra)1) )] ]

By lemma we have

1 , 1+k , ,
/ |1—a—n|f(\<<m>\f () FEAC ) = 6l d
O+ g Pl 1) [ 1= o= wlas

S ()l \c<m>|>/0 R p——_

= (¢

1

Tyt

= (Il + 5 BRAC I~ () (1 _a);ff )
%f A EDI =1 (2)] )(<1—a>é(+;++1<)f(;+22—) @'ty
D

ST 2 D0 - 0 20+ 20| ()

[(z+2>( — @) (04 2)a T 4 (1= ) 4 (042 a)at]
1

< Faa(d ()l =1 (r2)) = )] {2@ +2)(1 - o)™
+ 20+ 2)a" | (72) + (043 - a)(1 - )+

+ (2044 — oz)a“l} Fa (¢ (r)] - |C/(7'2)l)] ;
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and
18 =w (1€ + () FEAC I = (¢ () ) )

1 1
=1l [ 18 = rlfdnt 5 PO =)l [ w8 = nl'an

£+1 _ R)+1
=l (T ) 1 2 B - Y

B (L+1+ 81— B
< @+ +2) )

1

= DT [RET DA -8 20+ 28T ()l

B+ (14 B) (1= BT FELC ()~ [ () ) |

If we put the last two inequalities into inequality (29)), as a result we obtain the
inequality for £ > 1. If we put £ = 1, then the proof is the identitical as that
of , and the theorem is investigated. O

Remark 10. (i) Choosing f)‘j’)\(u — V) = u— v, then the inequality reduces
to the inequality (3.8) in [17].

(i1) Under the assumption of Corollary[13, if we take X = (1,1, ...) with ¢ = o, A =
1, we get the following inequality involving classical Mittag—Leffler function

‘acm)wcm)+2—a—ﬁc<ﬁ+”)_ ! /”cm)du
T2 —T1 T1

2 2 2 (30)

ENE

T2 —T1 1

- 4 {2(£+ 1)(£+2)}

x { (206421 )+ 200 420" ¢ (72)

+((E+3-a)(1—a)*! + (20 +4 - a)a’")

< B (1l = 1 ra))] '+ [(20 42000 - 1 1 20+ 28I
(82 0+ 1+ B = ) B (I 0l = I r)l!) ] }

Similarly to Corollaries of Theorem , we can obtain the following Corollaries
of Theorem .
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Corollary 4. Suppose ¢ : 7 C R — X be a diff mapp on H° with (' € L[y, 73]
where 71,79 € H, T1 < To. If |’ ()| is Raina—convex function on [r1,72] for
£>1and0<a<l1, then

7'1+T2

Gtra)+ gl + (1 - a0 (P ) - L [ ey

|2

(31)

S

T2 —T1

- 4 {2(€+ 1)(€+2)}

{[(2@4—2)(1—a)lﬂ+2(€+2)0/+1>|C’(7’2)|2

S

n ((e F3-a)1-a)* £ (20+4— a)a"“) Fau (¢ ()l - \C’(Tz)lﬁ]

(2020 - ) 2 420" ) ¢ ()
+ (o/” F+1+a)(- oz)Hl) FoenllS ()l = WWW)] 7 }

Remark 11. Choosing }"ﬁ)\(,u —v) = p— v, then inequality collapse to in-
equality (3.11) in [17].

Corollary 5. Suppose ¢ : S C R — X be a diff mapp on H° with (' € L[y, 73]
where 71,79 € A, T1 < T2. If |('(p)| is Raina—conver function on [t1,Ta] for
£>1and0<a, <1, then

RSNtk <) RS A A

<72—71[ 1 b
2 - 8

A+ 1) +2)
(32)

x { [((4€+8)I¢'(r)|f + (3+6) FEAUC(rl = I (7)) ]

}

{ [((3+6)272 4 6(¢+2)) ¢ (7|

)=

+ [(@e+8)IC )l + (€ +2) FEAC (oI = 1< (7))

T1+ T2

‘é[f(ﬁ)+<(72)+46( ) - = [

To —T1 1 %

=12 [18(€+ 1)(€+2)]

+ (34827 4 (60+11) F5 (¢ (r)| = ¢ (7)) g [((3e+6)2+2 +6(0+2)

}.

)=

¢ r)lf + (14 (3+4)2%1) FEA(C () = [¢ (7)1
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Remark 12. (i) Choosing fﬁ’)\(u —v) = pu— v, then the inequality reduces
to the inequality (3.12) in [17].

(i1) Choosing £ =1 in Corollary , then we get Corollary .

(#4i) Under the assumption of Corollary@ if we take X = (1,1,...) with s = a, A\ =
1, we get the following inequality involving classical Mittag—Leffler function

T1+ T2

) - [

x { (€ +8)[¢'(72)|* + B+ O)EallC (r)I = I (r2)19)) |

To —T1 1

<o [18(€+1)(€+2)]%{{((3€+6)22+2+6(£+2))|§’(72)z

+ ((3£ F8)20H 4 (604 11)En (¢ (1)]* — |§’(72)|‘))] gut [((3€ +6)242 1 6(4 + 2))

+ ¢(

{C(Tl) +¢(72)

To —T1 1 %
<= ]
2 8

A0+ 1)(C+2)

N

=

ENE

+ [+ 8)IC ()l + (€ + DB (r)I" = 1 (72)]))]

T1+T2

|é[<<n>+<<m>+4<< e AL

()l + (14 B+ 92 ) Bl (ro)l = I (m2)1)] } (33)

For further results, we highlight the below Lemma which is proved in [11].

Lemma 3. [11] Suppose ¢ : S C % — R be a diff mapp on H#° with ' €
LY[11,72) where 71,72 € H# and 71 < To, then

1

T2 —T1

1 1
x l/o &”m# + (1= K)r1)dr +/O (5 — 1)2C" (ks + (1 — 1) 2 ;” )dn] .

T1+72): (72—T1)2

| cmdn-c -

Theorem 13. Suppose ( : H# C X — R be a diff mapp on H#° with (" €
L[11,72), where 71,79 € H and 71 < T2. If |¢"(n)| is Raina—convex function on
[T1,72], then

- - - T2 71 § 1" 1, T1 T2
¢( 9 ) = 1 - /T1 C(u)du’ < (16)[;04 (r1)] + ¢ (L2 ;r)|)
(35)
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7 (AT = 1)) + 3 Pl ()l - ¢ (P2 ;w] .

Proof. From lemma , we have
T1+T 1 2 Ty —71)? TI+T
o5 - [P cwan] < P [T - wprjas
T —T1 ! 6
1
[ = DRI ek (- ) ]
0

sW[/Oln2(|<"<Tl>|+n FoAlI (CE2) = 1)) ) ]

+(16)l [ =12 (1 O e >|—|<”<“+”>'>)d*‘]

2

To — 2 " " m™ "
:(216‘T1)L1%|C (r)l+ 512 4 7 FR (T2~ 1))

1 1" 1"
o FR A ()] - ()

- {22 [;04"( D1+ (CE2y))

1 1 1 1 " "
+ 3 FAIC (R = 1)) + 5 Pl (ra)l - ¢ <“‘2”2>|>] .

O

Remark 13. (i) Choosing Fﬁ,)\(u —v) = i — v, then inequality reduce to
inequality .

(i1) Under the assumption of Theorem[13, if we take ® = (1,1,...) with = o, A =
1, we get the following inequality involving classical Mittag—Leffler function

T1+ T2

’C( 5 )T iTl /:2 C(M)d/i' < W[;(IC”(TQ - |§”(¥)|)
(36)

+ 1 (Ball" (P20 = 1)) + 5 Balle" () - c"<“§”>|>].

Theorem 14. Suppose ¢ : H# C X — R be a diff mapp on H#° with (" €
L[ry, 73], where 71,79 € K and 71 < To. If |¢" ()| for £ > 1 with % + % =1 is
Raina—convex function on [11, 72|, then

() [

< M % (37)
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> [<;|<//(TI)Z + i ‘Fﬁ,/\(KH(Tl ;7’2”@ o ‘C”(Tl)|£)) [2
+ (G 4 5 FEAC @l - |<"<“+”>|‘>)Z].

Proof. If p > 1, using lemma and power Mean Inequality, then

(57 [ o< 72
+/7n—UQC(Ma+O—Hf“+”)V]

0
< Cn g | [l (2472 1 )]

Pt g [ =17 (e -0 757 )

1/ . . .
Because |¢”|* is Raina—convex function, we have

/1 2 C//(I{Tl + T2
0

¢ 1
5 +(1—I{)T1)‘d/€§*
and

3
/Olm—l)?

¢’ (n# +(1- H)Tl) ’d/@

)=

¢ (r0)lf

1 (EACCE )

¢ 1
"(kre + (1 — KZ)Tl i 7'2)’ drk < —|§”(T1 R

¢
2 -3 2 )|
i R " I T1+ T2\
+ 5 Faa (I = (BN
Therefore we have
T1+ T2 1 T2 (9 —71)% 1.1
_ dul < Y2711 (=
’c( T o [ < 3

x [(;IC”(H)Z + 1 A - 1)

s (R @Eme e L (el - |<"<“+”>|f>)f].

Remark 14. (i) Choosing ]-"ﬁ’)\(u —v) = i — v, then inequality reduce to
inequality @
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(ii) Under the assumption of Theorem|[1], if we take X = (1,1, ...) with 3 = o, A =
1, we get the following inequality involving classical Mittag—Leffler function

C(n —572) - in /: C(M)d/i>

T1+T2

y [(;w(mv B, DT 1)

(2 —71)% 1.1
T(g)p (38)

<

1

l

1 1" 1 17 17 %
+ (51 ) 4+ DB ()l = 1)) ]

6. APPLICATIONS

In this section, we recall the following special means for two positive real numbers
T1,To Where 71 < T3:
(1) The arithmetic mean
T1+ T
A:A(Tlﬂ'z) = %

(2) The geometric mean

G:G(T1,Tz)=\/ﬁ~

(3) The harmonic mean

2’7’17’2
H=H =—
(r1,72) T1+ T2
(4) The p-logarithmic mean
p+1 p+1

T T T

G ) RO

Lp:Lp(Tl,TQ) = (

(5) The identric mean

1
1 T2\ To-71
IZI(Tl,T2)2(7—2> ’ .

T1
€E\Tq

(6) The heronian mean

[T§+w(71+7-22)% —i—T;F’ 540
w

HU)S ) =
’ (Tl 7_2) \VT1T2, if s =0.

These means have a lot of applications in areas and different type of numerical

approximations. However, the following simple relationship are known in the liter-
ature.

If we choose ((u) = p® for s # 0 and « > 0 in Theorems and 7 as a
result we get the following inequalities for means.
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Proposition 1. Let 79 > 0, 79 > 0, 71 # 79, £ > 1 and either s > 1 and
(s=1)¢>1ors<0 Then

2—a—pf
2

T —T1 1

Afars, f73) + 1

AS(’Tl,Tg) — LS(Tl,TQ) S

X [(1 — 204 202)' "7 {(6 — 120+ 120%)|s75 7 + (4 — 9a + 1202 — 20°)

1
l

x FSA(lsmi 1 = lsms ) |+ (1= 284267174 (6 — 128+ 128%) s

(238 +26%) FSa(lsri T — 551 Y)] ] .

Remark 15. Under the assumption of Pmposition if we take X = (1,1, ...) with
» = a, A =1, we get the following inequality involving classical Mittag—Leffler
function

2—a—p
2

— 1
Alars, Br3) + (AR

AS(Tl,’Tz) 7LS(T1,T2) S

x |(1 - 2a+2a2)t- 1 {(6 — 120+ 1202)[s75 ¢ + (4 — 9 + 1202 — 20)

1
x Bo (|57 = lsm37)] " + (1= 28+ 26717 F[(6 — 125 + 126775
1
+(2-38+26%) x Ballsri | — ls737')] ]

Proposition 2. Let 19 > 0, 79 > 0, 71 # 72, £ > 1 and either s > 1 and
(s=1)¢>1o0ors<0

2—a—-p
2

(7'2—7'1)[ 1 ]
4 R20+1)(+2)
(41)

N

A(arti, BT5) + A%(11,79) — L¥(11,72)| <

x H( [20+2)(1 = @)+ 20+ 2)a"* | |57 + [(£+3 - a)(1 - a)**!

1
3

+ 20+ 4 - a)a ] B (s = s )|+ [(200+ 21— By

+2(0+ 2)ﬁq“) |s757 " + (6“2 F(+1+8)(1- B)“l) R, (|sr§—1|f - m;-lm

1
l

] |
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If we choose ((u) = Inyu for 4 > 0 in theorems and (12)), as a result we get
the following inequalities for mean.

Proposition 3. For 7y >0, 70 >0, 71 # 72 and £ > 1, we have
lnGQ(T?,Tg) N 2—a-—p

— 1
5 5 InA(71,72) — Inl(11,72) 2T ;

<=5 l(l ~ 204 20%)

T2 T1 T2

x [(6 120+ 1202) () 4+ (4 — 9a + 1202 — 20%) f§7A<( Ly 2 )4)} : (42)

1
T2 T1 T2

£ (120428 [(6 - 128+ 128%)( ) + (2 - 35 +28%) Fi () 1%)]%]'

Remark 16. Under the assumption of Proposition@ if we take X = (1,1,...) with

x = a, A =1, we get the following inequality involving classical Mittag—Leffler
function

2 (¢ B
2— o — — 1.1
InG (72—1’7-2) + 3 ﬁlnA(ﬁ,Tg) —Inl(1q,72)| < T2 < 7-1(6)2 (43)

X

T2

(1- 20 +2a2)1-% [(6 120+ 1202) () 4+ (4 — 9a + 1202 — 2043)Ea(( Lye_ (2 )‘5)}

+ (12842877 [(6 — 128+ 1252)(%)5 +(2-36+ 253)Ea((%)2 - i)e)} }Z] '

Proposition 4. For 71 >0, 79 >0, 71 # 72 and { > 1, we have

l 2 B 92— _
nG (;1’72) + 02[ BZTLA(Tl,TQ) —Inl(71,72)

To —T1 1 b
4 {2(6+ 1)(€+2)}
(44)

<

X [[(2(6 +2)(1— ) 200+ 2)a“1) (=) +

o [(q—l—S—a)(l —a)" 4 (2E+4—a)o/+1}

SN (ERTREST]

T1 T2

(20 +2)(1 = B +2(¢ +2)8) (i)z

#(lar =g ) () - )] ] |
Finally,

Proposition 5. Formo > 711 >0, 71 # 72, w>0and s >4 or0+# s <1, we have
Hy, ((71,72)

41 To T L(73,73)
Hosrums) | yan (re 1y (LD )y
H(r3,78) T G4 7'1+7'2 CENG2(11,7T2)

(45)
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(ro = T1)A(T1,72) | 2|3 2(s—1) i Was—1 i
- 8G2(71,72) w+2(G (72’71)+ 2G (T2771)>
X E 2(s—1) Weas—t L
+ J—.'%7 ( <G ( 7'2) + 9 G (7_17 7_2))

_ w|+|2<st (7 277_11)+ZG55(T2,711)))]-

Proof. Let ¢(p) = %ﬁ;“ for £ >0 and s & (1,4).

() = — (/f’1+%u%’1) (46)

By Corollary . if follows that

[g(:—j) + (%) +C(% ; *)} - i — / ((z)da

1 1[7'5 +w(rime)2 + 75 TS+ w(TiTe)? + 73]

212 T5(w+2) T5(w+2)

T2\s+1 _ (71)\s+1
(7%) (%)

(s+D(FH -7)

L@ re@Ee i)l
w+ 2 w ~+ 2

(Lz)%ﬂ _ (Ll)%ﬂ
tor oy
G+(E-2)
Hy o(11,72) S$+1 To | T1 ./ L(m3,73)
N Doy ms (2
H(TiaTg) ’( +1)( +7—2’ ) (GQ(Tl’TQ) )
T2 T1
71 To T2
BB B2 (D))
_no 2| 2o (Bt + S (47)
167172 w+2\"T1 2°1
Fa ’ 5 ((Tiys—1 , W T1y5 ‘,’ 5 ((T2\s1 Egi—l'
+ ””\<w+2((72) +2(72) ) w+2<(71) Jr2(71)2 )
(12 —T1)A(T1,72) | 2s] 2(s—1) 1 w1 1
_ G2(s L el L 48
8G2(71,72) w+2< (7—2’71)+ 2 2(7-277'1)) (48)

N H 2(s—1) ES—g _
+f%,A< S(620 0, 2+ S6 b, )
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El 2(s—1 1 w1 1

e et —)+ =G* —

w + 2 (T2771)+2 2(7‘2,7_1) ’

obviously (47) and (48] yield (45]). O

7. CONCLUSION

In this paper, we have defined and proved some Hermite-Hadamard and Fejer—
type inequalities for generalize convex functions of Riana type. In addition, we
find some interesting integral inequalities. All these results are new and amazing
in literature. These results of the convex analysis are the basis and argument for
many inequalities in pure and applied sciences. One thing to keep in mind, in the
field of convex analysis and inequalities if we face problems, generalized notions and
conceptions about convex functions are required to obtain pertinent and applicable
results. It is high time to find the applications of these inequalities along with
efficient numerical methods. We believe that our new results regarding generalize
convex function of Raina type will have a very deep research in this fascinating
field of inequalities and also in pure and applied sciences. The amazing techniques
and wonderful ideas of this paper can be extended on the co-ordinates along with
fractional calculus. In the future our goal is that we will continue our research work
in this direction furthermore.
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