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Abstract: A vertex-colored graph G is rainbow vertex-connected if two vertices are connected by a path whose
internal vertices have distinct colors. The rainbow vertex-connection number of a connected graph
G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow
vertex-connected. If for every pair u, v of distinct vertices, G contains a vertex-rainbow u—v geodesic,
then G is strongly rainbow vertez-connected. The minimum k for which there exists a k-coloring of G
that results in a strongly rainbow-vertex-connected graph is called the strong rainbow vertex number
srvc(@) of G. Thus rve(G) < srve(G) for every nontrivial connected graph G. A tree T in G is called
a rainbow vertex tree if the internal vertices of T receive different colors. For a graph G = (V, E) and
a set S CV of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an
S-tree) is a such subgraph T = (V', E’) of G that is a tree with S C V'. For S C V(G) and |S| > 2,
an S-Steiner tree 7 is said to be a rainbow vertex S-tree if the internal vertices of T' receive distinct
colors. The minimum number of colors that are needed in a vertex-coloring of G such that there is a
rainbow vertex S-tree for every k-set S of V(G) is called the k-rainbow vertexz-index of G, denoted by
rvzk(G). In this paper, we first investigate the strong rainbow vertex-connection of complementary
graphs. The k-rainbow vertex-index of complementary graphs are also studied.
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1. Introduction

The graphs considered in this paper are finite undirected and simple graphs. We follow the notation
of Bondy and Murty [1], unless otherwise stated. For a graph G, let V(G), E(G), n(G), m(G), and G,
respectively, be the set of vertices, the set of edges, the order, the size, and the complement graph of G.
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Let G be a nontrivial connected graph on which an edge-coloring ¢ : E(G) — {1,2,--- ,n}, n € N,
is defined, where adjacent edges may be colored the same. A path is rainbow if no two edges of it are
colored the same. An edge-coloring graph G is rainbow connected if any two vertices are connected by
a rainbow path. Clearly, if a graph is rainbow connected, it must be connected, whereas any connected
graph has a trivial edge-coloring that makes it rainbow connected; just color each edge with a distinct
color. Thus, in [4] L. Chen, X. Li, H. Lian defined the rainbow connection number of a connected graph
G, denoted by rc(G), as the smallest number of colors that are needed in order to make G rainbow
connected. They showed that rc(G) > diam(G) where diam(G) denotes the diameter of G. For more
results on the rainbow connection, we refer to the survey paper [2],[3],[4] and [12], and a new book [10]
of Li and Sun.

In [8], Krivelevich and Yuster proposed the concept of rainbow vertex-connection. A vertex-colored
graph G is rainbow vertez-connected if two vertices are connected by a path whose internal vertices have
distinct colors. The rainbow vertez-connection number of a connected graph G, denoted by rve(G), is
the smallest number of colors that are needed in order to make G rainbow vertex-connected. For more
results on the rainbow vertex-connection, we refer to the survey paper [5] and [9]. An easy observation is
that if G is of order n, then rvc(G) < n — 2 and rve(G) = 0 if and only if G is a complete graph. Notice
that rve(G) > diam(G) — 1 with equality if the diameter is 1 or 2.

If for every pair u,v of distinct vertices, G contains a vertex-rainbow u — v geodesic, then G is
strong rainbow vertex-connected. The definition of strongly rainbow vertex-connected was defined by
Li et al. in [11]. The minimum k& for which there exists a k-coloring of G that results in a strongly
rainbow vertex-connected graph is called the strong rainbow vertex-connection number srvc(G) of G.
Thus r¢(G) < srve(G) for every nontrivial connected graph G.

If G is a nontrivial connected graph of order n whose diameter is diam(G), then
diam(G) — 1 < rve(G) < srve(G) < n — s, (1)
where s denote the number of pendent vertices in G.

Proposition 1.1. Let G be a nontrivial connected graph of order n. Then
(a) srve(G) =0 if and only if G is a complete graph;
(b) srve(G) =1 if and only if diam(G) = 2 if and only if rve(G) = 1.

A tree T in G is called a rainbow vertex tree if the internal vertices of T receive different colors. For a
graph G = (V, E) and a set S C V of at least two vertices, an S-Steiner tree or a Steiner tree connecting
S (or simply, an S-tree) is a such subgraph T = (V' E’) of G that is a tree with S C V’. For more
problems on S-Steiner tree, we refer to [6] and [7].

For S C V(G) and |S| > 2, an S-Steiner tree T is said to be a rainbow vertex S-tree if the internal
vertices of T receive distinct colors. The minimum number of colors that are needed in an vertex-coloring
of G such that there is a rainbow vertex S-tree for every k-set S of V(G) is called the k-rainbow vertex-
index of G, denoted by rvay(G). The vertez-rainbow indezx of a graph was first defined by Yaping Mao
in [13].

2. The strong rainbow vertex-connection of complementary
graphs

In this section, we investigate the rainbow vertex-connection number of a graph G' according to some
constraints to its complement G. We give some conditions to guarantee that srvc(G) is bounded by a
constant.

We investigate the rainbow vertex-connection number of connected complement graphs of graphs
with diameter at least 3.
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Theorem 2.1. If G is a connected graph with diam(G) > 3, then

— | 1, if diam(G) > 4;
srve(G) = { 2, if diam(G) = 3.

Proof. We choose a vertex z with eccg(x) = diam(G) = d > 3. Let N&(z) = {v : dg(z,v) = i} where
0 <i<d. So NA(z) = {z}, N\ () = Ng(z) as usual. Then (Jy,, N () is a vertex partition of V(G)
with | NG ()| = ni. Let A=, 1y cpen N&(@), B =, ;4 oqq V(). For example, see Figure 1, a graph
with diam(G) = 5.

So, if d = 2k(k > 2), then A = Uyc; <y is even N&(@)s B = U <cica1 is oaa N&(2); if d = 2k + 1(k >
2) then A = Uycicy 1 is even V&), B = Uj<icg is ogq Vi (). Then by the definition of complement
graphs, we know that G[A] (G[B]) contains a sl;ar_ming complete k;-partite subgraph(complete ko-partite
subgraph) where k1 = f%] (ko = f%l) For example, see Figure 1, G[A] contains a spanning complete

tripartite subgraph K, n,n,, G[B] contains a spanning complete tripartite subgraph K, ns ns-

Figure 1. Graphs for the proof of Theorem 2.

First of all, we see that G must be connected, since otherwise, diam(G) < 2, contradicting the
condition diam(G) > 3.

Case 1. d > 5.

In this case, ki, ks > 3. We will show that diam(G) < 2 in this case. For u,v € V(G), we consider
the following cases:

Subcase 1.1. u,v € A or u,v € B.

If u,v € A, then u,v is contained in the spanning complete k;-partite subgraph of G[A]. Thus
de(u,v) < 2. The same is true for u,v € B.

Subcase 1.2. u€ A and v € B.

If u =z, v € B, then u is adjacent to all vertices in G[B] \ Nk(z). So dg(u,v) = 1 for v €
G[B]\ N4(z). For v € Ni(z), let P = uxsv, where z3 € N2 (z). Clearly, dg(u,v) = 2.

If u # z, without loss of generality, we assume that u € NZ(x) and v € N} (z). Let Q = uzsv, where
x5 € N2 (z). Thus dg(u,v) = 2.

From the above, we conclude that diam(G) < 2. So, by Proposition 1(b), we have srvc(G) = 1.
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Case 2. d = 4.

It is obvious that A = N2(z) U NZ&(z) U N&(z), B = Nk(z) U N&(x). So G[A](G[B]) contains a
spanning complete 3-partite subgraph K, n,.n, (complete bipartite subgraph K, »,). So, we will show
that diam(G) < 2.

Subcase 2.1. u,v € A or u,v € B.

If u,v € A, then u,v is contained in the spanning complete kj-partite subgraph of G[A]. Thus
des(u,v) < 2. If u,v € B, then u,v is contained in the spanning complete bipartite subgraph of G[B].
Also we have dg(u,v) < 2.

Subcase 2.2. u€ A and v € B.

If u=x,v € B, then u is adjacent to all vertices in N2 (z). For v € Nk(z), let P = uzzv, where
z3 € N3 (z). Clearly, dg(u,v) = 2. So dg(u,v) < 2.

If u # z, then we assume that u € NZ(x) and v € Nj(z). Let Q = uxqv, where x4 € NA(z). Thus
dz(u,v) = 2. Suppose u € N&(z) and v € N2 (z). Let R = uzyv, where z; € N (z). Thus dg(u,v) = 2.
If u € N&(z) and v € N2(x), then S = uzv is a path of length 2. Then diam(G) < 2. So, by Proposition

1, we have srve(G) = 1.
Case 3. d =3.

In this case, A = N2(x) U NZ(z), B = NA(z) U N&(z). So G[A] contains a spanning complete
bipartite subgraph K, »,. So, we give G a vertex-coloring as follows: color vertex x with 1 and color all
vertices of N2 (z) with 2. It is easy to see that for any u € N2 (z), v € N.(x), there is a rainbow {1,2}
path connecting them in G. So srve(G) = 2 in this case.

For the case of diam(G) = 2, srvc(G) can be very large since diam(G) may be very large. For
example, let G = K, \ E(C),), where C,, is a cycle of length n in K,,. Then G = C,, and srve(G) >

diam(G) —1 = [§] — 1 by (1). O

3. The k-rainbow vertex-index of complete multipartite graphs

Theorem 3.1. Let Ky, n,,...n, be a complete multipartite graph. If k < 2¢, then rvxy, = 1; If k > 2¢,
then rvry, = 2. Where S = {v1,va, - v} (that is the rainbow S-tree we choose) and Vi, (1 < i <1) are
the vertices of the partition of Ky, n,....n,-
Proof. If k < 2¢, then we can find a partition V,,, (1 < i <) of Ky, ny,..m, wWith V,, NS < 1. If
Vp, NS = 0, then we can choose a vertex v € V,,, as the root vertex of the rainbow S tree and all the
other vertices are leaves. So rvzg(Kp, ny,.m,) = 1. If Vj,, NS =1, then we choose the vertex v € V,,, as
the root vertex of the rainbow S tree, and all the other vertices are leaves. So rvxg(Kn, ny,n,) = 1.

If £ > 2¢ and there exists V,,, such that |S NV,,| < 1, then we can choose the vertex v in V,
as the root of the rainbow tree and all the other vertices are the leaves the same as when k < 2¢. So
oLk (Kny nyom) = 1.

Suppose k > 2¢ and |SNV,,| > 2 for any V,,,. Now we give a rainbow vertex-coloring as follows.

L df 1<i<i-1,
c(Va,) = { 2, if i=0¢.
Next we prove it is a k-rainbow vertex-coloring. Choose one vertex v in V,,, as the root vertex of the
rainbow tree. Obviously v is adjacent to all the vertices in V,,, NS, V,,, NS, ... V,,_, NS. Then choose a
vertex in v’ € V,,,. Since v’ is adjacent to all the remaining vertices in V,,, NS, one can prove that the
tree is rainbow S-tree. O



Fengnan Yanling et al.

4. The k-rainbow vertex-index of complementary graphs

Theorem 4.1. If G is a connected graph with diam(G) > 3, then rvzy(G) < 2 and the bound is tight.

Proof. We choose a vertex x with eccg(x) = diam(G) = d > 3 as Figure 1. Then G[A](G[B]) contains
a spanning complete ki-partite subgraph (complete ko-partite subgraph). If the rainbow S-tree contains
in G[A](G[B)), then rvxy(G) < 2 by Theorem 3.1. Now we consider the rainbow S-tree does not contain
in G[A] or G[B]. If SN NA(G) = 0, then we choose = as the root vertex, and all the other vertices are
the leaves. So one can prove that there is a rainbow S-tree. Suppose S N N(G) # 0. Now we give a
rainbow vertex-coloring as follows.

c(z) =1,
c(v) =2, veV(G)\x.
We choose the vertex x as the root of the rainbow tree. We know zx is adjacent to all the vertices in

NL(z)N S, (j € {2,3,4,---}), and there must be a v € NZ(z), (j € {2m + 1 and m > 1}) such that v is
adjacent to N.(x) N S. one can prove that the tree is rainbow S-tree.

Let G is a connected graph of diam(G) = 3. We have rvz(G) = 2, so the bound is tight. O
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