
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
B. Genge et al., Vol.4, No.3

Beyond Internet Scanning: Banner Processing
for Passive Software Vulnerability Assessment

Béla Genge, Piroska Haller, and Călin Enăchescu

Petru Maior University of Tg. Mureş, Department of Informatics.
N. Iorga street, No. 1, Tg. Mureş, Mureş, Romania

e-mail: bela.genge@ing.upm.ro, phaller@upm.ro, ecalin@upm.ro

Abstract—Nowadays, the increasing number of devices and services that require a direct Internet access, creates new security

challenges. These challenges need to meet user feature-based requirements with the companies’ restrictive security policies.

Therefore, security administrators need to adopt novel tools in order to quickly and non-intrusively verify the degree of exposure of

Internet-facing services. In this respect, we find tools such as Shodan and ZMap, which enable scanning of services at an Internet-

scale. Scan results can deliver significant details on service version, patches, and configuration. Subsequently, these can expose

valuable information about known software vulnerabilities, which may be exploited by malicious actors. Therefore, this work studies

the degree of service exposure by means of banner analysis. Experiments conducted on five university-type institutions revealed

that banner analysis is not “old fashioned” and that immediate measures need to be taken in order to secure sensitive services.

Keywords—Vulnerability assessment; Internet scanning; Common Platform Enumeration (CPE); Common Vulnerability and

Exposure (CVE); National Vulnerability Database (NVD).

1. Introduction

Recent surveys report an increasing trend on the
number of devices directly accessible from Internet.
In fact, predictions indicate that more than 25 billion
devices are going to be accessible from the Internet
by 2015 and approximately 50 billion devices by
year 2020 [1]. Among these we find a wide palette
of devices ranging from sensors and actuators, Ra-
dio Frequency Identification-based devices (RFID),
industrial equipment, video surveillance cameras, to
generic PCs and networking devices.

The intrinsic mechanisms behind the automated
discovery of Internet-facing services have been re-
cently reshaped by the advancements in the field of

Internet scanning. Novel tools such as ZMap [2] are
nowadays capable of delivering accurate results in
less than 45 minutes. This effectively means that
a single user machine may scan today the entire
IPv4 address space in a time frame of tens of
minutes. On one hand, the increase of scan speeds
may give Internet topology analysts the necessary
data to improve the current architecture. On the
other hand, however, these powerful tools may also
be used to discover vulnerable services and more
generally, critical network access points [3], [4]. As
shown by a study performed by Durumeric, et al. [4]
modern Internet scanning tools such as ZMap may
be applied to identify vulnerable services. Taking for
instance the Heartbleed vulnerability, a publicly ac-

81



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
B. Genge et al., Vol.4, No.3

knowledged (April 2014) implementation bug in the
popular OpenSSL library, an attacker may remotely
read the memory of Web servers, including private
data, e.g., private cryptographic keys. Consequently,
attackers “equipped” with powerful Internet-scale
mapping tools such as ZMap may rapidly identify
vulnerable services, possibly in less time than it
takes security administrators to deploy software
patches/configurations.

On top of the above-mentioned advancements and
possible threats, the Internet scanning community
is developing novel search engines aimed at iden-
tifying devices and services directly connected to
Internet. One of the most popular search engines
within this class is Shodan [5], designed to crawl the
Internet and to index all common services. Shodan
is able to index a wide variety of services and
devices ranging from traditional Internet services
such as Web servers, FTP servers, and SSH servers,
to non-traditional devices such as Web cameras,
network switching equipment, and industrial hard-
ware [6], [7]. Despite the implemented limitations
on the number of returned scan results, tools such as
Shodan and ZMap are freely available to the general
public. Moreover, taking into account the massive
“publicity” and debates that followed the release of
these tools [8], security designers are faced with
new challenges, which require urgent measures to
secure services exposed to Internet.

In this work we argue that despite important ad-
vancements in the field of vulnerability assessment
and most importantly in the traditional field of
penetration testing, i.e., “pen-testing”, the majority
of services directly accessible from Internet are
still exposing sensitive information. Subsequently,
we demonstrate that results returned by search en-
gines such as Shodan, but also by network asset
discovery tools such as PRADS and p0f may be
used to infer intrinsic service details and most

importantly to identify known service vulnerabili-
ties. Subsequently, our study confirms well-known
recommendations [9] on reducing the degree of ser-
vice exposure through the implementation of well-
established security measures, e.g., closing unused
ports, deploying firewalls, and sanitizing banners.
The adopted methodology brings together several
tools and methods from the field of vulnerability
assessment. More specifically, it builds on results
returned by network asset discovery tools, e.g.,
Shodan and PRADS, in order to extract sensitive
banner information, and uses the National Vul-
nerability Database to automatically identify vul-
nerabilities associated to each discovered service.
We show that “unsanitized” service banners, i.e.,
banners with vendor and version numbers, may in-
clude significant information on services which may
then be used to identify vulnerable software. These
results may be maliciously used by an attacker
to identify in a stealthy scan the most vulnerable
service and ultimately the most feasible access point
to critical assets. Experimental results conducted on
the services of five different university-like institu-
tions demonstrate the effectiveness of the proposed
approach and its applicability to non-intrusive vul-
nerability assessment.

The remainder of this paper is organized as fol-
lows. A brief overview of related work is given in
Section 2. A discussion on vulnerability reports as
well as the presentation of the proposed methodol-
ogy are detailed in Section 3. Then, experimental
results conducted on five different university-like
institutions are presented in Section 4. The paper
concludes in Section 5.

2. Related Work

In the field of network asset discovery we can
find several tools such as p0f [10] and PRADS
[11], which rely on user-specified signatures to

82



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
B. Genge et al., Vol.4, No.3

TABLE 1
Comparison of related techniques.

Passive Active Vulnerability
Method asset disco. asset disco. reports

p0f X
PRADS X
ZMap X
NetGlean X
Nessus X X
PVAT X X

distinguish between specific products and version
numbers. These tools generate a list of discovered
assets from network traffic capture files. Compared
with such approaches, the methodology proposed
in this work goes further and identifies specific
vulnerabilities, which are extracted from the well-
known National Vulnerability Database (NVD).

Nessus is an “all-in-one” vulnerability assessment
tool [12]. It actively probes services in order to
test for known vulnerabilities and possible service
configuration weaknesses. While Nessus is an active
vulnerability scanner, the method proposed in this
paper is a passive scanner, which does not require
to directly interact with the analyzed services.

Finally, we mention NetGlean [13], which pro-
vides a real-time view on the analyzed system.
It continuously monitors the underlying network
infrastructure and constructs machine fingerprints
based on a variety of system features such as
installed services, OS name and version, and so on.
Compared to NetGlean, the method proposed in this
paper goes further and is capable to automatically
identify (known) vulnerabilities, and to produce
meaningful service reports to security experts. A
comparison of the features exposed by various tools
and approaches is given in Table 1.

3. Methodology

This section presents the methodology used in the
process of revealing known service vulnerabilities.
We start with an overview of network asset dis-
covery tools and of vulnerability reports, and we
continue with the presentation of the undertaken
methodology.

3.1. Network Asset Discovery

Over the years various network asset discovery
tools have been proposed. As stated above, state of
the art instruments include p0f [10], PRADS [11],
ZMap [2], and the popular service search engine
Shodan [5].

Within the above-mentioned list, p0f and PRADS
fall into the category of passive network asset
discovery tools. They are well-suited to analyze
network traffic and to identify well-known service
patterns. This entails, however, that such patterns
are accurately defined before the analysis in order
to ensure precise results.

ZMap [2], on the other hand, is an active scanning
tool. Once it is launched, it applies different OS and
protocol signatures in order to discover services and
to identify version numbers.

Lastly, we mention Shodan, launched in 2009
by programmer John Matterly. It is a computer
search engine equipped with a graphical user in-
terface that can identify Internet-facing devices and
services. Shodan crawls the Internet for available
devices and services and stores the collected data,
namely IP address, port and service banner in a
database accessible via http://www.shodanhq.com
or via Shodan API. At the beginning, Shodan in-
dexed basic services such as Telnet, FTP, SSH, and
HTTP. However, the complete list of services in-
dexed by Shodan has been continuously expanding
to cover more than 80 services.

83



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
B. Genge et al., Vol.4, No.3

Shodan provides APIs for Python, Ruby, and
NodeJS languages. Given the popularity and
wide-spread use of the Python language, in the
following we provide a brief example on the steps
required to query Shodan’s database via its Python
API. Let us consider the following few lines of code:

1. from shodan import Shodan

2. api = Shodan(settings.Shodan.API_KEY)

3. result = api.host(host)

The previous lines provide a simple example on
the use of Shodan’s API to return information on
one specific host, i.e., IP. Line 1 is used to import
Shodan’s main module, while line 2 instantiates the
Shodan class. In this second line the API_KEY

is the user key that is automatically generated by
Shodan’s Web portal for each newly registered user.
Finally, line 3 calls host() function which returns
the information stored in Shodan database on the
requested host’s IP address. Results are returned in
JSON format. A selection of fields extracted from
a result returned by Shodan is given below. The
complete JSON result can be found at [14].

"region_code": null,

"ip": "41.21.249.170",

"area_code": null,

"country_name": "South Africa",

"country_code": "ZA",

"data": [

{

"product": "Siemens HiPath 3000 telnetd",

"os": null,

"timestamp": "2014-01-12T18:25:41",

"isp": "Vodacom",

"asn": "AS36994",

"banner": "*********************** HiPath 3000

Telnet **** ** Adjust the Telnet ** window to the

** visible frame * *************************"

}

]

3.2. National Vulnerability Database

Essentially, vulnerabilities are software flaws,
which may allow malicious actors to perform illicit
operations such as altering data, take control of
underlying Operating System, or to expose and
even destroy valuable/sensitive information. In the
early years of vulnerability reports (during the ’90s)
companies used to write custom vulnerability de-
scriptions which included – more or less – the same
information needed to identify the vulnerable soft-
ware, possible exploits and the impact of executing
exploits. However, the wide variety of vulnerability
reports have lead to incompatibilities, to multiple
reports on the same software bugs and to an untrace-
able state of vulnerabilities. As a solution to these
problems the Common Vulnerability and Exposure
(CVE) was released in 1999. Its aim was to provide
a uniform vulnerability naming convention in order
to facilitate dissemination of vulnerability-related
information.

One of the most well-established vulnerabil-
ity databases, the National Vulnerability Database
(NVD), builds on the information provided by CVE.
NVD is meant to “enable(s) automation of vul-
nerability management, security measurement, and
compliance” and it is often viewed as the “ground
truth” for software vulnerability assessment [15].
The CVE entries available in NVD include a variety
of fields such as a brief overview of the vulnerabil-
ity, external references to advisories, impact rating,
and a list of vulnerable software.

84



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
B. Genge et al., Vol.4, No.3

At the heart of every CVE entry lies the Com-
mon Platform Enumeration (CPE), “a standardized
method of describing and identifying classes of ap-
plications, operating systems, and hardware devices
present among an enterprise’s computing assets”
[16]. CPE names provide information on software
vendor, name, version, language, edition, etc.

3.3. Problem Statement

As mentioned before, today we are witnessing a
new stage of development in the field of Internet
scanning. As a result, we find powerful new publicly
available tools, which have the ability to scan the
full IPv4 address space in under 45 minutes [2].
Furthermore, with the development of device and
service-oriented search engines such as Shodan [5],
we unveil the complex shape of the Internet and its
services. As a result, new tools and methodologies
are available, which can seamlessly return results on
previously identified Internet-facing services.

Despite the variety of the available tools we
are missing an automated identification of service
vulnerabilities discovered by non-intrusive tools
such as Shodan. Besides the traditional information
pertaining to service description, banner, location,
the identification of vulnerabilities would provide
further insight into the degree of service exposure
in terms of the number and severity of discovered
(known) vulnerabilities. In essence, such a method-
ology needs to encapsulate the ability to commu-
nicate with service discovery tools, automated CPE
name reconstruction from the available information,
as well as the ability to automatically extract CVE
entries from NVD. These elements provide the
necessary capabilities to assist security experts in
the analysis of Internet-facing services.

It is noteworthy that by leveraging the non-
intrusive and slow-rate scanning algorithms imple-
mented within search engines such as Shodan, the

Passive Vulnerability 
Assessment Tool

(PVAT)

Reports

p0f

National Vulnerability 

Database

PRADS

Shodan

Fig. 1. Architecture of the undertaken vulnera-
bility assessment methodology.

vulnerability assessment can also be seen as non-
intrusive and applicable off-line, therefore, falling
into the category of passive vulnerability assessment
instruments. This provides an important asset in the
tool-chain of security experts, which may be applied
at early service analysis phases.

3.4. Methodology for Vulnerability Assessment

The undertaken methodology for the identification
of (known) vulnerabilities encapsulates the results
returned by network asset discovery tools such as
p0f, PRADS, and Shodan, and the data available
in National Vulnerability Database. Subsequently,
key heuristic algorithms are implemented in order
to reconstruct CPE names from service banners and
to automatically extract CVE entries from NVD.

The architecture of the proposed methodology
is given in Fig. 1. Here, the passive vulnerability
assessment tool (PVAT) leverages the output of
network asset discovery tools in order to identify
the list of hosts, services, and ultimately service
banners. At the same time, from NVD it downloads
the set of all available (known) vulnerabilities and
it stores them locally for further processing.

In the reconstruction of CPE names PVAT uses the
list of known CPEs downloaded from NVD and it

85



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
B. Genge et al., Vol.4, No.3

processes service banners in the attempt to identify
keywords that are also found in known CPEs. Since
NVD is updated on a daily basis, the list of CPEs
used by PVAT in the assessment process needs to
be recompiled when new NVD data files are made
available. For this purpose PVAT includes a module
that automatically verifies the availability of updates
in NVD, and it downloads CVE files (given in XML
format) once an update is available. Based on CVE
files this particular model compiles a list of all CPE
names and these are made available to the steps that
follow.

In order to reduce the state-space, the search
builds on the assumption that in general, vulnerabili-
ties are associated to software version numbers. As a
result, the first step of the CPE name reconstruction
procedure is the identification of version numbers
in service banners. Once these version numbers
are identified, an in-memory hash table is built
to ensure quick search and access to CPE version
numbers. The procedure continues with the search
of keywords that are also found in the list of CPEs
associated with a specific version number. Once a
CPE is found to match all keywords, it is placed in
the list of possible CPEs that may identify a CVE
entry.

In the next phase of the vulnerability assessment,
PVAT uses the list of reconstructed CPEs in order
to identify CVEs. CVEs are stored in an in-memory
graph structure, which associates CPEs to CVEs.
However, the procedure is not as straight-forward
as one might think, since PVAT needs to account
for boolean operators defined for each CVE entry.
In fact, CVEs may contain one or more AND/OR
sections which denote operators applied on CPEs
that are needed for the CVE to be applicable in a
specific software context. This is a significant aspect
in vulnerability assessment, since in certain cases
vulnerabilities depend on the underlying Operating

Systems (OS), as well as a variety of modules and
installed software. As a result, PVAT needs to take
into account all possible CPEs identified in the
previous phases, as well as the boolean operators
applied on them.

The output of PVAT is a list of services and
their associated vulnerabilities. PVAT also produces
elementary reports in the form of PNG image files
which classify different services and the number of
discovered vulnerabilities.

4. Experimental Results

This section presents details on the experiments
performed with the automated vulnerability as-
sessment tool/methodology (PVAT). At first, we
present experiments concerning the data returned
by Shodan. Then, we present the analysis on the
data returned by PRADS given a simple network
experimentation topology.

4.1. Scenario A: Experiments With Shodan
and PVAT

The experiments aim at showing the degree of
exposure of traditional services. We illustrate that
the lack of elementary protective measures such as
sanitizing service banners and limiting the number
of opened ports, may lead to highly visible services
which may ultimately “attract” attackers.

For this purpose we have selected five 24-bit IP
address blocks (class ’C’ sub-nets) associated to
University-type institutions from different member
states of the European Union. The selected IP blocks
have been carefully verified in order to ensure that
they are assigned to the selected institutions. In
the experiments that follow we use Ui to denote
the i-th University, where i ∈ {1, 2, 3, 4, 5}. Next,
we launched PVAT with each of the selected IP

86



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
B. Genge et al., Vol.4, No.3

TABLE 2
Discovered service types and hosts.

Service U1 U2 U3 U4 U5

DNS 4 – 1 10 2
FTP 9 – 4 20 6
HTTP 75 34 5 54 39
HTTPS 26 38 5 20 31
IMAP 1 – – 4 2
IMAPS 7 1 – 4 4
POP3S 6 1 – 4 2
RDP 15 – 1 22 1
SMTP 7 – – 12 –
SSH 27 3 5 19 28

Total service type 26 8 7 30 13
Total service count 265 80 23 244 127

address blocks and with the Shodan communication
module enabled in the attempt to identify services,
to reconstruct CPE names, and to identify known
CVE entries.

First, we look at the number and type of discov-
ered services for each University. As depicted in
Table 2, the number of discovered services ranges
from 23 in the case of U3 to 265 in the case of U1,
while the number of services for U2 is of 80, for
U4 is of 244, and for U5 is of 127. Within the list
of services we have found traditional HTTP/HTTPs
services, as well as DNS, FTP, and HTTP services.
Nevertheless, we have also found less common
services such as SNMP, which is usually specific
to network switching/routing devices.

On the other hand, as shown in Table 2, the
number of discovered services is not necessarily
proportional to the number of type of services. For
example, in the case of U1 we have found 265

services, and 26 different types of services, while
in the case of U4 we have found 244 services, and
30 different types of services.

Next, we launched PVAT’s CPE name recon-
struction algorithm on the five different IP blocks.
Surprisingly, PVAT identified more than 80 CPEs

University1 University2 University3 University4 University5
0

20

40

60

80

100

120

N
um

be
r 

of
 C

P
E

 n
am

es

Fig. 2. The number of reconstructed Common
Platform Enumeration (CPE) names.

in the case of four Universities, and 31 CPE names
in the case of U3. A closer analysis of these CPEs
revealed various products and versions. Most of the
CPEs, however were linked to HTTP and HTTPs
services. Nevertheless, CPE names have been also
discovered for SNMP, FTP, as well as SSH.

More specifically, as illustrated in Fig. 2 and
numerically in Table 3, in the case of U1 PVAT
reconstructed 90 CPEs, for U2 89 CPEs, for U3

31 CPEs, for U4 118 CPEs, and finally, for U5 it
reconstructed 79 CPEs. Considering the potential
vulnerabilities associated to each of these CPEs, we
believe that the discovered CPE names are a clear
illustration of the high degree of exposure of the
analyzed institutions. It is noteworthy that since the
analysis performed by PVAT is offline and it relies
exclusively on the correctness of data provided by
third-party software, the actual conclusions need
to be carefully formulated. Nevertheless, the high
number of CPEs returned by PVAT are a clear
confirmation of the highly powerful capabilities of
service banner-based analysis, which is one of the
first steps that an attacker might take in the process
of compromising vital Internet-facing services.

In the next phase of the analysis we launched
PVAT’s CVE entry identification module. The mod-
ule loaded an in-memory mapping of the entire

87



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
B. Genge et al., Vol.4, No.3

University1 University2 University3 University4 University5
0

100

200

300

400

500

600

N
um

be
r 

of
 C

V
E

 e
nt

rie
s

Fig. 3. The number of identified Common Vul-
nerability and Exposure (CVE) entries.

TABLE 3
The number of discovered CPE names and

CVE entries.

U1 U2 U3 U4 U5

CPE count 90 89 31 118 79
CVE count 272 94 60 538 84

CVE count with CVSS ≥ 7 75 16 16 132 12

NVD database and used hash-based tables for quick
access to CVE entries. By using the set of recon-
structed CPE names from the previous phase, CVE
entries have been identified for each of the ana-
lyzed institutions. In this respect, PVAT identified
a surprisingly high number of CVE entries, since
each CPE may point to more than one CVE entry.
As illustrated in Fig. 3 and numerically in Table 3,
for U1 PVAT identified 272 CVE entries, for U2 it
identified 94 CVE entries, for U3 it identified 60
CVE entries, for U4 it identified 538 CVE entries,
while for U5 it identified 84 CVE entries.

These numbers are surprisingly high and raise
serious concerns on the vulnerability of the an-
alyzed institutions. As a matter of fact, most of
the discovered vulnerabilities included a Common
Vulnerability Scoring System (CVSS) value above
average (CVSS scores are in the range of 1 - lowest,
and 10 - highest). Furthermore, for all institutions

2

4

6

8

10

University 1 University 2 University 3 University 4 University 5

A
ve

ra
ge

 C
V

E
 s

co
re

 a
nd

 o
ut

lie
rs

Fig. 4. Distribution of CVSS values across the
five analyzed institutions.

we have found several cases of CVEs with max-
imum CVSS values. These indicate vulnerabilities
of maximum severity, where attackers may exploit
software vulnerabilities in order to run remotely
injected malicious code and to finally take control
over underlying machines. For illustration purposes
the distribution of CVSS values across the five
different analyzed institutions is portrayed in Fig.
4.

4.2. Scenario B: Experiments With PRADS
and PVAT

The following experiments are aimed at demon-
strating PVAT’s ability to process results derived
by different network asset discovery tools. Given
the popularity of p0f and its successor, PRADS, the
following experiments are conducted with the help
of PRADS.

In this scenario we configured a simple network
topology consisting of a client workstation with
Chrome Web browser installed, and with an Apache
server station. From the client station we launched
Chrome and we connected to the Apache Web
server. At the same time, we recorded the network
traffic between the client and the server.

Next, we launched PRADS with the default
asset signature configurations in the attempt

88



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
B. Genge et al., Vol.4, No.3

to identify the network assets. Besides the
results concerning possible OS versions,
which are out of PVAT’s scope, PRADS
returned the following entry for the client host:

10.0.0.171,0,80,6,CLIENT,[http: Mozilla/5.0 (Windows

NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/35.0.1916.153 Safari/537.36],1,1404207543

For this output PVAT applied its CPE and CVE
reconstruction algorithms on each pair of keyword
and version numbers. As a result, for Mozilla
and version number 5.0 it returned more than
100 results, while for Chrome and version num-
ber 35.0.1916.153 it identified four vulnerabili-
ties. However, this particular output is a result of
PRADS’s signature construction rules, which try to
approximate different software and as a result, they
give various options. Nevertheless, for each of these
options PVAT applies its reconstruction algorithms
and it returns as many results as it can find from
NVD. Therefore, a significant conclusion of this
experiment is that PVAT is able to operate on the
output of different network asset discovery tools, but
also, that the accuracy of results is highly dependent
on the quality of its input.

4.3. Discussion

The experiments presented in this section are
a clear indication that even today, banner-based
analysis is not “old fashioned”, and that it remains
one of the simplest ways that an attacker may
acquire information on services and their possible
vulnerabilities. Even more disturbing is the fact that
in the vast majority of the analyzed cases system
administrators seem to make the same configuration
mistakes. That is, services are not sanitized (in
terms of the information/configuration exposure),

(possibly) unused ports are not blocked by fire-
walls, and configurations of critical devices, e.g.,
network switches, are easily accessible. To make
matters worse, attackers now have powerful third-
party tools, e.g., Shodan, which they may use to
launch stealthy Internet-scale scans for vulnerable
services.

Nevertheless, despite these warnings, we also
need to look at the positive side of the develop-
ment of tools such as Shodan and PVAT. In fact,
the public disclosure on their powerful capabilities
has risen the level of awareness and the need
to place a larger emphasis on security require-
ments and on the implementation of security mea-
sures. Furthermore, recently published ICS-CERT
reports [17] recommend “the usage of tools, such as
SHODAN and Google, and leverage those platforms
to enhance awareness of the Internet accessible
devices that might exist within your infrastruc-
ture”. These reports are a clear illustration of the
fact that nowadays it does not suffice to simply
place security devices, e.g., firewalls and Intrusion
Detection/Prevention Systems, in the “right” net-
work places. However, these traditional measures
need to be coupled with modern detection tools,
which are less disruptive as classic penetration-
testing techniques, and may provide the first level of
information required to create a map of visible and
possibly vulnerable Internet-facing services. Based
on these results, security administrators may then
take appropriate measures in order to significantly
reduce the degree of service exposure.

Briefly, we believe that PVAT brings several major
contributions to the field:

1 PVAT builds on the advanced features pro-
vided by network asset discovery tools and ex-
pands their capabilities vulnerability analysis.

2 Since PVAT falls into the category of passive
vulnerability assessment, it does not require

89



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
B. Genge et al., Vol.4, No.3

direct interaction with the analyzed services.
Therefore, PVAT may process various inputs
originating not only from Shodan, but from
other tools as well such as p0f, and PRADS.

3 Finally, PVAT automatically updates its list of
CPE and CVE names, and it does not require
constant development of plug-ins. Obviously,
since PVAT depends on the availability of
vulnerability descriptions in NVD, its output
is also highly dependent on the accuracy and
completeness of vulnerability reports, as given
in NVD.

5. Conclusion

This paper argued that it is imperative to sanitize
the information exposed by services in the attempt
to reduce the degree of service exposure. The
methodology that was adopted for demonstrating
these arguments embraces the advanced features
provided by modern network asset discovery tools
such as p0f, PRADS and Shodan, while vulnerability
reports are directly downloaded from the National
Vulnerability Database (NVD). Experimental results
conducted on five different university-type institu-
tions revealed the severity of service exposure. The
results confirmed that service banner-based analy-
sis can provide significant information on service
type, vendor, and even version numbers, which may
then be used to reconstruct CPEs and to extract
known CVEs from NVD. The analysis underlined
the necessity to apply typical service sanitizing
methodologies in order to reduce service exposure
and the number of attacks. As future work we
intend to expand the applicability of PVAT to other
institutions and to implement time-based analysis
of services aiming at disclosing possible critical
changes in service configuration over a specific
time.

Acknowledgment

The research presented in this paper was sup-
ported by the European Social Fund under the
responsibility of the Managing Authority for the
Sectoral Operational Programme for Human Re-
sources Development, as part of the grant POS-
DRU/159/1.5/S/133652.

References

[1] Cisco, “The internet of things.” http://share.cisco.com/
internet-of-things.html, 2014. [Online; accessed February
2015].

[2] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap:
Fast internet-wide scanning and its security applications,” in
Proceedings of the 22Nd USENIX Conference on Security,
SEC’13, (Berkeley, CA, USA), pp. 605–620, USENIX Asso-
ciation, 2013.

[3] Z. Durumeric, M. Bailey, and J. A. Halderman, “An internet-
wide view of internet-wide scanning,” in 23rd USENIX Security
Symposium (USENIX Security 14), (San Diego, CA), pp. 65–78,
USENIX Association, Aug. 2014.

[4] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey,
F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer, and
V. Paxson, “The matter of heartbleed,” in Proceedings of the
2014 Conference on Internet Measurement Conference, IMC
’14, (New York, NY, USA), pp. 475–488, ACM, 2014.

[5] J. Matterly, “Shodan.” http://www.shodanhq.com, 2014. [On-
line; accessed December 2014].

[6] H. Ghani, A. Khelil, N. Suri, G. Csertan, L. Gonczy, G. Urban-
ics, and J. Clarke, “Assessing the security of internet-connected
critical infrastructures,” Security and Communication Networks,
vol. 7, no. 12, pp. 2713–2725, 2014.

[7] R. Bodenheim, J. Butts, S. Dunlap, and B. Mullins, “Evaluation
of the ability of the shodan search engine to identify internet-
facing industrial control devices,” International Journal of Crit-
ical Infrastructure Protection, vol. 7, no. 2, pp. 114 – 123, 2014.

[8] D. Kedmey, “See every single device connected to the internet.”
http://time.com/3221958/internet-map/, 2014. [Online; accessed
February 2015].

[9] A. Grau, “Shutting the door on shodan.”
http://www.manufacturing.net/articles/2013/12/
shutting-the-door-on-shodan, 2013. [Online; accessed
February 2015].

[10] M. Zalewski, “p0f v3: Passive fingerprinter.” http://lcamtuf.
coredump.cx/p0f3/, 2012. [Online; accessed December 2014].

[11] E. Fjellskal, “Passive real-time asset detection system.” http:
//gamelinux.github.io/prads/, 2009. [Online; accessed December
2014].

90



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
B. Genge et al., Vol.4, No.3

[12] R. Rogers, Nessus Network Auditing. Syngress publishing,
2008.

[13] G. Manes, D. Schulte, S. Guenther, and S. Shenoi, “Netglean:
A methodology for distributed network security scanning,”
Journal of Network and Systems Management, vol. 13, no. 3,
pp. 329–344, 2005.

[14] J. Matterly, “Shodan rest api documentation.” https://developer.
shodan.io/api, 2015. [Online; accessed February 2015].

[15] V. Nannen, “The Edit History of the National Vulnerability
Database,” Master’s thesis, ETH Zurich, Switzerland, 2012.

[16] B. Cheikes, D. Waltermire, and K. Scarfone, “Common platform
enumeration: Naming specification version 2.3,” Tech. Rep.
NIST Inter-agency Report 7695, NIST, August 2011.

[17] National Cybersecurity and Communications Integration Cen-
ter, “ICS-Cert Monitor. Internet Accessible Control Systems
at Risk.” https://ics-cert.us-cert.gov/sites/default/files/Monitors/
ICS-CERT Monitor %20Jan-April2014.pdf, 2014. [Online;
accessed February 2015].

91


