On tzitzeica surfaces in euclidean 3-space \mathbb{E}^{3}

Bengü BAYRAM, Emrah TUNÇ*
Balkesir University, Faculty of Arts and Sciences, Department of Mathematics, Balıkesir

Geliş Tarihi (Received Date): 21.05.2020
Kabul Tarihi (Accepted Date): 04.09.2020

Abstract

In this study, we consider Tzitzeica surfaces (Tz-surface) in Euclidean 3-Space $\mathbb{E}^{\mathbf{3}}$. We have been obtained Tzitzeica surfaces conditions of some surfaces. Finally, examples are given for these surfaces.

Keywords: Tzitzeica condition, Tzitzeica surface, fundamental form, Gauss curvature.

Öklid-3 uzayındaki tzitzeica yüzeyleri üzerine

$\ddot{\mathbf{O}} \mathrm{z}$
Bu çallşmada Öklid-3 uzayındaki Tzitzeica yüzeylerini incelendi. Bazı yüzeylerin Tzitzeica yüzey şartları incelendi. Son olarak bu yüzeyler için örnekler verildi.

Anahtar kelimeler: Tzitzeica şartı, Tzitzeica yüzeyi, temel form, Gauss eğriliği.

1.Introduction

Gheorgha Tzitzeica, Romanian mathematician (1872-1939) introduced a class of curves, nowadays called Tzitzeica curves and a class of surfaces of the Euclidean 3space called Tzitzeica surfaces. A Tzitzeica curve in \mathbb{E}^{3} is a spatial curve $x=x(s)$ with the Frenet frame $\left\{T, N_{1}, N_{2}\right\}$ and curvatures $\left\{k_{1}, k_{2}\right\}$ which the ratio of its torsion k_{2} and the square of the distance $d_{o s c}$ from the origin to the osculating plane at an arbitrary point $x(s)$ of the curve is constant, i.e.,

[^0]$\frac{k_{2}}{d_{o s c}{ }^{2}}=a$
where $d_{\text {osc }}=\left\langle N_{2}, x\right\rangle$ and $a \neq 0$ is a real constant, N_{2} is the binormal vector field of x .
In [1], the authors gave the connections between Tzitzeica curve and Tzitzeica surface in Minkowski 3-space and the original ones from the Euclidean 3-space.

A Tzitzeica surface in \mathbb{E}^{3} is a spatial surface M given with the parametrization $X(u, v)$ for which the ratio of its gaussian curveture K and the distance $d_{t a n}$ from the origin to the tangent plane at any arbitrary point of the surface is constant, i.e.,

$$
\begin{equation*}
\frac{K}{d_{t a n}{ }^{4}}=a_{1} \tag{2}
\end{equation*}
$$

for a constant $a_{1} \neq 0$. The ortogonal distance from the origin to the tangent plane is defined by
$d_{t a n}=\langle X, N\rangle$
where X is the position vector of surface and N is unit normal vector field of the surface.

The asimptotic lines of a tzitzeica surface with negative Gaussian curvature are Tzitzeica curves [2]. In [3], authors gave the necessary and sufficient condition for Cobb-Douglass production hypersurface to be a Tzitzeica hypersurface. In addition, a new Tzitzeica hypersurface was obtained in parametric, implicit and explicit forms in [4].

In this study, we consider Tzitzeica surface (Tz-surface) in Euclidean 3 -space \mathbb{E}^{3}. We have been obtained Tzitzeica surface conditions of some surface.

Let M be a regular surface in \mathbb{E}^{3} given with the parametrization $X(u, v):(u, v) \in D \subset$ \mathbb{E}^{2}. The tangent space of M at an arbitrary point $p=X(u, v)$ is spanned by the vectors X_{u} and X_{v}. The first fundamental form coefficients of M are computed by
$E=\left\langle X_{u}, X_{u}\right\rangle$
$F=\left\langle X_{u}, X_{v}\right\rangle$
$G=\left\langle X_{v}, X_{v}\right\rangle$
where \langle,$\rangle is the scalar product of the Euclidean space. We consider the surface patch$ $X(u, v)$ is regular, which implies that $W^{2}=E G-F^{2} \neq 0$.

The second fundamental form coefficient of M are computed by
$e=\left\langle X_{u u}, N\right\rangle$
$f=\left\langle X_{u v}, N\right\rangle$
$g=\left\langle X_{v v}, N\right\rangle$
where, N is unit normal vector field of the surface. The Gaussian curvature are given by $K=\frac{e g-f^{2}}{E G-F^{2}}$

2.Tzitzeica surfaces in \mathbb{E}^{3}

Definition 2.1 Let $x: I \subset \mathbb{R} \rightarrow \mathbb{E}^{2}$ be a unit speed plane curve with curvatures $k_{1}(s)>$ 0 . If the curvature of x satisfies the condition
$k_{1}(s)=a . d_{o s c}{ }^{2}$,
for some real constant $a \neq 0$, then x is called planer Tz-curve, where $d_{o s c}=\langle n, x\rangle$ and n is the unit normal vector field of x.

Proposition 2.2 Let M be a regular surface in \mathbb{E}^{3} given with parametrization
$X(u, v)=(x(u, v), y(u, v), z(u, v))$.
Then M is Tz-surface if and only if
$\left(e g-f^{2}\right)\left(E G-F^{2}\right)=a_{1} .\left(\operatorname{det}\left(X, X_{u}, X_{v}\right)\right)^{4}$
Holds, where $a_{1} \neq 0$ real constant and $x(u, v), y(u, v), z(u, v)$ is differentiable functions.
Proof. $N=\frac{X_{u} \times X_{v}}{\left\|X_{u} \times X_{v}\right\|}$ is unit normal vector field of the surface. By the use of equations (2), (3), (5) we get (9).

Proposition 2.3 Let M be a regular surface in \mathbb{E}^{3} with the parametrization (8). If M is Tz -surface then the equation
$\left.\left|\begin{array}{ccc}x_{u u} & y_{u u} & z_{u u} \\ x_{u} & y_{u} & z_{u} \\ x_{v} & y_{v} & z_{v}\end{array}\right| \begin{array}{ccc}x_{v v} & y_{v v} & z_{v v} \\ x_{u} & y_{u} & z_{u} \\ x_{v} & y_{v} & z_{v}\end{array}\left|-\left|\begin{array}{ccc}x_{u v} & y_{u v} & z_{u v} \\ x_{u} & y_{u} & z_{u} \\ x_{v} & y_{v} & z_{v}\end{array}\right|^{2}=a_{1}\right| \begin{array}{ccc}x & y & z_{1} \\ x_{u} & y_{u} & z_{u} \\ x_{v} & y_{v} & z_{v}\end{array}\right|^{4}$
holds, where $a_{1} \neq 0$ real constant.
Proof: Considering together (4), (5), (6) and the unit normal vector field of M
$N=\frac{X_{u} \times X_{v}}{\left\|X_{u} \times X_{v}\right\|}=\frac{1}{W}\left|\begin{array}{lll}e_{1} & e_{2} & e_{3} \\ x_{u} & y_{u} & z_{u} \\ x_{v} & y_{v} & z_{v}\end{array}\right|$,
we have,

$$
\begin{aligned}
K & =\frac{e g-f^{2}}{E G-F^{2}} \\
& =\frac{\left\langle X_{u u}, N\right\rangle\left\langle X_{v v}, N\right\rangle-\left\langle X_{u v}, N\right\rangle^{2}}{W^{2}}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{W^{2}}\left\{\left\langle X_{u u}, \frac{X_{u} \times X_{v}}{\left\|X_{u} \times X_{v}\right\|}\right\rangle\left\langle X_{v v}, \frac{X_{u} \times X_{v}}{\left\|X_{u} \times X_{v}\right\|}\right\rangle-\left\langle X_{u v}, \frac{X_{u} \times X_{v}}{\left\|X_{u} \times X_{v}\right\|}\right)^{2}\right\} \\
& =\frac{1}{W^{2}}\left\{\frac{1}{\left(\left\|X_{u} \times X_{v}\right\|\right)^{2}}\left[\operatorname{det}\left(X_{u u}, X_{u}, X_{v}\right) \operatorname{det}\left(X_{v v}, X_{u}, X_{v}\right)-\left(\operatorname{det}\left(X_{u v}, X_{u}, X_{v}\right)\right)^{2}\right]\right\} \\
& =\frac{1}{W^{2}} \frac{\left(\begin{array}{ccc}
x_{u u} & y_{u u} & z_{u u} \\
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v}
\end{array}\left|\begin{array}{ccc}
x_{v v} & y_{v v} & z_{v v} \\
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v}
\end{array}\right|-\left|\begin{array}{ccc}
x_{u v} & y_{u v} & z_{u v} \\
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v}
\end{array}\right|\right.}{W^{2}} . \tag{12}
\end{align*}
$$

On the other hand

$$
\begin{align*}
d_{t a n} & =\langle X, N\rangle \\
& =\left\langle(x, y, z), \frac{X_{u} \times X_{v}}{\left\|X_{u} \times X_{v}\right\|}\right\rangle \\
& =\frac{1}{W}\left|\begin{array}{ccc}
x & y & z \\
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v}
\end{array}\right| \tag{13}
\end{align*}
$$

is obtained. Substituting fourth exponent of (13) and (12) into (2), we get the result.
Proposition 2.4 Let M be a regular surface in \mathbb{E}^{3} given with the parametrization (8). Then M is Tz-surface if and only if the equation

$$
\begin{align*}
& a^{2}\left(x_{u u} x_{v v}-x_{u v}^{2}\right)+b^{2}\left(y_{u u} y_{v v}-y_{u v}^{2}\right)+c^{2}\left(z_{u u} z_{v v}-z_{u v}^{2}\right) \\
& +a b\left(x_{u u} y_{v v}+y_{u u} x_{v v}-2 x_{u v} y_{u v}\right)+a c\left(x_{u u} z_{v v}+z_{u u} x_{v v}-2 x_{u v} z_{u v}\right) \\
& +b c\left(y_{u u} z_{v v}+z_{u u} y_{v v}-2 y_{u v} z_{u v}\right)=a_{1}(a x+b y+c z)^{4} \tag{14}
\end{align*}
$$

holds, where

$$
\begin{aligned}
& a(u, v)=y_{u} z_{v}-y_{v} z_{u} \\
& b(u, v)=-x_{u} z_{v}+x_{v} z_{u} \\
& c(u, v)=x_{u} y_{v}-x_{v} y_{u}
\end{aligned}
$$

are differentiable functions and $a_{1} \neq 0$ real constant.
Proof: The first and second derivatives of X are replaced by (4) and (5). By the use of (2), (3), (6) we obtained (14).

Definition 2.5 The equation given by (14) is called the $T z$-surface equations.

3.Tz-Monge surface

Definition 3.1 A Monge patch is a patch $X: U \subset \mathbb{E}^{2} \rightarrow \mathbb{E}^{3}$ of the form
$X(u, v)=(u, v, f(u, v))$
where U is an open set in \mathbb{E}^{2} and $f: U \rightarrow \mathbb{R}$ is a differentiable function [5].

Theorem 3.2 Let M be a regular surface in \mathbb{E}^{3} given with the parametrization (15). Then M is a Tz-surface if and only if
$a_{1}=\frac{f_{u u} \cdot f_{v v}-f_{u v}^{2}}{\left(-u f_{u}-v f_{v}+f\right)^{4}}$
holds, where $a_{1} \neq 0$ real constant.
Proof. Differentiating (15) with respect to u and v we obtain $X_{u}=\left(1,0, f_{u}\right)$ and $X_{v}=$ $\left(0,1, f_{v}\right)$ respectively. We can find the coefficients of the first fundamentel form as follows:
$E=1+f_{u}^{2}, \quad F=f_{u} \cdot f_{v}, \quad G=1+f_{v}^{2}$.
The unit normal vector field of M is given by the following vector field;
$N=\frac{1}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}\left(-f_{u},-f_{v}, 1\right)$.
The second partial derivatives of X are expressed as follows:
$X_{u u}=\left(0,0, f_{u u}\right), \quad X_{u v}=\left(0,0, f_{u v}\right), \quad X_{v v}=\left(0,0, f_{v v}\right)$
Using (18) and (19) we can get the coefficients of the second fundamental form
$e=\frac{f_{u u}}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}, \quad f=\frac{f_{u v}}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}, \quad g=\frac{f_{v v}}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}$.
Substituing (17) and (20) into (6) we obtain the Gaussian curvature as follows:
$K=\frac{f_{u u} \cdot f_{v v}-f_{u v}^{2}}{\left(1+f_{u}^{2}+f_{v}^{2}\right)^{2}}$
Substituing (18) into (3) we obtain

$$
\begin{equation*}
d_{t a n}=\frac{-u f_{u}-v f_{v}+f}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}} . \tag{22}
\end{equation*}
$$

Consequently, by the use of (21) and (22) with (2) we get the result.
Example 3.3 Let M be a Monge patch in \mathbb{E}^{3} with given by parametrization
$X(u, v)=\left(u, v, \frac{-(3+u v)}{(u+v)}\right)$,
$f(u, v)=\frac{-(3+u v)}{(u+v)}$
is a differentiable function substituing by differentiating the equation (23) into (16) we obtain $a_{1}=-\frac{1}{108}$ which means that M is a Tz-surface.

4. Tz-Translation surface

Definition 4.1 A surface M defined as the sum of two plane curves $\alpha(u)=(u, 0, f(u))$ and $\beta(v)=(0, v, g(v))$ is called a first type translation surface (is also known translation surface) in \mathbb{E}^{3}. So, a first type translation surface is defined by the parametrization
$X(u, v)=(u, v, f(u)+g(v))$.
A surface M defined as the sum of two plane curves (which are not lines) $\alpha(u)=$ $(u, 0, f(u))$ and $\beta(v)=(v, g(v), 0)$ is called a second type translation surface in \mathbb{E}^{3}. So, a second type translation surface is defined by the parametrization
$X(u, v)=(u+v, g(v), f(u))$
where f and g are smooth functions [6].
Theorem 4.2 Let M be a first type translation surface in \mathbb{E}^{3} with given by parametrization (24). Then M is a Tz-surface if and only if

$$
\begin{equation*}
a_{1}=\frac{f^{\prime \prime} g^{\prime \prime}}{\left(-u f^{\prime}-v g^{\prime}+f+g\right)^{4}} \tag{26}
\end{equation*}
$$

holds, where $a_{1} \neq 0$ real constant, f and g are smooth functions, α and β (which are not lines) are non-regular curves.

Proof. Differentiating (24) with respect to u and v, we obtain $X_{u}=\left(1,0, f^{\prime}\right)$ and $X_{v}=$ $\left(0,1, g^{\prime}\right)$ respectively. We can find the coefficients of the first fundamental form as follow:
$E=1+f^{\prime 2}, \quad F=f^{\prime} \cdot g^{\prime}, \quad G=1+g^{\prime 2}$
The unit normal vector field of M is given by the following vector field
$N=\frac{\left(-f^{\prime},-g^{\prime}, 1\right)}{\sqrt{1+f^{\prime 2}+g^{\prime 2}}}$.
The second partial derivatives of X are expressed as follows:
$X_{u u}=\left(0,0, f^{\prime \prime}\right), \quad X_{u v}=(0,0,0), \quad X_{v v}=\left(0,0, g^{\prime \prime}\right)$.
Using (28) and (29) we can get the coefficients of the second fundamental form
$e=\frac{f^{\prime \prime}}{\sqrt{1+f^{\prime 2}+g^{\prime 2}}}, \quad f=0, \quad g=\frac{g^{\prime \prime}}{\sqrt{1+f^{\prime 2}+g^{\prime 2}}}$
substituing (27) and (30) into (6) we obtain the Gaussian curvature as follows:
$K=\frac{f^{\prime \prime} g^{\prime \prime}}{\left(1+f^{\prime 2}+g^{\prime 2}\right)^{2}}$
substituing (28) into (3) we obtain
$d_{t a n}=\frac{\left(-u f^{\prime}-v g^{\prime}+f+g\right)}{\sqrt{1+f^{\prime 2}+g^{\prime 2}}}$.
Consequently, by the use of (31) and (32) with (2) we get the result.
Theorem 4.3 Let M be a second type translation surface in \mathbb{E}^{3} with given by the parametrization (25). Then M is a Tz-surface if and only if
$a_{1}=\frac{f^{\prime} g^{\prime} f^{\prime \prime} g^{\prime \prime}}{\left(-u f^{\prime} g^{\prime}-v f^{\prime} g^{\prime}+f g^{\prime}+g f^{\prime}\right)^{4}}$
holds, where $a_{1} \neq 0$ real constant, f and g are smooth functions, α and β (which are not lines) are non-regular curves.

Proof. Differentiating (25) with respect to u and v we obtain $X_{u}=\left(1,0, f^{\prime}\right)$ and $X_{v}=$ ($1, g^{\prime}, 0$) respectively. We can find coefficients of the first fundamental form as follow:
$E=1+f^{\prime 2}, \quad F=1, \quad G=1+g^{\prime 2}$
The unit normal vector field of M is given by the following vector field
$N=\frac{\left(-f^{\prime} g^{\prime}, f^{\prime}, g^{\prime}\right)}{\sqrt{f^{\prime 2} g^{\prime 2}+f^{\prime 2}+g^{\prime 2}}}$.
The second partial derivatives of X are expressed as follow:
$X_{u u}=\left(0,0, f^{\prime \prime}\right), \quad X_{u v}=(0,0,0), \quad X_{v v}=\left(0, g^{\prime \prime}, 0\right)$.
Using (35) and (36) we can get the coefficients of the second fundamental form
$e=\frac{g^{\prime} f^{\prime \prime}}{\sqrt{f^{\prime 2} g^{\prime 2}+f^{\prime 2}+g^{\prime 2}}}, \quad f=0, \quad g=\frac{f^{\prime} g^{\prime \prime}}{\sqrt{f^{\prime 2} g^{\prime 2}+f^{\prime 2}+g^{\prime 2}}}$
substituing (34) and (37) into (6) we obtain the Gaussian curvature as follows:
$K=\frac{f^{\prime} f^{\prime \prime} g^{\prime} g^{\prime \prime}}{\left(f^{\prime 2} g^{\prime 2}+f^{\prime 2}+g^{\prime 2}\right)^{2}}$.
Substituing (35) into (3) we obtain
$d_{t a n}=\frac{-(u+v) f^{\prime} g^{\prime}+f^{\prime} g+g^{\prime} f}{\sqrt{f^{\prime 2} g^{\prime 2}+f^{\prime 2}+g^{\prime 2}}}$.
Consequently, by the use of (38) and (39) with (2) we get the result.
Corollary 4.4 Let M be a first type Tz-translation surface in \mathbb{E}^{3} with given by the parametrization (24). If $\alpha(u)$ and $\beta(v)$ are non-geodesic planar Tz-curves then

$$
\begin{equation*}
a_{1}=\frac{f^{\prime \prime} g^{\prime \prime}}{\left(\frac{\sqrt{f^{\prime \prime}}}{\sqrt{a_{\alpha}}\left(1+f^{\prime 2}\right)^{\frac{1}{4}}}+\frac{\sqrt{g^{\prime \prime}}}{\sqrt{a_{\beta}}\left(1+g^{\prime 2}\right)^{\frac{1}{4}}}\right)^{4}} \tag{40}
\end{equation*}
$$

holds, where $a_{1} \neq 0$ real constant, a_{α} and a_{β} are planar Tz-curve constants of α and β curves respectively.

Proof. If $\alpha(u)$ and $\beta(v)$ are non-geodesic planar Tz-curves then by the use of (7) and $d_{o s c}=\left\langle N_{1}, x\right\rangle$ equality, we get
$a_{\alpha}=\frac{f^{\prime \prime}}{\sqrt{1+f^{\prime 2}}\left(-u f^{\prime}+f\right)^{2}}$
and
$a_{\beta}=\frac{g^{\prime \prime}}{\sqrt{1+g^{\prime 2}}\left(-v g^{\prime}+g\right)^{2}}$
substituing (41) and (42) into (26) we get the result.
Corollary 4.5 Let M be a first type Tz-translation surface in \mathbb{E}^{3} with given by parametrization (24). Let $\alpha(u)$ and $\beta(v)$ are non-geodesic planar Tz-curves. If
$\sqrt{\left(1+f^{\prime 2}\right)\left(1+g^{\prime 2}\right)}=A .(4+A)+\frac{1}{A}\left(4+\frac{1}{A}\right)+6$
then that is
$a_{\alpha} \cdot a_{\beta}=a_{1}$
where
$A=\frac{-u f^{\prime}+f}{-v g^{\prime}+g}$
a_{α} and a_{β} are planar Tz-curve constants of α and β curves respectively and a_{1} is Tzsurface constant of the first type Tz-translation surface.

Proof: By the use of the equation (41) and (42) we get
$a_{\alpha} \cdot a_{\beta}=\frac{f^{\prime \prime}}{\sqrt{1+f^{\prime 2}}\left(-u f^{\prime}+f\right)^{2}} \cdot \frac{g^{\prime \prime}}{\sqrt{1+{g^{\prime 2}}^{2}}\left(-v g^{\prime}+g\right)^{2}}$

Substituing (43) and (45) into (46) we get the equation (26). Thus the proof is completed.

5. Tz-factorable surface

Definition 5.1 A surface M in \mathbb{E}^{3} is called factorable surface if the parametrization of M can be written as
$X(u, v)=(u, v, f(u) \cdot g(v))$
or
$X(u, v)=(f(u) \cdot g(v), u, v)$
or
$X(u, v)=(u, f(u) \cdot g(v), v)$
where f and g are smooth functions. The Factorable surfaces in the Euclidean Space, the pseudo Euclidean Space and Heisenberg group have been studied in [7-10].

Theorem 5.2 Let M be a regular surface in \mathbb{E}^{3} given by the parametrization (47), and (49). Then M is a Tz-surface if and only if
$a_{1}=\frac{f f^{\prime \prime} g g^{\prime \prime}-\left(f^{\prime} g^{\prime}\right)^{2}}{\left(-u f^{\prime} g-v f g^{\prime}+f g\right)^{4}}$
holds, where $a_{1} \neq 0$ real constant, f and g are smooth functions.
Proof. Differentiating (47), (48), (49) with respect to u and v, we can find the coefficients of the first and the second fundamental forms with (4) and (5). Substituing (3) and (6) into (2) we get the result.

Example 5.3 Let M be a Monge patch in \mathbb{E}^{3} with given by the parametrization
$X(u, v)=\left(u, v, \frac{1}{u v}\right)$.
$f(u)=\frac{1}{u}$ and $g(v)=\frac{1}{v}$ are differentiable functions. Substituing by differentiating equations f and g into (50) we obtain $a_{1}=\frac{1}{27}$ which means that M is a Tz-surface.

6. Tz-spherical product surface

Definition 6.1 Let $\alpha, \beta: \mathbb{R} \rightarrow \mathbb{E}^{2}$ be two Euclidean planar curves. Assume $\alpha(u)=$ $\left(f_{1}(u), f_{2}(u)\right)$ and $\beta(v)=\left(g_{1}(v), g_{2}(v)\right)$. Then their spherical product immersions is given by,
$X=\alpha \otimes \beta: \mathbb{E}^{2} \rightarrow \mathbb{E}^{3}$
$X(u, v)=\left(f_{1}(u), f_{2}(u) g_{1}(v), f_{2}(u) g_{2}(v)\right)$,
$U_{0}<u<U_{1}, V_{0}<v<V_{1}$, which is a surface in $\mathbb{E}^{3}[11,12]$.
Theorem 6.2 The spherical product surface patch $X(u, v)=\alpha(u) \otimes \beta(v)$ of two planar curves α and β is a Tz-surface if and only if
$a_{1}=\frac{-f_{1}^{\prime}\left(f_{1}^{\prime \prime} f_{2}^{\prime}-f_{1}^{\prime} f_{2}^{\prime \prime}\right)\left(g_{1}^{\prime \prime} g_{2}^{\prime}-g_{1}^{\prime} g_{2}^{\prime \prime}\right)}{f_{2}\left(f_{1} f_{2}^{\prime}-f_{1}^{\prime} f_{2}\right)^{4}\left(g_{1} g_{2}^{\prime}-g_{1}^{\prime} g_{2}\right)^{3}}$
holds, where $a_{1} \neq 0$ is real constant.
Proof. Differentiating (51) with respect to u and v, we obtain $X_{u}=\left(f_{1}^{\prime}, f_{2}^{\prime} g_{1}, f_{2}^{\prime} g_{2}\right)$ and $X_{v}=\left(0, f_{2} g_{1}^{\prime}, f_{2} g_{2}^{\prime}\right)$ respectively. We can find the coefficient of the first fundamental form as follow:
$E={f_{1}^{\prime 2}}^{2}+{f_{2}^{\prime 2}}^{2}\left(g_{1}^{2}+g_{2}^{2}\right), F=f_{2} f_{2}^{\prime}\left(g_{1} g_{1}^{\prime}+g_{2} g_{2}^{\prime}\right), G=f_{2}^{2}\left(g_{1}^{\prime 2}+g_{2}^{\prime 2}\right)$
The unit normal vector field of spherical product surface path is given by the following vector field
$N=\frac{\left(f_{2}^{\prime}\left(g_{1} g_{2}^{\prime}-g_{1}^{\prime} g_{2}\right),-f_{1}^{\prime} g_{2}^{\prime}, f_{1}^{\prime} g_{1}^{\prime}\right)}{\sqrt{{f_{1}^{\prime 2}\left(g_{1}^{\prime 2}+g_{2}^{\prime 2}\right)+{f_{2}^{\prime 2}}^{2}\left(g_{1} g_{2}^{\prime}-g_{1}^{\prime} g_{2}\right)^{2}}^{l}} ~}$
The second partial derivatives of X are expressed as follows:
$X_{u u}=\left(f_{1}^{\prime \prime}, f_{2}^{\prime \prime} g_{1}, f_{2}^{\prime \prime} g_{2}\right), X_{u v}=\left(0, f_{2}^{\prime} g_{1}^{\prime}, f_{2}^{\prime} g_{2}^{\prime}\right), X_{v v}=\left(0, f_{2} g_{1}^{\prime \prime}, f_{2} g_{2}^{\prime \prime}\right)$
Using (54) and (55) we can get the coefficient of the second fundamental form

$$
\begin{align*}
& f=0 \tag{56}\\
& g=\frac{f_{1}^{\prime} f_{2}\left(g_{1}^{\prime} g_{2}^{\prime \prime}-g_{1}^{\prime \prime} g_{2}^{\prime}\right)}{\sqrt{{f_{1}^{\prime 2}\left(g_{1}^{\prime 2}+g_{2}^{\prime 2}\right)+{f_{2}^{\prime 2}}^{2}\left(g_{1} g_{2}^{\prime}-g_{1}^{\prime} g_{2}\right)^{2}}^{l}} .} . .
\end{align*}
$$

Substituing (53) and (56) into (6) we obtain the Gaussian curvature as follows

$$
\begin{equation*}
K=\frac{\left(f_{1}^{\prime \prime} f_{2}^{\prime}-f_{1}^{\prime} f_{2}^{\prime \prime}\right)\left(g_{1} g_{2}^{\prime}-g_{1}^{\prime} g_{2}\right) f_{1}^{\prime}\left(g_{1}^{\prime} g_{2}^{\prime \prime}-g_{1}^{\prime \prime} g_{2}^{\prime}\right)}{f_{2}\left(f_{1}^{\prime 2}\left(g_{1}^{\prime 2}+{g_{2}^{\prime 2}}^{2}\right)+{f_{2}^{\prime 2}}^{\prime 2}\left(g_{1} g_{2}^{\prime}-g_{1}^{\prime} g_{2}\right)^{2}\right)^{2}} \tag{57}
\end{equation*}
$$

Substituing (54) into (3) we obtain

$$
\begin{equation*}
d_{t a n}=\frac{\left(f_{1} f_{2}^{\prime}-f_{1}^{\prime} f_{2}\right)\left(g_{1} g_{2}^{\prime}-g_{1}^{\prime} g_{2}\right)}{\sqrt{{f_{1}^{\prime 2}\left(g_{1}^{\prime 2}+{g_{2}^{\prime 2}}^{2}\right)+{f_{2}^{\prime 2}}^{\prime 2}\left(g_{1} g_{2}^{\prime}-g_{1}^{\prime} g_{2}\right)^{2}}^{l}}} \tag{58}
\end{equation*}
$$

Consequently, by the use of (57) and (58) with (2) we get the result.
Corollary 6.3 Let $X(u, v)=\alpha(u) \otimes \beta(v)$ be the spherical product surface patch of two planar curves given with the parametrization (51). If α and β are unit speed curve then that is
$a_{1}=\frac{-f_{1}^{\prime} k_{1 \alpha} k_{1 \beta}}{f_{2}\left(f_{1} f_{2}^{\prime}-f_{1}^{\prime} f_{2}\right)^{4}\left(g_{1} g_{2}^{\prime}-g_{1}^{\prime} g_{2}\right)^{3}}$
where $k_{1 \alpha}=\left(f_{1}^{\prime \prime} f_{2}^{\prime}-f_{1}^{\prime} f_{2}^{\prime \prime}\right)$ and $k_{1 \beta}=\left(g_{1}^{\prime \prime} g_{2}^{\prime}-g_{1}^{\prime} g_{2}^{\prime \prime}\right)$ are curvatures of α and β curves, respectively.

Example 6.4 Let $\alpha, \beta: \mathbb{R} \rightarrow \mathbb{E}^{2}$ be two Euclidean planar curves. Assume $\alpha(u)=$ $\left(f_{1}(u), f_{2}(u)\right)=(\cosh u, \sinh u) \quad$ and $\quad \beta(v)=\left(g_{1}(v), g_{2}(v)\right)=(\cosh v, \sinh v)$. Then the parametrization of spherical product surface M is given by
$X(u, v)=(\cosh u, \sinh u \cosh v, \sinh u \sinh v)$.
Substituing the first and second derivatives of $f_{1}(u), f_{2}(u), g_{1}(v), g_{2}(v)$ into (52), we obtain $a_{1}=-1$ which means that spherical product surface M is a Tz-surface .

Example 6.5 Let α and β be two Euclidean planar curves. Assume $\alpha(u)=$ $(\cos (c+u), \sin (c+u))$ and $\beta(v)=\left(\sin \left(c_{1}+v\right), \cos \left(c_{1}+v\right)\right)$. Then the parametrization of spherical product surface M is given by
$X(u, v)=\left(\cos (c+u), \sin (c+u) \sin \left(c_{1}+v\right), \sin (c+u) \cos \left(c_{1}+v\right)\right)$.
By using (59) we obtain $a_{1}=1$ which means that spherical product surface is a Tzsurface.

7. Tz-surface of revolution

Definition 7.1 Let $\alpha, \beta: \mathbb{R} \rightarrow \mathbb{E}^{2}$ be two Euclidean planar curves. Assume $\alpha(u)=$ $\left(f_{1}(u), f_{2}(u)\right)$ and $\beta(v)=(\cos v, \sin v)$. Then their spherical product immersion is given by
$X(u, v)=\left(f_{1}(u), f_{2}(u) \cos v, f_{2}(u) \sin v\right)$.
The spherical product immersion given by the parametrization (60) is called surface of revolution.

Theorem 7.2 Surface of Revolution given by the parametrization (60) is a Tz-surface if and only if
$a_{1}=\frac{f_{1}^{\prime}\left(f_{1}^{\prime \prime} f_{2}^{\prime}-f_{1}^{\prime} f_{2}^{\prime \prime}\right)}{f_{2}\left(f_{1} f_{2}^{\prime}-f_{1}^{\prime} f_{2}\right)^{4}\left(f_{1}^{\prime 2}+f_{2}^{\prime 2}\right)}$
holds, where $a_{1} \neq 0$ is real constant.
Proof. Differentiating (60) with respect to u and v, we obtain $X_{u}=$ $\left(f_{1}^{\prime}, f_{2}^{\prime} \cos v, f_{2}^{\prime} \sin v\right)$ and $X_{v}=\left(0,-f_{2} \sin v, f_{2} \cos v\right)$ respectively. We can find the coefficient of the first fundamental form as follow:
$E=f_{1}^{\prime 2}+f_{2}^{\prime 2}, \quad F=0, \quad G=f_{2}^{2}$
The unit normal vector field of surface of revolution is given by the following vector field
$N=\left(f_{2}^{\prime},-f_{1}^{\prime} \cos v,-f_{1}^{\prime} \sin v\right)$.
The second partial derivatives of X are expressed as follows
$X_{u u}=\left(f_{1}^{\prime \prime}, f_{2}^{\prime \prime} \cos v, f_{2}^{\prime \prime} \sin v\right)$
$X_{u v}=\left(0,-f_{2}^{\prime} \sin v, f_{2}^{\prime} \cos v\right)$
$X_{v v}=\left(0,-f_{2} \cos v,-f_{2} \sin v\right)$
Using (63) and (64), we can get the coefficients of the second fundamental form
$e=f_{1}^{\prime \prime} f_{2}^{\prime}-f_{1}^{\prime} f_{2}^{\prime \prime}, \quad f=0, \quad g=f_{1}^{\prime} f_{2}$
substituing (62) and (65) into (5) we obtain the Gaussian curvature as follows
$K=\frac{f_{1}^{\prime}\left(f_{1}^{\prime \prime} f_{2}^{\prime}-f_{1}^{\prime} f_{2}^{\prime \prime}\right)}{f_{2}\left(f_{1}^{\prime 2}+f_{2}^{\prime 2}\right)}$
Substituing (63) into (3), we obtain
$d_{t a n}=f_{1} f_{2}^{\prime}-f_{1}^{\prime} f_{2}$.

Consequently, by the use of (66) and (67) with (2) we get the result.
Example 7.3 Let $\alpha(u)=(\cosh u, \sinh u)$ and $\beta(v)=(\cos v, \sin v)$. Then the surface of revolution is given by the parametrization
$X(u, v)=(\cosh u, \sinh u \cos v, \sinh u \sin v)$.
By the using (61), we obtain $a_{1}=1$ which means that X is aTz-surface.
Corollary 7.4 If $\alpha(u)=\left(f_{1}(u), f_{2}(u)\right)$ is unit speed curve then that is $a_{1}=$ $\frac{-f_{2}^{\prime \prime}}{f_{2}\left(f_{1} f_{2}^{\prime}-f_{1}^{\prime} f_{2}\right)^{4}}$ where $a_{1} \neq 0$ is real constant.

8. Tz-ruled surface

Definition 8.1 A ruled surface is a surface that can be swept out by moving a line in space. It therefore has a parametrization of the form
$X(u, v)=\alpha(u)+v \gamma(u)$
where $\alpha(u)$ is called the ruled surfacee directrix (also called the base curve) and $\gamma(u)$ is the director curve and $\alpha^{\prime}(u) \neq 0$.

Theorem 8.2 If ruled surface given with the parametrization (66) is a Tz-surface, then that is
$a_{1}=\frac{-\left(\operatorname{det}\left(\alpha^{\prime}, \gamma^{\prime}, \gamma\right)\right)^{2}}{\left(\operatorname{det}\left(\alpha, \gamma, X_{u}\right)\right)^{4}}$
where $a_{1} \neq 0$ is real constant.
Proof. Let $\alpha(u)=\left(x_{1}(u), y_{1}(u), z_{1}(u)\right)$ and $\gamma(u)=\left(x_{2}(u), y_{2}(u), z_{2}(u)\right)$. Then, we obtain

$$
\begin{align*}
X(u, v) & =\alpha(u)+v \gamma(u) \\
& =\left(x_{1}(u)+v x_{2}(u), y_{1}(u)+v y_{2}(u), z_{1}(u)+v z_{2}(u)\right) \\
& =(x(u, v), y(u, v), z(u, v)) . \tag{68}
\end{align*}
$$

By using (10), we get the result.
Example 8.3 Let $\alpha(u)=(\cos u, \sin u, 0)$ and $\gamma(u)=\alpha^{\prime}(u)+e_{3}$ where $e_{3}=(0,0,1)$. Then the parametrization of the ruled surface X is given by

$$
\begin{aligned}
X(u, v) & =\alpha(u)+v \gamma(u) \\
& =(\cos u, \sin u, 0)+v((-\sin u, \cos u, 0)+(0,0,1)) \\
& =(\cos u-v \sin u, \sin u+v \cos u, v) . \text { By using (67), we obtain } a_{1}=-1
\end{aligned}
$$ which means that X is a Tz-surface.

References

[1] Bobe, A., Boskoff, W.G. and Ciuca, M.G., Tzitzeica type centro-affine invariants in Minkowski space, Analele Stiintifice ale Universitatii Ovidius Constanta, 20(2), 27-34, (2012).
[2] Crasmareanu, M., Cylindrical Tzitzeica curves implies forced harmonic oscillators, Balkan Journal of Geometry and Its Applications, 7(1), 37-42, (2002).
[3] Vilcu, G.E., A geometric perspective on the generalized Cobb-Douglas production function, Applied Mathematics Letters, 24, 777-783, (2011).
[4] Constantinescu, O., Crasmareanu, M., A new Tzitzeica hypersurface and cubic Finslerian metrics of Berwall type, Balkan Journal of Geometry and Its Applications, 16(2), 27-34, (2011).
[5] O'neill, B., Elemantary Differential Geometry, (1966).
[6] Sipus, Z.M., Divjak, B., Translation surface in the Galilean space, Glasnik Matematicki. Serija III, 46(2), 455-469, (2011).
[7] Bekkar, M., Senoussi, B., Factorable surfaces in the 3-Dimensional LorentzMinkowski space satisfying $\Delta^{\text {II }} r_{i}=\lambda_{i} r_{i}$, International Journal of Geometry, 103, 17-29, (2012).
[8] Meng, H., and Liu, H., Factorable surfaces in Minkowski 3-space, Bulletin of the Korean Mathematical Society, 155-169, (2009).
[9] Turhan, E., Altay, G., Maximal and minimal surfaces of factorable surfaces in Heis3, International Journal of Open Problems in Computer Science and Mathematics, 3(2), (2010).
[10] Yu, Y., and Liu, H., The factorable minimal surfaces, Proceedings of the Eleventh International Workshop on Differential Geometry, 33-39, Kyungpook Nat. Univ., Taegu, (2007).
[11] Jaklic, A., Leonardis, A., Solina, F., Segmentation and recovery of superquadrics, Kluver Academic Publishers, 20, (2000).
[12] Bulca, B., Arslan, K., (Kılic) Bayram, B., Ozturk, G. and Ugail, H., On spherical product surfaces in E3, IEEE Computer Society, Int. Conference on Cyberworlds, (2009).

[^0]: Bengü BAYRAM, benguk@balikesir.edu.tr, https://orcid.org/0000-0002-1237-5892
 *Emrah TUNÇ, emrahtunc172@gmail.com , https://orcid.org/0000-0002-7630-0996

