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Abstract 

 

In this study, we consider Tzitzeica surfaces (Tz-surface) in Euclidean 3-Space 𝔼𝟑. We 

have been obtained Tzitzeica surfaces conditions of some surfaces. Finally, examples 

are given for these surfaces. 
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Öklid-3 uzayındaki tzitzeica yüzeyleri üzerine 
 

 

Öz 

 

Bu çalışmada Öklid-3 uzayındaki Tzitzeica yüzeylerini incelendi. Bazı yüzeylerin 

Tzitzeica yüzey şartları incelendi. Son olarak bu yüzeyler için örnekler verildi. 

 

Anahtar kelimeler: Tzitzeica şartı, Tzitzeica yüzeyi, temel form, Gauss eğriliği. 

 

 

1.Introduction 

 

Gheorgha Tzitzeica, Romanian mathematician (1872-1939) introduced a class of 

curves, nowadays called Tzitzeica curves and a class of surfaces of the Euclidean 3-

space called Tzitzeica surfaces.  A Tzitzeica curve in 𝔼𝟑 is a spatial curve  x=x(s) with 

the Frenet frame   {𝑇, 𝑁1, 𝑁2}  and curvatures  {𝑘1, 𝑘2}   which the ratio of its torsion 𝑘2 

and the square of the distance 𝑑𝑜𝑠𝑐  from the origin to the osculating plane at an 

arbitrary point x(s) of the curve is constant, i.e., 
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𝑘2

𝑑𝑜𝑠𝑐
2 = 𝑎                                                                                                                                       (1) 

 

where 𝑑𝑜𝑠𝑐 = 〈𝑁2, 𝑥〉 and 𝑎 ≠ 0 is a real constant, 𝑁2 is the binormal vector field of x. 

 

In [1], the authors gave the connections between Tzitzeica curve and Tzitzeica surface 

in Minkowski 3-space and the original ones from the Euclidean 3-space. 

 

A Tzitzeica surface in 𝔼𝟑 is a spatial surface M given with the parametrization X(u,v) 

for which the ratio of its gaussian curveture K and the distance 𝑑𝑡𝑎𝑛 from the origin to 

the tangent plane at any arbitrary point of the surface is constant, i.e., 

 

 
𝐾

𝑑𝑡𝑎𝑛
4 = 𝑎1                                                                                                                                    (2) 

 

for a constant 𝑎1 ≠ 0. The ortogonal distance from the origin to the tangent plane is 

defined by 

 

𝑑𝑡𝑎𝑛 = 〈𝑋, 𝑁〉                                                                                                                                (3) 

 

where X is the position vector of surface and N  is unit normal vector field of the 

surface. 

 

The asimptotic lines of a tzitzeica surface with negative Gaussian curvature are 

Tzitzeica curves [2].  In [3], authors gave the necessary and sufficient condition for 

Cobb-Douglass production hypersurface to be a Tzitzeica hypersurface.  In addition, a 

new Tzitzeica hypersurface was obtained in parametric, implicit and explicit forms in 

[4]. 

 

In this study, we consider Tzitzeica surface (Tz-surface) in Euclidean 3-space 𝔼𝟑.  We 

have been obtained Tzitzeica surface conditions of some surface. 

 

Let M be a regular surface in 𝔼𝟑 given with the parametrization 𝑋(𝑢, 𝑣): (𝑢, 𝑣) ∈ 𝐷 ⊂
𝔼𝟐.  The tangent space of M at an arbitrary point 𝑝 = 𝑋(𝑢, 𝑣) is spanned by the vectors 

𝑋𝑢 and 𝑋𝑣.  The first fundamental form coefficients of M are computed by 

 

𝐸 = 〈𝑋𝑢, 𝑋𝑢〉 
𝐹 = 〈𝑋𝑢, 𝑋𝑣〉                                                                                                                                  (4) 

𝐺 = 〈𝑋𝑣, 𝑋𝑣〉 
 

where 〈 , 〉 is the scalar product of the Euclidean space.  We consider the surface patch 

X(u,v) is regular, which implies that 𝑊2 = 𝐸𝐺 − 𝐹2 ≠ 0. 
 

The second fundamental form coefficient of M are computed by  

 

𝑒 = 〈𝑋𝑢𝑢, 𝑁〉 
𝑓 = 〈𝑋𝑢𝑣, 𝑁〉                                                                                                                                  (5) 

𝑔 = 〈𝑋𝑣𝑣, 𝑁〉 
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where, N is unit normal vector field of the surface. The Gaussian curvature are given by 

 

𝐾 =
𝑒𝑔 − 𝑓2

𝐸𝐺 − 𝐹2
                                                                                                                                (6) 

 

 

2.Tzitzeica surfaces in 𝔼𝟑 

 

Definition 2.1 Let 𝑥: 𝐼 ⊂ ℝ → 𝔼2 be a unit speed plane curve with curvatures 𝑘1(𝑠) >
0.  If the curvature of x  satisfies the condition 

 

𝑘1(𝑠) = 𝑎. 𝑑𝑜𝑠𝑐
2,                                                                                                                         (7) 

 

for some real constant 𝑎 ≠ 0, then x is called planer Tz-curve, where 𝑑𝑜𝑠𝑐 = 〈𝑛, 𝑥〉 and 

n is the unit normal vector field of x. 

 

Proposition 2.2 Let M be a regular surface in 𝔼𝟑 given with parametrization 

 

𝑋(𝑢, 𝑣) = (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)).                                                                                      (8) 

 

Then M is Tz-surface if and only if  

 

(𝑒𝑔 − 𝑓2)(𝐸𝐺 − 𝐹2) = 𝑎1. (𝑑𝑒𝑡(𝑋, 𝑋𝑢, 𝑋𝑣))4                                                                      (9) 

 

Holds, where 𝑎1 ≠ 0 real constant and 𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣) is differentiable 

functions. 

Proof. 𝑁 =
𝑋𝑢×𝑋𝑣

‖𝑋𝑢×𝑋𝑣‖
 is unit normal vector field of the surface.  By the use of equations 

(2), (3), (5) we get (9). 

 

Proposition 2.3 Let M be a regular surface in 𝔼3 with the parametrization (8). If M is 

Tz-surface then the equation 

|

𝑥𝑢𝑢 𝑦𝑢𝑢 𝑧𝑢𝑢

𝑥𝑢 𝑦𝑢 𝑧𝑢

𝑥𝑣 𝑦𝑣 𝑧𝑣

| |

𝑥𝑣𝑣 𝑦𝑣𝑣 𝑧𝑣𝑣

𝑥𝑢 𝑦𝑢 𝑧𝑢

𝑥𝑣 𝑦𝑣 𝑧𝑣

| − |

𝑥𝑢𝑣 𝑦𝑢𝑣 𝑧𝑢𝑣

𝑥𝑢 𝑦𝑢 𝑧𝑢

𝑥𝑣 𝑦𝑣 𝑧𝑣

|

2

= 𝑎1 |

𝑥 𝑦 𝑧
𝑥𝑢 𝑦𝑢 𝑧𝑢

𝑥𝑣 𝑦𝑣 𝑧𝑣

|

4

          (10) 

 

holds, where 𝑎1 ≠ 0 real constant. 

 

Proof: Considering together (4), (5), (6) and the unit normal vector field of M  

 

𝑁 =
𝑋𝑢 × 𝑋𝑣

‖𝑋𝑢 × 𝑋𝑣‖
=

1

𝑊
|

𝑒1 𝑒2 𝑒3

𝑥𝑢 𝑦𝑢 𝑧𝑢

𝑥𝑣 𝑦𝑣 𝑧𝑣

|,                                                                                    (11) 

 

we have,  

 

𝐾 =
𝑒𝑔 − 𝑓2

𝐸𝐺 − 𝐹2
 

     =
〈𝑋𝑢𝑢, 𝑁〉〈𝑋𝑣𝑣, 𝑁〉 − 〈𝑋𝑢𝑣, 𝑁〉2

𝑊2
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     =
1

𝑊2
{〈𝑋𝑢𝑢,

𝑋𝑢 × 𝑋𝑣

‖𝑋𝑢 × 𝑋𝑣‖
〉 〈𝑋𝑣𝑣,

𝑋𝑢 × 𝑋𝑣

‖𝑋𝑢 × 𝑋𝑣‖
〉 − 〈𝑋𝑢𝑣,

𝑋𝑢 × 𝑋𝑣

‖𝑋𝑢 × 𝑋𝑣‖
〉2} 

     =
1

𝑊2
{

1

(‖𝑋𝑢 × 𝑋𝑣‖)2
[𝑑𝑒𝑡(𝑋𝑢𝑢, 𝑋𝑢, 𝑋𝑣) det(𝑋𝑣𝑣, 𝑋𝑢, 𝑋𝑣) − (det(𝑋𝑢𝑣, 𝑋𝑢, 𝑋𝑣))2]} 

     =
1

𝑊2

|

𝑥𝑢𝑢 𝑦𝑢𝑢 𝑧𝑢𝑢

𝑥𝑢 𝑦𝑢 𝑧𝑢

𝑥𝑣 𝑦𝑣 𝑧𝑣

| |

𝑥𝑣𝑣 𝑦𝑣𝑣 𝑧𝑣𝑣

𝑥𝑢 𝑦𝑢 𝑧𝑢

𝑥𝑣 𝑦𝑣 𝑧𝑣

| − |

𝑥𝑢𝑣 𝑦𝑢𝑣 𝑧𝑢𝑣

𝑥𝑢 𝑦𝑢 𝑧𝑢

𝑥𝑣 𝑦𝑣 𝑧𝑣

|

2

𝑊2
.                               (12) 

 

On the other hand 

 

𝑑𝑡𝑎𝑛 = 〈𝑋, 𝑁〉 

         = 〈(𝑥, 𝑦, 𝑧),
𝑋𝑢 × 𝑋𝑣

‖𝑋𝑢 × 𝑋𝑣‖
〉 

         =
1

𝑊
|

𝑥 𝑦 𝑧
𝑥𝑢 𝑦𝑢 𝑧𝑢

𝑥𝑣 𝑦𝑣 𝑧𝑣

|                                                                                                          (13) 

 

is obtained.  Substituting fourth exponent of (13) and (12) into (2), we get the result. 

 

Proposition 2.4 Let M be a regular surface in 𝔼3 given with the parametrization (8). 

Then M  is Tz-surface if and only if the equation 

 

 

𝑎2(𝑥𝑢𝑢𝑥𝑣𝑣 − 𝑥𝑢𝑣
2 ) + 𝑏2(𝑦𝑢𝑢𝑦𝑣𝑣 − 𝑦𝑢𝑣

2 ) + 𝑐2(𝑧𝑢𝑢𝑧𝑣𝑣 − 𝑧𝑢𝑣
2 ) 

+𝑎𝑏(𝑥𝑢𝑢𝑦𝑣𝑣 + 𝑦𝑢𝑢𝑥𝑣𝑣 − 2𝑥𝑢𝑣𝑦𝑢𝑣) + 𝑎𝑐(𝑥𝑢𝑢𝑧𝑣𝑣 + 𝑧𝑢𝑢𝑥𝑣𝑣 − 2𝑥𝑢𝑣𝑧𝑢𝑣)           
+𝑏𝑐(𝑦𝑢𝑢𝑧𝑣𝑣 + 𝑧𝑢𝑢𝑦𝑣𝑣 − 2𝑦𝑢𝑣𝑧𝑢𝑣) = 𝑎1(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧)4                                               (14) 

 

holds, where  

 

𝑎(𝑢, 𝑣) = 𝑦𝑢𝑧𝑣 − 𝑦𝑣𝑧𝑢 

𝑏(𝑢, 𝑣) = −𝑥𝑢𝑧𝑣 + 𝑥𝑣𝑧𝑢 

𝑐(𝑢, 𝑣) = 𝑥𝑢𝑦𝑣 − 𝑥𝑣𝑦𝑢 

 

are differentiable functions and 𝑎1 ≠ 0 real constant. 

 

Proof: The first and second derivatives of X are replaced by (4) and (5).  By the use of 

(2), (3), (6) we obtained (14). 

 

Definition 2.5 The equation given by (14) is called the Tz-surface equations. 

 

 

3.Tz-Monge surface 

 

Definition 3.1 A Monge patch is a patch 𝑋: 𝑈 ⊂ 𝔼2 → 𝔼3 of the form 

 

𝑋(𝑢, 𝑣) = (𝑢, 𝑣, 𝑓(𝑢, 𝑣))                                                                                                          (15) 

 

where U is an open set in 𝔼2 and 𝑓: 𝑈 → ℝ is a differentiable function [5]. 
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Theorem 3.2 Let M be a regular surface in 𝔼3 given with the parametrization (15).  

Then M is a Tz-surface if and only if  

 

𝑎1 =
𝑓𝑢𝑢. 𝑓𝑣𝑣 − 𝑓𝑢𝑣

2

(−𝑢𝑓𝑢 − 𝑣𝑓𝑣 + 𝑓)4
                                                                                                         (16) 

 

holds, where 𝑎1 ≠ 0 real constant. 

 

Proof. Differentiating (15) with respect to u and v we obtain 𝑋𝑢 = (1,0, 𝑓𝑢) and 𝑋𝑣 =
(0,1, 𝑓𝑣) respectively.  We can find the coefficients of the first fundamentel form as 

follows: 

 

𝐸 = 1 + 𝑓𝑢
2 , 𝐹 = 𝑓𝑢. 𝑓𝑣  , 𝐺 = 1 + 𝑓𝑣

2.                                                                   (17) 

 

The unit normal vector field of M is given by the following vector field; 

 

𝑁 =
1

√1 + 𝑓𝑢
2 + 𝑓𝑣

2
(−𝑓𝑢, −𝑓𝑣, 1) .                                                                                         (18) 

 

The second partial derivatives of X are expressed as follows: 

 

 𝑋𝑢𝑢 = (0,0, 𝑓𝑢𝑢) , 𝑋𝑢𝑣 = (0,0, 𝑓𝑢𝑣) , 𝑋𝑣𝑣 = (0,0, 𝑓𝑣𝑣)                                       (19) 

 

Using (18) and (19) we can get the coefficients of the second fundamental form  

 

𝑒 =
𝑓𝑢𝑢

√1 + 𝑓𝑢
2 + 𝑓𝑣

2
 , 𝑓 =

𝑓𝑢𝑣

√1 + 𝑓𝑢
2 + 𝑓𝑣

2
 , 𝑔 =

𝑓𝑣𝑣

√1 + 𝑓𝑢
2 + 𝑓𝑣

2
  .                    (20) 

 

Substituing (17) and (20) into (6) we obtain the Gaussian curvature as follows: 

 

𝐾 =
𝑓𝑢𝑢. 𝑓𝑣𝑣 − 𝑓𝑢𝑣

2

(1 + 𝑓𝑢
2 + 𝑓𝑣

2)2
                                                                                                                 (21) 

 

Substituing (18) into (3) we obtain  

 

 𝑑𝑡𝑎𝑛 =
−𝑢𝑓𝑢 − 𝑣𝑓𝑣 + 𝑓

√1 + 𝑓𝑢
2 + 𝑓𝑣

2
  .                                                                                                       (22) 

 

Consequently, by the use of (21) and (22) with (2) we get the result. 

 

Example 3.3 Let M be a Monge patch in 𝔼3 with given by parametrization 

 

𝑋(𝑢, 𝑣) = (𝑢, 𝑣,
−(3 + 𝑢𝑣)

(𝑢 + 𝑣)
) , 

𝑓(𝑢, 𝑣) =
−(3 + 𝑢𝑣)

(𝑢 + 𝑣)
                                                                                                                              (23) 
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 is a differentiable function substituing by differentiating the equation (23) into (16) we 

obtain 𝑎1 = −
1

108
 which means that M is a Tz-surface. 

 

 

4. Tz-Translation surface 

 

Definition 4.1 A surface M defined as the sum of two plane curves 𝛼(𝑢) = (𝑢, 0, 𝑓(𝑢)) 

and 𝛽(𝑣) = (0, 𝑣, 𝑔(𝑣)) is called a first type translation surface (is also known 

translation surface) in 𝔼3.  So, a first type translation surface is defined by the 

parametrization  

 

𝑋(𝑢, 𝑣) = (𝑢, 𝑣, 𝑓(𝑢) + 𝑔(𝑣)).                                                                                              (24) 

 

A surface M defined as the sum of two plane curves (which are not lines) 𝛼(𝑢) =
(𝑢, 0, 𝑓(𝑢)) and 𝛽(𝑣) = (𝑣, 𝑔(𝑣), 0) is called a second type translation surface in 𝔼3.  

So, a second type translation surface is defined by the parametrization 

 

𝑋(𝑢, 𝑣) = (𝑢 + 𝑣, 𝑔(𝑣), 𝑓(𝑢))                                                                                               (25) 

 

where  f and g are smooth functions [6]. 

 

Theorem 4.2 Let M be a first type translation surface in 𝔼3 with given by 

parametrization (24).  Then M is a Tz-surface if and only if  

 

 𝑎1 =
𝑓′′𝑔′′

(−𝑢𝑓′ − 𝑣𝑔′ + 𝑓 + 𝑔)4
                                                                                               (26) 

 

holds, where 𝑎1 ≠ 0 real constant, f and g are smooth functions, 𝛼 and 𝛽 (which are not 

lines) are non-regular curves. 

 

Proof. Differentiating (24) with respect to u and v, we obtain 𝑋𝑢 = (1,0, 𝑓′) and 𝑋𝑣 =
(0,1, 𝑔′) respectively.  We can find the coefficients of the first fundamental form as 

follow: 

 

𝐸 = 1 + 𝑓′2
 , 𝐹 = 𝑓′. 𝑔′ , 𝐺 = 1 + 𝑔′2

                                                                 (27) 

 

The unit normal vector field of M is given by the following vector field 

 

𝑁 =
(−𝑓′, −𝑔′, 1)

√1 + 𝑓′2 + 𝑔′2

  .                                                                                                             (28) 

 

The second partial derivatives of X are expressed as follows: 

 

𝑋𝑢𝑢 = (0,0, 𝑓′′) , 𝑋𝑢𝑣 = (0,0,0) , 𝑋𝑣𝑣 = (0,0, 𝑔′′) .                                           (29) 

 

Using (28) and (29) we can get the coefficients of the second fundamental form 
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𝑒 =
𝑓′′

√1 + 𝑓′2 + 𝑔′2

 , 𝑓 = 0 , 𝑔 =
𝑔′′

√1 + 𝑓′2 + 𝑔′2

                                          (30) 

 

substituing (27) and (30) into (6) we obtain the Gaussian curvature as follows: 

 

𝐾 =
𝑓′′𝑔′′

(1 + 𝑓′2 + 𝑔′2)
2                                                                                                               (31) 

 

substituing (28) into (3) we obtain  

 

𝑑𝑡𝑎𝑛 =
(−𝑢𝑓′ − 𝑣𝑔′ + 𝑓 + 𝑔)

√1 + 𝑓′2 + 𝑔′2

  .                                                                                           (32) 

 

Consequently, by the use of (31) and (32) with (2) we get the result. 

 

Theorem 4.3 Let M be a second type translation surface in 𝔼3 with given by the  

parametrization (25).  Then M is a Tz-surface if and only if  

 

𝑎1 =
𝑓′𝑔′𝑓′′𝑔′′

(−𝑢𝑓′𝑔′ − 𝑣𝑓′𝑔′ + 𝑓𝑔′ + 𝑔𝑓′)4
                                                                               (33) 

 

holds, where 𝑎1 ≠ 0 real constant, f and g are smooth functions, 𝛼 and 𝛽 (which are not 

lines) are non-regular curves. 

 

Proof. Differentiating (25) with respect to u and v we obtain 𝑋𝑢 = (1,0, 𝑓′) and 𝑋𝑣 =
(1, 𝑔′, 0) respectively.  We can find coefficients of the first fundamental form as follow: 

 

𝐸 = 1 + 𝑓′2
 , 𝐹 = 1 , 𝐺 = 1 + 𝑔′2

                                                                        (34) 

 

The unit normal vector field of M is given by the following vector field 

 

𝑁 =
(−𝑓′𝑔′, 𝑓′, 𝑔′)

√𝑓′2𝑔′2 + 𝑓′2 + 𝑔′2

  .                                                                                                    (35) 

 

The second partial derivatives of X are expressed as follow: 

 

𝑋𝑢𝑢 = (0,0, 𝑓′′) , 𝑋𝑢𝑣 = (0,0,0) , 𝑋𝑣𝑣 = (0, 𝑔′′, 0) .                                          (36) 

 

Using (35) and (36) we can get the coefficients of the second fundamental form 

 

𝑒 =
𝑔′𝑓′′

√𝑓′2𝑔′2 + 𝑓′2 + 𝑔′2

 , 𝑓 = 0 , 𝑔 =
𝑓′𝑔′′

√𝑓′2𝑔′2 + 𝑓′2 + 𝑔′2

                      (37) 

 

substituing (34) and (37) into (6) we obtain the Gaussian curvature as follows: 
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𝐾 =
𝑓′𝑓′′𝑔′𝑔′′

(𝑓′2𝑔′2 + 𝑓′2 + 𝑔′2)
2    .                                                                                                (38) 

 

Substituing (35) into (3) we obtain 

 

𝑑𝑡𝑎𝑛 =
−(𝑢 + 𝑣)𝑓′𝑔′ + 𝑓′𝑔 + 𝑔′𝑓

√𝑓′2𝑔′2 + 𝑓′2 + 𝑔′2

   .                                                                                  (39) 

 

Consequently, by the use of (38) and (39) with (2) we get the result. 

 

Corollary 4.4 Let M be a first type Tz-translation surface in 𝔼3 with given by the  

parametrization (24).  If 𝛼(𝑢) and 𝛽(𝑣) are non-geodesic planar Tz-curves then  

 

 

𝑎1 =
𝑓′′𝑔′′

(
√𝑓′′

√𝑎𝛼(1 + 𝑓′2)
1
4

+
√𝑔′′

√𝑎𝛽(1 + 𝑔′2)
1
4

)

4                                                                       (40) 

 

holds, where 𝑎1 ≠ 0 real constant, 𝑎𝛼 and 𝑎𝛽 are planar Tz-curve constants of α and β 

curves respectively. 

 

Proof. If 𝛼(𝑢) and 𝛽(𝑣) are non-geodesic planar Tz-curves then by the use of (7) and 

𝑑𝑜𝑠𝑐 = 〈𝑁1, 𝑥〉 equality, we get 

𝑎𝛼 =
𝑓′′

√1 + 𝑓′2(−𝑢𝑓′ + 𝑓)2

                                                                                                  (41) 

 

and 

 

𝑎𝛽 =
𝑔′′

√1 + 𝑔′2(−𝑣𝑔′ + 𝑔)2

                                                                                                  (42) 

 

substituing (41) and (42) into (26) we get the result. 

 

Corollary 4.5 Let M be a first type Tz-translation surface in 𝔼3 with given by 

parametrization (24).  Let  𝛼(𝑢) and 𝛽(𝑣) are non-geodesic planar Tz-curves. If 

 

√(1 + 𝑓′2)(1 + 𝑔′2) = 𝐴. (4 + 𝐴) +
1

𝐴
(4 +

1

𝐴
) + 6                                                      (43) 

 

then that is 

 

𝑎𝛼. 𝑎𝛽 = 𝑎1                                                                                                                                  (44) 
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where  

 

𝐴 =
−𝑢𝑓′ + 𝑓

−𝑣𝑔′ + 𝑔
                                                                                                                            (45) 

 

𝑎𝛼 and 𝑎𝛽 are planar Tz-curve constants of α and β curves respectively and 𝑎1 is Tz-

surface constant of the first type Tz-translation surface. 

 

Proof: By the use of the equation (41) and (42) we get  

 

𝑎𝛼. 𝑎𝛽 =
𝑓′′

√1 + 𝑓′2(−𝑢𝑓′ + 𝑓)2

.
𝑔′′

√1 + 𝑔′2(−𝑣𝑔′ + 𝑔)2

                                                (46) 

 

 

Substituing (43) and (45) into (46) we get the equation (26).  Thus the proof is 

completed. 

 

 

5. Tz-factorable surface 

 

Definition 5.1 A surface M in 𝔼3 is called factorable surface if the parametrization of M 

can be written as  

𝑋(𝑢, 𝑣) = (𝑢, 𝑣, 𝑓(𝑢). 𝑔(𝑣))                                                                                                   (47) 

or 

 

𝑋(𝑢, 𝑣) = (𝑓(𝑢). 𝑔(𝑣), 𝑢, 𝑣)                                                                                                   (48) 

or 

 

𝑋(𝑢, 𝑣) = (𝑢, 𝑓(𝑢). 𝑔(𝑣), 𝑣)                                                                                                   (49) 

 

where f and g are smooth functions.  The Factorable surfaces in the Euclidean Space, 

the pseudo Euclidean Space and Heisenberg group have been studied in [7-10]. 

 

Theorem 5.2 Let M be a regular surface in 𝔼3 given by the parametrization (47), (48) 

and (49).  Then M is a Tz-surface if and only if  

 

𝑎1 =
𝑓𝑓′′𝑔𝑔′′ − (𝑓′𝑔′)2

(−𝑢𝑓′𝑔 − 𝑣𝑓𝑔′ + 𝑓𝑔)4
                                                                                                (50) 

 

holds, where 𝑎1 ≠ 0 real constant, f and g are smooth functions.  

 

Proof. Differentiating (47), (48), (49) with respect to u and v, we can find the 

coefficients of the first and the second fundamental forms with (4) and (5). Substituing 

(3) and (6) into (2) we get the result. 

 

Example 5.3 Let M be a Monge patch in 𝔼3 with given by the parametrization 
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𝑋(𝑢, 𝑣) = (𝑢, 𝑣,
1

𝑢𝑣
) . 

 

𝑓(𝑢) =
1

𝑢
 and 𝑔(𝑣) =

1

𝑣
 are differentiable functions.  Substituing by differentiating 

equations f and g into (50) we obtain 𝑎1 =
1

27
 which means that M  is a Tz-surface . 

 

 

6. Tz-spherical product surface 

 

Definition 6.1 Let 𝛼, 𝛽: ℝ → 𝔼2 be two Euclidean planar curves.  Assume 𝛼(𝑢) =
(𝑓1(𝑢), 𝑓2(𝑢)) and 𝛽(𝑣) = (𝑔1(𝑣), 𝑔2(𝑣)).  Then their spherical product immersions is 

given by, 

 

𝑋 = 𝛼 ⊗ 𝛽: 𝔼2 → 𝔼3 

𝑋(𝑢, 𝑣) = (𝑓1(𝑢), 𝑓2(𝑢)𝑔1(𝑣), 𝑓2(𝑢)𝑔2(𝑣)) ,                                                                      (51) 

 

𝑈0 < 𝑢 < 𝑈1, 𝑉0 < 𝑣 < 𝑉1, which is a surface in 𝔼3 [11,12]. 

 

Theorem 6.2 The spherical product surface patch 𝑋(𝑢, 𝑣) = 𝛼(𝑢) ⊗ 𝛽(𝑣) of two 

planar curves α and β is a Tz-surface if and only if  

 

𝑎1 =
−𝑓1

′(𝑓1
′′𝑓2

′ − 𝑓1
′𝑓2

′′)(𝑔1
′′𝑔2

′ − 𝑔1
′ 𝑔2

′′)

𝑓2(𝑓1𝑓2
′ − 𝑓1

′𝑓2)4(𝑔1𝑔2
′ − 𝑔1

′ 𝑔2)3
                                                                            (52) 

 

holds, where 𝑎1 ≠ 0 is real constant. 

 

Proof. Differentiating (51) with respect to u and v, we obtain 𝑋𝑢 = (𝑓1
′, 𝑓2

′𝑔1, 𝑓2
′𝑔2) and 

𝑋𝑣 = (0, 𝑓2𝑔1
′ , 𝑓2𝑔2

′ ) respectively.  We can find the coefficient of the first fundamental 

form as follow: 

 

𝐸 = 𝑓1
′2

+ 𝑓2
′2(𝑔1

2 + 𝑔2
2), 𝐹 = 𝑓2𝑓2

′(𝑔1𝑔1
′ + 𝑔2𝑔2

′ ), 𝐺 = 𝑓2
2(𝑔1

′ 2
+ 𝑔2

′ 2
)                     (53) 

 

The unit normal vector field of spherical product surface path is given by the following 

vector field 

 

𝑁 =
(𝑓2

′(𝑔1𝑔2
′ − 𝑔1

′ 𝑔2), −𝑓1
′𝑔2

′ , 𝑓1
′𝑔1

′ )

√𝑓1
′2

(𝑔1
′ 2

+ 𝑔2
′ 2

) + 𝑓2
′2(𝑔1𝑔2

′ − 𝑔1
′ 𝑔2)2

  .                                                                 (54) 

 

The second partial derivatives of X are expressed as follows: 

 

𝑋𝑢𝑢 = (𝑓1
′′, 𝑓2

′′𝑔1, 𝑓2
′′𝑔2) , 𝑋𝑢𝑣 = (0, 𝑓2

′𝑔1
′ , 𝑓2

′𝑔2
′ ), 𝑋𝑣𝑣 = (0, 𝑓2𝑔1

′′, 𝑓2𝑔2
′′)                      (55) 

 

Using (54) and (55) we can get the coefficient of the second fundamental form 

 

𝑒 =
(𝑓1

′′𝑓2
′ − 𝑓1

′𝑓2
′′)(𝑔1𝑔2

′ − 𝑔1
′ 𝑔2)

√𝑓1
′2

(𝑔1
′ 2

+ 𝑔2
′ 2

) + 𝑓2
′2(𝑔1𝑔2

′ − 𝑔1
′ 𝑔2)2
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𝑓 = 0                                                                                                                                             (56) 

𝑔 =
𝑓1

′𝑓2(𝑔1
′ 𝑔2

′′ − 𝑔1
′′𝑔2

′ )

√𝑓1
′2

(𝑔1
′ 2

+ 𝑔2
′ 2

) + 𝑓2
′2(𝑔1𝑔2

′ − 𝑔1
′ 𝑔2)2

 . 

 

Substituing (53) and (56) into (6) we obtain the Gaussian curvature as follows 

 

𝐾 =
(𝑓1

′′𝑓2
′ − 𝑓1

′𝑓2
′′)(𝑔1𝑔2

′ − 𝑔1
′ 𝑔2)𝑓1

′(𝑔1
′ 𝑔2

′′ − 𝑔1
′′𝑔2

′ )

𝑓2(𝑓1
′2

(𝑔1
′ 2

+ 𝑔2
′ 2

) + 𝑓2
′2(𝑔1𝑔2

′ − 𝑔1
′ 𝑔2)2)

2                                                      (57) 

 

Substituing (54) into (3) we obtain  

 

𝑑𝑡𝑎𝑛 =
(𝑓1𝑓2

′ − 𝑓1
′𝑓2)(𝑔1𝑔2

′ − 𝑔1
′ 𝑔2)

√𝑓1
′2

(𝑔1
′ 2

+ 𝑔2
′ 2

) + 𝑓2
′2(𝑔1𝑔2

′ − 𝑔1
′ 𝑔2)2

 .                                                             (58) 

 

Consequently, by the use of (57) and (58) with (2) we get the result. 

 

Corollary 6.3 Let 𝑋(𝑢, 𝑣) = 𝛼(𝑢) ⊗ 𝛽(𝑣) be the spherical product surface patch of 

two planar curves given with the parametrization (51). If α and β are unit speed curve 

then that is 

 

𝑎1 =
−𝑓1

′𝑘1𝛼𝑘1𝛽

𝑓2(𝑓1𝑓2
′ − 𝑓1

′𝑓2)4(𝑔1𝑔2
′ − 𝑔1

′ 𝑔2)3
                                                                                (59) 

 

where 𝑘1𝛼 = (𝑓1
′′𝑓2

′ − 𝑓1
′𝑓2

′′) and 𝑘1𝛽 = (𝑔1
′′𝑔2

′ − 𝑔1
′ 𝑔2

′′) are curvatures of α and β 

curves, respectively. 

 

Example 6.4 Let 𝛼, 𝛽: ℝ → 𝔼2 be two Euclidean planar curves.  Assume 𝛼(𝑢) =

(𝑓1(𝑢), 𝑓2(𝑢)) = (cosh 𝑢 , sinh 𝑢) and 𝛽(𝑣) = (𝑔1(𝑣), 𝑔2(𝑣)) = (cosh 𝑣 , sinh 𝑣). 

Then the parametrization of spherical product surface M  is given by 

 

𝑋(𝑢, 𝑣) = (cosh 𝑢 , sinh 𝑢 cosh 𝑣 , sinh 𝑢 sinh 𝑣) . 
 

Substituing the first and second derivatives of 𝑓1(𝑢), 𝑓2(𝑢), 𝑔1(𝑣), 𝑔2(𝑣) into (52), we 

obtain 𝑎1 = −1 which means that spherical product surface M  is a Tz-surface . 

 

Example 6.5 Let α and β be two Euclidean planar curves.  Assume 𝛼(𝑢) =
(cos(𝑐 + 𝑢) , sin(𝑐 + 𝑢)) and 𝛽(𝑣) = (sin(𝑐1 + 𝑣) , cos(𝑐1 + 𝑣)).  Then the 

parametrization of spherical product surface M is given by 

 

𝑋(𝑢, 𝑣) = (cos(𝑐 + 𝑢) , sin(𝑐 + 𝑢) sin(𝑐1 + 𝑣) , sin(𝑐 + 𝑢) cos(𝑐1 + 𝑣))  . 
 

By using (59) we obtain 𝑎1 = 1 which means that spherical product surface is a Tz-

surface. 
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7. Tz-surface of revolution 

 

Definition 7.1 Let 𝛼, 𝛽: ℝ → 𝔼2 be two Euclidean planar curves. Assume 𝛼(𝑢) =
(𝑓1(𝑢), 𝑓2(𝑢)) and 𝛽(𝑣) = (cos 𝑣 , sin 𝑣). Then their spherical product immersion is 

given by 

 

𝑋(𝑢, 𝑣) = (𝑓1(𝑢), 𝑓2(𝑢) cos 𝑣 , 𝑓2(𝑢) sin 𝑣) .                                                                       (60) 

 

The spherical product immersion given by the parametrization (60) is called surface of 

revolution. 

 

Theorem 7.2 Surface of Revolution given by the parametrization (60) is a Tz-surface if 

and only if 

 

𝑎1 =
𝑓1

′(𝑓1
′′𝑓2

′ − 𝑓1
′𝑓2

′′)

𝑓2(𝑓1𝑓2
′ − 𝑓1

′𝑓2)4(𝑓1
′2

+ 𝑓2
′2

)
                                                                                        (61) 

 

holds, where 𝑎1 ≠ 0 is real constant. 

 

Proof. Differentiating (60) with respect to u and v, we obtain 𝑋𝑢 =
(𝑓1

′, 𝑓2
′ cos 𝑣 , 𝑓2

′ sin 𝑣) and 𝑋𝑣 = (0, −𝑓2 sin 𝑣 , 𝑓2 cos 𝑣) respectively.  We can find the 

coefficient of the first fundamental form as follow: 

 

𝐸 = 𝑓1
′2

+ 𝑓2
′2

 , 𝐹 = 0 , 𝐺 = 𝑓2
2                                                                              (62) 

 

The unit normal vector field of surface of revolution is given by the following vector 

field 

 

𝑁 = (𝑓2
′, −𝑓1

′ cos 𝑣 , −𝑓1
′ sin 𝑣) .                                                                                             (63) 

 

The second partial derivatives of X are expressed as follows 

 

𝑋𝑢𝑢 = (𝑓1
′′, 𝑓2

′′ cos 𝑣 , 𝑓2
′′ sin 𝑣) 

𝑋𝑢𝑣 = (0, −𝑓2
′ sin 𝑣 , 𝑓2

′ cos 𝑣)                                                                                                (64) 

𝑋𝑣𝑣 = (0, −𝑓2 cos 𝑣 , −𝑓2 sin 𝑣) 

 

Using (63) and (64), we can get the coefficients of the second fundamental form 

 

𝑒 = 𝑓1
′′𝑓2

′ − 𝑓1
′𝑓2

′′ , 𝑓 = 0 , 𝑔 = 𝑓1
′𝑓2                                                                     (65) 

 

substituing (62) and (65) into (5) we obtain the Gaussian curvature as follows 

 

𝐾 =
𝑓1

′(𝑓1
′′𝑓2

′ − 𝑓1
′𝑓2

′′)

𝑓2(𝑓1
′2

+ 𝑓2
′2

)
                                                                                                              (66) 

 

Substituing (63) into (3), we obtain 

 

𝑑𝑡𝑎𝑛 = 𝑓1𝑓2
′ − 𝑓1

′𝑓2 .                                                                                                                  (67) 
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Consequently, by the use of (66) and (67) with (2) we get the result. 

 

Example 7.3 Let 𝛼(𝑢) = (cosh 𝑢 , sinh 𝑢) and 𝛽(𝑣) = (cos 𝑣 , sin 𝑣). Then the surface 

of revolution is given by the parametrization 

 

𝑋(𝑢, 𝑣) = (cosh 𝑢 , sinh 𝑢 cos 𝑣 , sinh 𝑢 sin 𝑣) . 
 

By the using (61), we obtain 𝑎1 = 1 which means that X is aTz-surface. 

 

Corollary 7.4 If 𝛼(𝑢) = (𝑓1(𝑢), 𝑓2(𝑢)) is unit speed curve then that is 𝑎1 =
−𝑓2

′′

𝑓2(𝑓1𝑓2
′−𝑓1

′𝑓2)
4  where 𝑎1 ≠ 0 is real constant. 

 

 

8. Tz-ruled surface 

 

Definition 8.1 A ruled surface is a surface that can be swept out by moving a line in 

space. It therefore has a parametrization of the form  

 

𝑋(𝑢, 𝑣) = 𝛼(𝑢) + 𝑣𝛾(𝑢)                                                                                                          (66) 

 

where 𝛼(𝑢) is called the ruled surfacee directrix (also called the base curve) and 𝛾(𝑢) is 

the director curve and 𝛼′(𝑢) ≠ 0. 

 

Theorem 8.2 If ruled surface given with the parametrization (66) is a Tz-surface, then 

that is 

𝑎1 =
−(𝑑𝑒𝑡(𝛼′, 𝛾′, 𝛾))

2

(𝑑𝑒𝑡(𝛼, 𝛾, 𝑋𝑢))
4                                                                                                           (67) 

 

where 𝑎1 ≠ 0 is real constant. 

 

Proof. Let 𝛼(𝑢) = (𝑥1(𝑢), 𝑦1(𝑢), 𝑧1(𝑢)) and 𝛾(𝑢) = (𝑥2(𝑢), 𝑦2(𝑢), 𝑧2(𝑢)). Then, we 

obtain 

 

𝑋(𝑢, 𝑣) = 𝛼(𝑢) + 𝑣𝛾(𝑢) 

               = (𝑥1(𝑢) + 𝑣𝑥2(𝑢), 𝑦1(𝑢) + 𝑣𝑦2(𝑢), 𝑧1(𝑢) + 𝑣𝑧2(𝑢)) 

= (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)) .                                                                                   (68) 

 

By using (10), we get the result. 

 

Example 8.3 Let 𝛼(𝑢) = (cos 𝑢 , sin 𝑢 , 0) and 𝛾(𝑢) = 𝛼′(𝑢) + 𝑒3 where 𝑒3 = (0,0,1). 

Then the parametrization of the ruled surface X is given by 

 
𝑋(𝑢, 𝑣) = 𝛼(𝑢) + 𝑣𝛾(𝑢) 

               = (cos 𝑢 , sin 𝑢 , 0) + 𝑣((− sin 𝑢 , cos 𝑢 , 0) + (0,0,1)) 

               = (cos 𝑢 − 𝑣 sin 𝑢 , sin 𝑢 + 𝑣 cos 𝑢 , 𝑣). By using (67), we obtain 𝑎1 = −1 

which means that X is a Tz-surface. 
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