Theoretical and Vibrational Analysis of Substituted Hydrazones: Valence Force Field

Lütfiye AYDIN^[], Talat ÖZPOZAN^[],

*1 Erciyes Üniversitesi Fen Fakültesi Kimya Bölümü, KAYSERİ

(Alınış / Received: 06.01.2021, Kabul / Accepted: 14.04.2022, Online Yayınlanma/ Published Online: 30.04.2022)

Keyword

Diketone Hydrazone, Valence Force Field, GF Matrix, DFT calculations

Anahtar Kelimeler Değerlik Kuvvet Alanı, GF Matrix, DFT Hesaplamaları Abstract: The vibrational spectroscopic and theoretical investigation of some diketo hydrazones derivatives; (2Z)-2-[2-(4-methylphenyl)hydrazinylidene]-1-(naphthalen-2-(2Z)-2-[2-(4bromophenyl)hydrazinylidene]-1yl)butane-1,3-dione(NBTMH), (naphthalen-2-yl)butane-1,3-dione (NBTBH), and (2Z)-2-[2,4-(phenyl)hydrazinylidene]-1-(naphthalen-2-yl) butane-1,3-dione (NBTBFH) were made in this study. Theoretical investigations of these compounds includes conformational, NBO and vibrational analyses to see the most stable structure, possible hydrogen bondings and chemical bond diversities of the compounds, respectively. The potential energy surfaces of the compounds were obtained by DFT method regarding the selected degree of torsional freedom, which was varied from 0° to 360° in 18° steps. The geometries of the compounds were optimized through conformational analysis followed by the minimum energy conformer. Possible hydrogen bonds were searched by NBO analysis. The vibrational frequencies were calculated using the optimized geometry (bond lengths, bond angles), the atomic masses, and the force constants as the input. The atomic radii and the electronegativities of the compounds were also used as the input to calculate IR and RAMAN activities. Wilson's GF Matrix method was used for the calculation of vibrational frequencies and the activities. The experimentally measured vibrational spectra were elucidated through theoretical calculations.

Dallanmış Hidrazonların Teorik ve Titreşim Analizi: Değerlik Kuvvet Alanı

AnahtarKelimeler

Diketon Hidrazon, Değerlik kuvvet Alanı, GF Matrix, DFT hesaplamaları Öz:Bazı diketo hidrazon türevlerinin, (2Z) -2- [2- (4-metilfenil) hydrazinylidene] -1-(naftalen-2-il) bütan-1,3-dion (NBTMH), (2Z) -2- [2- (4-bromofenil) hidraziniliden] -1-(naftalen-2-il) bütan-1,3-dion (NBTBH) ve (2Z) -2- [2 Bu çalışmada 4- (fenil) hidraziniliden] -1- (naftalen-2-il) bütan-1,3-dion (NBTBFH), titreşim spektroskopik ve teorik olarak incelenmesi yapılmıştır. Bu bileşiklerin teorik çalışmaları sırasıyla; konformasyonları, en kararlı yapıların NBO ve titreşim analizleri, olası hidrojen bağları ve kimyasal bağ türlerini içermektedir. Bileşiklerin potansiyel enerji yüzeyleri, 0° ila 360° arası 18°'lik aralıklarla değişen torsiyon değerinden bağımsız olarak DFT yöntemi ile elde edilmiştir. Bileşiklerin konformasyon analizi ardından minimum enerjili konformerleri optimize edilmiştir. Olası hidrojen bağları NBO analizi ile araştırılmıştır. Titreşim frekansları, optimize edilmiş eometrileri (bağ uzunlukları, bağ açıları), atom kütleleri ve kuvvet sabitleri kullanılarak hesaplanmıştır. Bileşiklerin atomik yarıçapları ve elektronegatiflikleri de IR ve RAMAN aktivitelerini hesaplamak için kullanıldı. Titreşim frekanslarının ve aktivitelerin hesaplanmasındaWilson'ın GF Matrix yöntemi kullanılmıştır. Deneysel olarak ölçülen titreşimspektrumları teorik hesaplamalarla açıklanmıştır.

*Corresponding Author, email: lkarasu@erciyes.edu.tr

1. Introduction

Some diketo hydrazone compounds are present in chemical structure of some important pigments. Depending on the type and the position of the side functional groups they show different color characteristics. The most important yellow classical pigments are a group of acetoacetanilide series of compounds. These are known as diarylide yellow compounds [1-3]. These yellow colored compounds are used in printing inks, painting and coloring of plastic materials. They are available in markets commercially in different tautomeric forms [4]. Due to general insolubility of these compounds, they are usually dispersed in solid form in the matrix of polymeric structure and used as coloring material. Their structures are examined through x-ray methods [5, 6].

In this study, the novel compounds; (2Z)-2-[2-(4-methylphenyl)hydrazinylidene]-1-(naphthalen-2-yl)butane-1,3-dione (NBTMH), (2Z)-2-[2-(4-bromophenyl)hydrazinylidene]-1-(naphthalen-2-yl)butane-1,3-dione (NBTBH), and (2Z)-2-[2,4-(phenyl)hydrazinylidene]-1-(naphthalen-2-yl)butane-1,3-dione (NBTBFH) as azo dyes were examined from several aspects regarding spectroscopic and physicochemical properties to clarify some of their behaviors. Conformer analysis through geometry optimization, vibrational analysis, and NBO analysis were performed. The three diketo hydrazone compounds differ from each other by substitution of R group as shown in Figure 1.

Figure 1.Numbering of atoms in NBTMH (where R= CH3, Br, R').

The experimental IR and Raman spectra of these azo dyes were recorded and assigned by normal coordinate analysis using Wilson's GF matrix method. The advantage of using GF matrix is that it makes the problem more coherent and even the force constants in terms of these internal coordinates have a more easily visualized physical meaning than others. The force constants can be transferred from one molecule to another if they belong to the same chemical group. The geometry optimizations of these molecules were made by theoretical calculations to obtain most stable conformer employing DFT/B3LYP method. The intramolecular interactions and the hydrogen bondings were searched by NBO analysis. The theoretical results were compared with the experimental analogs and found to be in good agreement.

2. Material and Method

2.1. Experimental

The novel compounds; NBTMH, NBTBH, and NBTBFH as azo dyes were synthesized [6]. In this study, Jasco FTIR spectrometer was used in 400-4000 cm⁻¹ wave number region for both compounds. 30 scans were made for each spectrum. All samples were prepared in 1-3 % (w/w) KBr pellets to measure IR absorption signals as shown in Figure 2.

TheoreticalandVibrational Analysis of SubstitutedHydrazones: Valence Force Field

Figure. 2. Experimental FT-IR Spectra.

The Raman spectra were recorded on a Horiba Jobin Yvon Labram Model HR 80 Raman spectrometer. The spectrometer is equipped with a Nd: YAG LASER operated at 20 mW with a wavelength 532.1 nm. The collected signals were transmitted into a 600 grooves/mm holographic grating with a resolution of 3 cm⁻¹. The Raman spectra were collected by manually placing the 10x lens near the desired point of the sample on silicon wafer and all the spectra were calibrated according to the silicon peak at 522 cm⁻¹. An increasing photoluminescence effect above 1700 cm⁻¹ of the spectrum for NBTMH negatively affected the Raman bands in this region. A similar destructive effect was also observed in the Raman spectrum of NBTBH, NBTBFH compounds. Only visible Raman signals exceeding the fluorescence bands were taken to the frequency lists additionally to IR bands for assignments of vibrational modes.

2.2 Computational Procedures

The conformer analyses were performed in two successive steps employing Spartan 08 [7] and Gaussian 09 programs [8]. The possible conformers of the compounds NBTMH, NBTBH were determined first by Spartan 08 program employing MMF method. The imaginary frequencies in calculated vibrational spectra, the overlapping structures and the structures having energies above 2 kcal/mol were eliminated. Using DFT/B3LYP/6-31 G [9] method the lowest relative energy conformer was determined as the most stable structure in Spartan 08 for practical and fast treatment and the output was transferred to Gaussian 09 program as input for further calculations. Gauss View 3.09 program [10] was also employed to form the molecular structure and to visualize 3D appearance; NBTMH, NBTBH and NBTBFH have been illustrated on Figures 4, 5 and 6, respectively. The critical torsional angles of flexible bonds affecting the conformational structures were determined as T ($C_{22}C_{16}C_{14}C_{15}$), T ($C_{8}N_{11}N_{13}C_{14}$), and T ($N_{13}C_{14}C_{15}C_{17}$). The potential energy surfaces were obtained through rotating the related bonds by 18°increaments for 20 times to get 360° full scan using DFT B3LYP/6-31G method, they were showed figure 7. More precise scanning was applied around the minimum energy regions by 2° to get more correct minimum energy value.

The optimized geometrical parameters including only the bond lengths and the bond angles for NBTMH, NBTBH and NBTBFH (**Appendix A**, **Appendix B**, **Appendix C**, respectively) were listed in supplementary data the internal coordinates can be seen on Figure 3 and the optimized structures of these compounds have been illustrated on Figures 4, 5 and 6, respectively. The calculated potential energy surfaces can be seen in Figure 7

Figure 3. Internal coordinates of NBTMH.

Figure 4. Optimized geometry of the NBTBFH.

Figure 5. Optimized geometry of the NBTMH.

Figure 6. Optimized geometry of the NBTBH.

7f. Energy vs. rotational angle of C₁₄C₁₅ (18°)

7g. Energy vs. rotational angle of $C_{14}C_{15}$ by (2⁰)

Figure 7. Energy vs. scanned rotational angles of flexible bonds by 18° and 2° increments.

The Normal Coordinate Analysis was made by Wilson's GF matrix method [11]. The frequencies were calculated by the program written originally by Shimanouchi [12], the activities (IR & Raman) and the normal coordinate treatment of the related compounds to interpret their vibrational spectra have been performed by the program SPSIM developed by Schrader et al. [13-17]. The valence force constants transferred from similar compounds were refined to calculate vibrational frequencies in AXS and NCF modules then IR and Raman activities were calculated in ACT module of SPSIM program [16]. Additional calculation of vibrational frequencies were performed by DFT/B3LYP 6-31G(d, p) method to compare the results with the semiemprical method used in SPSIM program. Intra molecular H bondings were investigated through NBO analysis and the criteria for H bond classification were considered as given by Jeffry [18].

3. Results

3.1 Conformer Distribution and NBO Analysis

The critical torsional angles and the corresponding molecular energies before and after the conformational analysis of NBTMH and NBTBH can be seen on Table 1. The critical torsional angles of NBTMH and NBTBH calculated by the two programs did not differ too much as can be seen from the graphs given in Figure 7. This result was expected since the initial geometrical parameters for the calculation in Gaussian were obtained from the calculation of the molecule in Spartan using the same method DFT-B3LYP in both. This procedure is usually preferred because of easy, fast and practical conformational analysis in Spartan and more accurate molecular energy calculations [19]. The critical torsional angles for the third compound NBTBFH were transferred from the compound NBTMH in the final form because of very similar duplicated structure of NBTMH. After optimization of the geometries the possible H-bondings of the most stable conformer were determined depending on the Jeffry's classification of hydrogen bonding. No strong H-bonding was observed in any of the compounds NBTMH and NBTBH. A medium H-bonding were found between H₁₂...O₃₉ atoms of NBTMH and H₁₂...O₃₉ atoms of NBTBFH with respect to this classification. A weak H bondings were also found between H₂₈...O₂₁ atoms in NBTMH and H₂₈...O₂₁ atoms in NBTMH and H₂₈...O₂₁ atoms in NBTBH molecules. No energy transfer was found for NBTMH and NBTBH molecules originate from the electron transfer but NBTBFH molecule has shown energy transfer in the NBO analysis.

Depending on the conjugative effect in NBTBFH molecule, the atoms H_{12} ... O_{39} came closer and leading to increase in N_{11} - H_{12} ... O_{39} angle. This causes easy energy transfer from O_{39} lone pair electrons to N_{11} - H_{12} antibonding electrons. The similar conjugative effect can be observed between O_{51} lone pair electrons and N_{40} - H_{41} antibonding electrons of the same molecule. The increase in size of the molecule causes more conjugations and more interaction sites between donors and acceptors along the molecule. A-H...B angles of NBTMH and NBTBH can be seen Table 2. A-H...B angles of NBTBFH and NBO for NBTBFH analyses were given in Table 3, Table 4, respectively.

molecules.									
NBTMH			NBTBH	NBTBH					
Critical Torsional Ar	ngles Initial Values ^a	Final Values ^b	Critical Torsional Ar	ngles Initial Values	Final Values				
T(N ₁₃ C ₁₄ C ₁₅ C ₁₇)	170.79247	-170.77227	T(N ₁₃ C ₁₄ C ₁₅ C ₁₇)	170.69264	-170.69110				
T(C ₈ N ₁₁ N ₁₃ C ₁₄)	-176.55079	-176.55156	$T(C_8N_{11}N_{13}C_{14})$	176.55079	-176.57896				
T(C ₂₂ C ₁₆ C ₁₄ C ₁₅)	010.90706	-10.878450	$T(C_{22}C_{16}C_{14}C_{15})$	010.907060	-011.61980				

Table 1. The comparison of the critical torsional angles and the energies before and after conformational analysis of the molecules.

Table 2 A-HB angles of NBTMH and NBTBH.	

Bond	Bond Angle (º)	Bond	Bond length (Aº)
·H ₂₈ -C ₂₃	97.10458	O ₂₁	228
·H ₁₂ N ₁₁ -	132.66725	O ₃₉	301
$H_{10}C_{6}$	94.66316	H ₁₀	218
$C_{61}H_{68}$	97.10458	H ₆₈	591
$N_{40}H_{41}$	132.66725	H ₄₁	308
C ₄₆ H ₄₈	80.67206	H ₄₈	512
C ₃ H ₇	94.66316	H ₇	285

Table 3. A-B angles of NBTBFH.

NBTMH				NBTBH					
Bond	Bond Angle,º Bond		Bond Length, A⁰	nd Length, Bond		Bond	Bond Length, A⁰		
C ₂₄ -H ₂₈ ··O ₂₁	96.77593	H ₂₈ O ₂₁	2.56455	C ₂₄ -H ₂₈ ··O ₂₁	96.77780	H ₂₈ O ₂₁	2.58221		
N_{11} - H_{12} ··O ₃₉	132.35344	H ₁₂ O ₃₉	1.77235	N_{11} - H_{12} ··O ₃₉	132.26133	$H_{12}{\cdot}{\cdot}O_{39}$	1.77543		

Donor NBO (i) electron	Acceptor NBO (J) electron	¹ E(2)ª (kcal/mol)	² E(i)-E(j) ^b (au)	³ F(i,j) ^c (au)
LP (2) O ₂₁	BD*(1) C ₂₇ – H ₃₃	124.14	1.39	379
LP (1) O ₂₁	BD*(1) C ₂₇ – H ₃₃	10.25	1.23	105
LP (1) O ₂₁	BD*(1) C ₁₄ - C ₁₅	44059	0.82	103
LP (1) O ₂₁	BD*(1) C ₁₅ -C ₁₇	7.92	0.81	73
LP (2) O ₃₉	BD*(1) N ₁₁ - H ₁₂	1.23	0.70	26
LP (1) O ₃₉	BD*(1) N ₁₁ -H ₁₂	0.63	1.13	24
LP (1) O ₄₅	$BD^{*}(1) C_{53} - H_{62}$	8.57	1.30	99
LP (2) O ₄₅	$BD^{*}(1) C_{53} - H_{62}$	146.36	1.41	417
LP (1) O ₄₅	BD*(1) N ₄₀ - H ₄₁	14.83	0.67	90
LP (1) O ₅₁	$BD^{*}(1) N_{40} - H_{41}$	0.57	1.13	23
LP (2) O ₅₁	BD*(1) N ₄₀ -H ₄₁	1.13	0.70	25
LP (1) N ₄₂	BD*(1) C ₄₆ - H ₄₈	0.72	0.80	22

Table 4. NBO for NBTBFH.

¹Hyperconjugative interactions

². Energy difference between donor and acceptor NBO orbitals

 $^{\rm 3}.$ Fock matrix energy between donor and acceptor NBO orbitals, $\,F(i,j)$

3.2 Vibrational assignments

In all the frequencies calculations of the three compounds, the geometrical parameters are taken from the DFT/B3LYP/631G (d, p) calculations for each compound in Gaussian 09 program following the determination of the most stable conformer. Predicted spectra of the compounds NBTMH, NBTBH, NBTBH at B3LYP/6-31G* level were given figure 8.

Figure 8. Predicted spectra of the compounds NBTMH, NBTBH, NBTBFH at B3LYP/6-31G* level.

The compound NBTMH has 43 atoms and C_1 symmetry. 123 vibrational degrees of freedom are active both in IR and Raman spectra. 163 internal coordinates (Figure 1.) are required for the calculation of the frequencies of the compound. Totally 162 force constants (118 diagonal + 44 nondiagonal) were used in F matrix to calculate the frequencies of NBTMH. The force constants were transferred from the similar small molecules such as naphthalene [20], benzene [20], ethylmethylketone [21], toluene [22], hydrazine [23], saturated hydrocarbons [25] and aniline [24, 26]. Only the diagonal force constants were listed in **Appendix D**. The calculated Raman spectra of the compounds (NBTMH, NBTBH, NBTBFH at B3LYP/6-31G* level) were given figure 9.

Figure 9. The calculated Raman spectra of the compounds NBTMH, NBTBH, NBTBFH at B3LYP/6-31G* level.

The part of these values as vibrational frequencies and their assignments in comparison with other compounds are given in Table 5. The compound NBTBH has 40 atoms and the fourth atom on the phenyl ring of NBTMH was replaced by Bromine atom instead of the methyl group. The molecule was assumed to have C₁ symmetry. 114 vibrational degrees of freedom are active both in IR and Raman. 153 internal coordinates are required for the calculation of the normal vibrational frequencies. 161 force constants (114 diagonals + 47 nondiagonals) were employed in the F matrix to calculate the vibrational frequencies of NBTBH. The force constants were transferred from the similar small molecules as used in the previous calculations of NBTMH. Additionally, bromophenol compound was used for transferring the force constants [27].

The NBTBFH molecule is nearly a duplicate of NBTMH and has 68 atoms. The molecule assumed to have C₁ symmetry. 198 vibrational degrees of freedom are active both in IR and Raman spectra. 166 force constants (125 diagonals + 45 nondiagonals) were required in F matrix to calculate the frequencies of NBTBFH. The list of the force constants used for the last three molecules were given on Supplementary data. The IR and Raman activities of these three compounds were also calculated using atomic radii, atomic electronegativities as input data in ACT module of the program [28]. A new valance force field (VFF) was developed for the compounds. All the bands in the vibrational spectra were assigned by means of theoretically calculated spectra. The theoretically calculated spectra were found to be in good agreement with the experimental frequencies as can be seen in Figure 10. The R² values of the correlation graphics of experimental vs. theoretical frequencies (by GF method) were found to be 0.9999, 0.9998, and 0.9999 for NBTMH, NBTBH, and NBTBFH compounds, respectively. The relative % errors of the theoretical frequencies of the same compounds were calculated as 0.79% for NBTMH, 0.97% for NBTBH and 0.65% for NBTBFH molecule

Table5. Assignments for NB	IMH, NBIBH	I, NBIBEH.
-----------------------------------	------------	------------

		NBTMH			NBTBH			NBTBFH		
No.	Assignment	IR	Raman	GF	IR	Raman	GF	IR	Raman	GF
1	υ (NH)	3248	-	3248	3248	-	3248	3315,33	-	3322,33
2	υ(C _n H)	3097,3078, 3072	3083	3094,3083, 3069	3097, 3078	-	3095,31	3097 3069	-	3097,3096, 3082, 3070
3	$\upsilon(C_bH)$	3055	3060	3057,3056,309 0, 3049	⁵ 3055, 3050	3065	3069, 3057-3055- 3048	3069 3055 -	-	3067 3058,3055, 3050,3049
4	υ(CnH)	3037 3006	-	3038,3030 3014,3013	3039 3008	-	3038,3032, 3022,3014	3035 3013	-	3039,3032, 3031, 3017,3015
5	υ (CtH)	2999	-	3005,3	-	-	-	-	-	-
6	υ(C _m H)	2960 2896	-	2969, 2959, 2887	2999, 2979 2922	- 2933	2980, 2971 2899	2999, 2966 2941, 2912 2851	-	2972,2966, 2941,2912, 2851
7	υ(C _t H)	2924	2928	2924	-	-	-	-	-	-
8	υ(C _{mk} =O)	1645	1644	1655	1645	1650	1658	1666	1653	1665
9	υ(CnkO)	1626	1624	1642	-	-	-	1657		1650,16
10	υ(CnkO), υ(CmkO)	-	-	-	1625	1627	1636	-	-	-
11	$\upsilon(C_bC_b)$	-	-	-	1625, 1593	1627, 1601	1625,16	1605	1601	1604
12	$\upsilon(C_nC_n)$	1614	-	1630	1625, 1582	1627, 1570	1628,16	1657,16	-0,16	1649,16
13	$\upsilon(C_nC_n), \upsilon(C_nC_{nk})$							1624,16	1616, 1592	1590,16
14	$U(C_bC)+U(C_nC)$							1605	1572	1568
15	U(CbCb)	1596	1587	1594,16	-	-	-	1520	1510	1526

Table 5.Cont.

		NBTMH			NBTBH			NBTBFH		
No.	Assignment	IR	Raman	GF	IR	Raman	GF	IR	Raman	GF
16	$\upsilon(C_bC), \delta(C_bC_bN)$	-	-	-	-	-	-	-	-	
17	U(CnCn)	1593	1587	1575	-	-	-	1569	1572	1567,1561,1560
18	υ (C=N), υ(C _n C _n)	-	-	-	1515	-	1541	1469	-	1455
19	υ (C=N), υ(C _{mk} O)	-	-	-	1506	1505	1533	-	-	-
20	υ(C=N)	1514	1516	1538	-	-	-	1500	-	1511
21	$\upsilon(C_nC_n)$	1508	-	1530	1487	1496	1485	1537,1520 1500,1487	1537, 1510 1502	1536,1513,1502, 1494
22	$\delta(HC_mH), u(C_hC_{mk})$	1487	1487	1497	-	-	-	1537	1537	1545
23	δ(NNH), δ(C₅NH)	1487	1466	1492	1464	1463	1472	-	-	-
24	δ (NNH), υ(C _n C _n)	-	-	-	-	-	-	1429	-	1439
25	$\delta(HC_tH), \delta(C_tC_tH)$	1464	1466	1473	-	-	-	-	-	-
26	δ(HC _m H)	1464	1466	1463	1458	-	1443,14	1469,14	-	1468, 1449
27	δ(HC _m H)	1430	1434	1442	-	-	-	1429,14	-	1435, 1416
28	$\upsilon(C_nC_n), \delta(HC_mH)$	1430	-	1440	-	-	-	-	-	-
29	$\delta(HC_tH)$	1430	-	1439	-	-	-	-	-	-
30	$\delta(HC_mH), \delta(C_bC_tH)$) 1430	-	1438	-	-	-	-	-	-

Tal	ole	5.	Cont.	

		NBTMH			NBTBH			NBTBFH		
	Assignment	IR	Raman	GF	IR	Raman	GF	IR	Raman	GF
31	δ(ዘር_Η) δ(ር_ር_Η) -	_	_	_	_	_	1404,	1404,	1401,
51		/						1381	1389	1393
32	$\delta(C_bC_tH)$	1430	-	1437	-	-	-	-	-	-
33	$\delta(C_bC_bH)$	1412	1410	1416	1430, 1350	1431, 1347	1431, 1341	1381	1389	1396
34	$\delta(C_bC_bH), \upsilon(C_bC_b)$	-	-	-	-	-	-	1417	-	1413
35	$U(C_nC_n)$	1389	1392	1401	-	-	-	1429	-	1432
36	δ(CnCnH)	1364	1374	1375	1412	-	1414	-	-	-
37	$\delta(C_nC_nH)$	1364 <i>,</i> 1350	1374, 1347	1364 <i>,</i> 1343	1382, 1364	1374 <i>,</i> 1361	1378 <i>,</i> 1362	-	-	-
38	υ(C _b C _b)	1350	1347	1347	1389	1386	1396	-	-	-
39	$\delta(C_{mk}C_mH)$	-	-	-	1321	-	1340	1367	1374	1374
40	δ(C _{mk} C _m H), δ(HC _m H)	1321	1323	1336	-	-	-	-	-	-
41	$\upsilon(C_nC_n), \delta(C_bC_bH)$	1240	1241	1253	1379	1372	1299	-	-	-
42	δ (CnCnH),υ(CnCn)	1269	1284	1299	-	-	-	-	-	-
43	U(CnCn)	1180,1	-0,1	1175 <i>,</i> 1040	1020	1021	1048	-	-	-
44	$\upsilon(C_bN),\delta(C_bC_bH)$	-	-	-	1238	1238	1249	-	-	-
45	δ(CnCnH), υ(CnCn)	-	-	-	1269, 1209, 1096	-,1210, -	1274,1221,1088	1381,1367, 1198 1175	1389, 1374 	1385,1369 1196,1187 1172
46	$\delta(C_nC_nH)$	1209,12	1204 <i>,</i> 1180	1215, 1159	1134	1137	1157	1306, 1273 1259	1311, 1268 -	1306,1273 1231

Table 5.Cont.

		NBTMH			NBTBH			NBTBFH		
	Assignment	IR	Raman	GF	IR	Raman	GF	IR	Raman	GF
47	$\delta(C_bC_bH)$	1290,12	1299, 1180	1315, 1175	1294, 1163	1299 <i>,</i> 1161	1277, 1162	1321	1330	1326
48	U(CnCnk)	1163	1164	1147	-	-	-	-	-	-
49	$U(C_nC_n)$, $U(C_nC_{nk})$	-	-	-	1178,11	1174,11	1173,12	-	-	-
50	$\delta(C_bC_bH)$	1163	1164	1156	-	-	-	-	-	-
51	υ(NN),υ(CnCn)	1105	1102	1102	860	856	874	-	-	-
52	υ(NN)	-	-	-	1103	1108	1103	1110,89	1112,88	1101,88
53	$\delta(C_{mk}C_mH), u(NN)$	-	-	-	-	-	-	1110	1112	1110
54	υ(NN), υ(C _{nk} C _h)	-	-	-	-	-	-	981	-	984
55	υ(C _b C _b)	1095	-	1078	1096,92	-0,94	1088,93	-	-	-
56	υ(NN), δ(CnCnH)	1136	1137	1137	-	-	-	-	-	-
57	$u(C_bC_b)$, $\delta(C_bC_tH)$	1071	1071	1066	-	-	-	-	-	-
58	$\delta(C_{mk}C_mH),\delta(HC_mH)$	-	-	-	-	-	-	1217,12 1357,1072,	1210,12 1359,-	1225,12 1313,1065,
59	$\delta(C_{mk}C_mH)$	1071,1	1071,1	1073,1	1071,1	-0,1	1069,1	1011, 941,860		1006-1002 948-43,865
60	$\delta(CC_mH)+\delta(C_bC_bC)$	-	-	-	1005	-	1006	-	-	-
61	$u(C_nC_{nk})+\delta(C_nC_nC)$	-	-	-	-	-	-	1144	1148	1152
62	$\delta(C_{mk}C_mH), u(C_nC_n)$	-	-	-	-	-	-	1072	-	1054
63	$\delta(C_{mk}C_mH), u(C_bC_b)$	-	-	-	-	-	-	1034	-	1032
64	$\delta(C_bC_tH)$	986	983	983	-	-	-	-	-	-

Table 5. Cont.

		NBTMH			NBTBH	NBTBH			NBTBFH		
	Assignment	IR	Raman	GF	IR	Raman	GF	IR	Raman	GF	
65	δ(C _n C _n H)	970	-	969	-	-	-	-	-	-	
66	$\upsilon(C_bC_b),\delta(C_bC_bC_b)$	970	-	964	-	-	-	-	-	-	
67	γ(C _b)	949	958	940	984,97	-996	978,96	981,96	-	983,97	
68	υ(CnkCh),υ(CmCmk)	949	-	933	958	958	946	-	-	-	
69	δ(C _n C _n H)	908	-	922	-	-	-	1161	-	1167,12	
70	δ(CnCnH), υ(CnCn)	-	-	-	779	-	786	1072, 1022, 935,831	-	1053,1016, 937,856	
71	γ(C _n)	908,83	-	920,86	893,827,7 98	⁷ -,830,-	889,858,797	920,660,47 4	7 _	921,919,666-664,464	
72	γ(C _b)	903,82	-901	907,84	949,78	-,-	945,77	-	-	-	
73	γ (C _b)	903,76	-	903,75							
74	γ(C _n)	893	-	886	760	752	751	860,831 796785,76 1110	2	856, 850,802-799- 792,752	
75	υ(CnCn)	860	859	879	903	901	923	1110, 1034 908,900 831,649,63 0	1112 3 ⁻	1108-1102,1032, 911,896-892 850,650-647,632	
76	$\delta(C_n C_n C_n), \upsilon(C_n C_n)$	656	658	652	779,66	-	786,66	474	484	469	
77	$\delta(C_n C_n C_n)$	798	-	785	893,82	-, -	890,8				
78	υ(C _b C _b)	775	769	759	760	769	758	785	772	791,783,	
79	$\gamma(C_b), \gamma(N)$	759	-	754							
80	γ(N)	759	-	754							

Table 5. Cont.

		NBTMH			NBTBH			NBTBFH		
	Assignment	IR	Raman	GF	IR	Raman	GF	IR	Raman	GF
81	υ(C _b C _b)	-	-	734	-	-	-	-	-	-
82	$\gamma(C_b), \tau(C_bC_b)$	716	-	725	-	-	-	-	-	-
83	υ(C _b C _b)	-	696	702	-	-	-	709	-	722
84	γ(C _b), γ(N)	687	-	686	-	-	-	692	691	693
85	υ(CBr),δ(CNN)	-	-	-	658	-	667	-	-	-
86	γ(C _n)	656	658	656	658	-	657	-	-	-
87	δ(ChCmkO)	635	631	621	635	-	639	-	-	-
88	$\delta(C_nC_{nk}O),\delta(C_bC_bC_b)$	629	-	611	-	-	-	981	976	892
89	δ (C _b C _b C _b)	608	-	603	629	621	614	590	-	
90	γ(C _{nk})	608	-	600	629	621	619	958,58	-952	911
91	$\gamma(C_b)$	563	-	582	-	-	-	-	-	
92	$\upsilon(C_{mk}C_k),\delta(C_nC_nC_n)$	-	-	-	608,55	-601	603,54	-	-	
93	υ(C _{mk} C _k)	553	-	566	-	-	-			
94	$U(C_{mk}C_k),\delta(C_mC_{mk}O)$	-	-	-	-	-	-	590	-	599
95	γ(C _n)	510	518	537	500	515	510	500	-	490
96	τ(CnCn)	-	-	-	-	-	-	615	-	622
97	$\gamma(C_b), \tau(C_bC_b)$	500	-	527	608,46	-601	592,44	-	-	-

Tal	b	le	5.	Со	n	t.

		NBTMH			NBTBH			NBTBFH		
	Assignment	IR	Raman	GF	IR	Raman	GF	IR	Raman	GF
98	$V(C_{n}) T(C_{n}C_{n})$	_	_	_	_	_	_	603,	-	604,602
50	γ(cli), (clicil)							509	515	520,505
99	δ(C _m C _{mk} O)	-	-	-	-	-	-	576	-	566
100	γ(C _b)	488	-	497	460	441	445	-	-	-
101	$\delta(C_nC_nH)$	-	-	-	563,488,4 03	1 565,485,4 3	⁰ 566,490,427	-	-	-
102	γ(C _{mk})	-0,4	-	477,42	-	-	-	451,42	-	458,43
103	Naphthalene ring def.	471	-	456	471	-	460	615,58	-	618,56
104	$\gamma(C_{nk}), \gamma(N)$	-	-	-	-	-	-	590	-	587
105	γ(C _b), γ(N)	-	-	-	-	-	-	534	-	541
107	τ(CnCn), γ (Cnk)	460	461	438	-	-	-	-	-	
108	$\delta(C_bC_bN)$	-	-	-	-	-	-	451	-	
109	$\delta(C_bC_bC_b),\delta(C_bC_bN)$	408	-	429	-	-	-	-	-	
110	$\gamma(C_{mk}), \tau(C_hN)$	-	-	-	-	-	-	424	-	
111	τ(C _h N)	-	-	-	-	-	-	401	-	
112	γ(C _{mk}), τ(C _b C _b)	-	-	-	-	-	-	451	-	
113	$\delta(C_nC_nC_n)$	-	-	390	-	-	-	-	-	
114	γ (C _n)	-	-	367	-	-	-			
115	γ (C _n), τ (C _b C _b)	-	-	362	-	-	-	941	928	
116	$\delta(C_bC_bC_b)$	-	-	339	-	-	-		-	
117	$\tau(C_bC_b), \gamma(C_n)$	-	-	328	-	-	-	935	924	

Figure 10. Correlation plot of experimental vs. theoretical frequencies

by GF.

The correlation between experimental and the calculated wave numbers by the method DFT/B3LYP/631G (d, p) for the three compounds can be seen in Figures 11-13. The R² (n) values of calculated frequencies by DFT were found to be 0.9929(n=97), 0.9961(n=88), and 0.9965(n=154), for the compounds NBTMH, NBTBH, and NBTBFH, respectively. The average percent relative error of the calculated frequencies of NBTMH in the present study was found to be 11 cm⁻¹ and the maximum deviation is 27 cm⁻¹ at 500 cm⁻¹ corresponding to the out of plane P(C_b) vibrations. The average percent relative error of the calculated frequencies for NBTBH was also found to be 9 cm⁻¹ and the maximum deviation is 30 cm⁻¹ at 828 cm⁻¹ corresponding to C_n-C_n out of plane deformation vibration. The similar calculation was also performed for NBTBFH and the average percent relative error of the calculated requencies for NBTBH was found to be 7. The maximum deviation is 28 cm⁻¹ observed at 1259 cm⁻¹ wavenumber corresponding to C_n-C_nH in plane deformation vibration aromatic rings

Figure 11. Correlation plot of experimental vs. theoretical frequencies of NBTMH.

Figure 12. Correlation plot of experimental vs. theoretical frequencies of NBTBH.

Figure 13. Correlation plot of experimental vs. theoretical frequencies of NBTBFH.

3.2.1N-H vibrations

N-H stretching mode observed usually at 3350-3200 cm⁻¹. N-H stretching vibration for a similar structure of p-CH₃ and m-CH₃cyanoformazone were calculated at 3230, 3222 cm⁻¹ by Abdel Ghan*iet al.* [29].

The N-H stretching vibration of the hydrazine group of NBTMH was calculated at 3248 cm⁻¹ by GF method same as the observed IR wave number value. Similarly, the N-H stretching vibration of NBTBH was calculated and observed at 3248 cm⁻¹. The same signal for NBTBFH was calculated at 3301 cm⁻¹ and observed at 3315 cm⁻¹. The shift and broadening of the -NH stretching band and the shift of the C=O stretching band of the naphtyl keto group in NBTBFH corresponding to the same groups in NBTMH and NBTBH were mainly responsible for the weak hydrogen bonding [30] between the N-H of hydrazine and the C=O of the naphtyl keto groups as can be seen in Table 4.

NH bending mode observed usually at 1505-1570 cm⁻¹ was calculated at 1505 cm⁻¹ with a 37% contribution and at 1556 cm⁻¹ with low percentage (17%) for diacetylmonoxime semicarbazone in the same work [31]. The deformation vibrations of NNH group for p-CH₃ substituted cyanoformazones were calculated at 1404 cm⁻¹ and observed at 1400 cm⁻¹. The same band were observed at 1469 cm⁻¹ and calculated at 1466 cm⁻¹ for m-CH₃ substituted analog [29].

In the present study, NNH in plane bending of NBTMH was calculated at 1487 cm⁻¹ with 18% contributions of NNH and %18 contributions of CNH internal coordinates. The same mode was calculated at 1472 cm⁻¹ for NBTBH and at 1439 cm⁻¹ for NBTBFH, respectively.

NH out of plane vibration of the hydrazone group was observed at 652 cm⁻¹ and calculated at 654 by Doddof*etal*. [32]. The same mode for NBTMH was observed at 754, 686 cm⁻¹ and calculated at 687 and 759 cm⁻¹. The out of plane vibration of NBTBFH was observed 692 cm⁻¹ and calculated at 693 cm⁻¹.

3.2.2 C-H vibrations

The C–H stretching frequencies of monosubstituted benzenes are expected in the region 3010–3120 cm⁻¹ and substituted groups do not alter much in this range very much [29, 33]. C-H in plane and out of plane bendings are usually observed at 1100-1500 cm⁻¹ and in 800-1000 cm⁻¹ regions, respectively [34]. Netto *etal.* Observed C-H stretching vibrations at 3073, 3064, 3056, 3057 cm⁻¹ for benzene and at 3065, 3056, 3055, 3029, 3025, 2980 cm⁻¹ for naphthalene. The C-H vibrations the C-H in plane bendings of benzene and naphthalene were observed at 1482, 1350, 1309, 1178, 1152 cm⁻¹ and 1460, 1436, 1389, 1240, 1209, 1144, 1125, 1099 cm⁻¹ respectively[20]. The aromatic C–H stretching vibrations of the naphthalene group in NBTMH were observed at 3097, 3078, 3072, 3037, 3006, cm⁻¹ and calculated at 3094, 3083, 3069, 3038, 3014, cm⁻¹ with a contribution of 100, 97, 98 and 100, 85 percents to the PED of the normal vibrations, respectively. The C–H stretching vibrations of benzene observed at 3055 cm⁻¹ were attributed to the calculated wave numbers of 3057, 3056, 3050 cm⁻¹ with 99% contributions each.

The C-H stretching vibrations of benzene ring belonging to NBTBH compound was calculated at 3054, 3049, 3048 cm⁻¹ and observed at 3055 cm⁻¹ as single band. The naphthalene's C-H stretchings vibrations of NBTBH compound were observed at 3097, 3078, 3039, 3008 cm⁻¹ and calculated at 3095, 3081, (3038, 3032), (3022, 3014) cm⁻¹ wavenumbers. C-H stretchings belonging to benzene ring of NBTBFH was observed at 3069 and 3055 cm⁻¹ and calculated at 3067 and (3058, 3055, 3050, 3049) cm⁻¹ The C-H stretchings belonging to naphthalene group of the same compound was observed at 3035, 3013 cm⁻¹ and calculated at (3039, 3032, 3031) and (3017, 3015) cm⁻¹ wavenumbers.

The C–H stretching vibrations of toluenicCH₃ group connected to hydrazone bridge of cyanoformazans, similar to our system, were calculated at 2998, 2960, 2946 cm⁻¹ for asymmetrical stretchings and 2945, 2939, 2920 cm⁻¹ for symmetrical stretchings of ortho- meta and para methhylated benzene ring, respectively [29]. The C-H stretching vibrations of methyl group connected to kethonic carbonyls in another study were observed at 2982, 2953 cm⁻¹ wavenumbers [35]. The C-H vibrations of toluenic methyl group of NBTMH were observed at 2999, 2924 cm⁻¹ and calculated at (3005, 2990), 2924 cm⁻¹ while the C-H stretching vibrations of ketonic CH₃ group were observed at 2960, 2896 cm⁻¹ and calculated at (2969, 2959), 2887 cm⁻¹ for NBTMH. Since there are only ketonic C-H vibrations available as aliphatic C-H vibrations in NBTBH and NBTBFH molecules, the wavenumbers 2999, 2979, 2922 cm⁻¹ were observed and calculated at 2980, 2971, 2899 cm⁻¹ wavenumbers for this group of NBTBH. The same aliphatic C-H vibrations of NBTBFH were observed at 2999, 2951 cm⁻¹.

Toluenic HCH bendings of CH_3 in nitrotoluenes appear at 1477, 1469, 1374 cm⁻¹ [22], in the same study C_bC_tH bending was observed at 997 cm⁻¹ wavenumber. In another study, aliphatic HCH bendings were observed at 1440, 1380 cm⁻¹

wavenumbers. CCH bending belonging to CH₃ observed at 990 cm⁻¹ and calculated at 990 cm⁻¹ with 65% contribution [31]. The HCH bendings of ketonic CH₃ for NBTMH were observed at 1464, 1430 cm⁻¹ wavenumbers and calculated at 1463, 1442 cm⁻¹. The HCH of toluenic methyl deformations were observed at 1465, 1430 cm⁻¹ and calculated at 1473, 1439 cm⁻¹ wavenumbers. The HCH deformation vibrations of ketonic methyl group for NBTBFH are observed at 1469, 1442, 1429, 1417 cm⁻¹ and calculated at 1468, 1449, 1435, 1416 cm⁻¹ wavenumbers, respectively.

CCH in-plane bendings of naphthalene groups are observed at 1460, 1209, 1008 cm⁻¹ wavenumbers. The same bending vibrations of benzene ring are observed at 1482, 1350, 1178, 1010 cm⁻¹ [36]. The CCH in-plane bending of naphthalene groups in NBTMH was observed at 1364, 1350 cm⁻¹ and it was calculated at (1375, 1364), 1343 cm⁻¹ wavenumbers. For NBTBH the same bendings were observed at the 1412, 1382, 1364, cm⁻¹ wavenumbers and calculated at 1414, 1378, 1362 cm⁻¹ wavenumbers. The same vibrations for NBTBFH was observed at 1381, 1367 cm⁻¹ and calculated at 1385, 1369 cm⁻¹ wavenumbers. The similar bending frequencies of benzene ring in all the three compounds were observed at 1412-1163 cm⁻¹ wavenumber region as expected and calculated between 1416-1156 cm⁻¹

The out of plane bending vibrations of aromatic rings appear generally in the range 1000-650 cm⁻¹ [29, 37]. The out of plane vibrations of the aromatic rings of the three compounds of the present study were observed in the range 984 to 460 cm^{-1} .

3.2.3 C=C Vibrations

C=C stretching vibrations of aromatic rings usually give strong bands between 1400 and 1600 cm⁻¹. Netto *et al.*, observed the C=C stretching vibrations of benzene at 1599,1309, 1037, 993 cm⁻¹ and theoretically calculated them at 1602, 1316, 1026, 993 cm⁻¹, respectively [20]. The C=C stretching vibrations of naphthalene were observed by the same group at 1624,1595, 1579, 1509, 1361, 1379, 1144, 1025, 1008, 763 cm⁻¹ and calculated them at 1625, 1597, 1577, 1529, 1357, 1368, 1136, 1013, 1007, 767 cm⁻¹ respectively.

The C=C stretching vibrations of NBTMH molecule including benzene and naphthalene rings were calculated at 1630, 1575, 1530, 1401, 1175, 1040 cm⁻¹. For naphthalene and 1594, 1591, 1347, 1078 cm⁻¹ for benzene with a considerably high contribution of the related internal coordinate to the potential energy term. These frequencies were assigned to the observed bands of naphthalene at 1614, 1582, 1508, 1389, 1198, 1020 cm⁻¹ and of benzene at 1596, 1593, 1350, 1095 cm⁻¹, respectively. The similar results were obtained for NBTBH and NBTBFH compounds. The C=C stretching bands of benzene and naphthalene groups of NBTBH were observed at 1627, 1625, 1601, 1593, 1582, 1570, 1496, 1487, 1389, 1386, 1096, 1021, 1020, 936, 921, 903, 901 and 769, 760 cm⁻¹, their corresponding wave numbers were calculated at 1625, 1596, 1577, 1485, 1396, 1088, 1048, 931, 923 and 758 cm⁻¹, respectively. The aromatic C=C stretching bands of NBTBFH were observed nearly at twice the number of aromatic C=C stretching bands due the additional naphthalene ring of NBTBFH with respect to previous compounds. The aromatic C=C stretching vibrations were observed at 1657, 1624, 1616, 1605, 1592, 1572, 1569, 1537, 1520, 1510, 1510, 1502, 1500, 1487, 1429, 1381, 1367, 1198, 1175, 1072, 1112, 1034, 908, 900, 831, 785,772, 709, 649, 630, cm⁻¹ and calculated at 1649, 1610, 1604, 1568, 1567, 1561, 1560, 1536, 1526, 1513, 1502, 1494, 1432, 1108, 1054, 1032,1002, 911, 896, 892, 850, 791, 783, 722, 650, 647, 632 cm⁻¹.

The C_nC_{nk} bond between naphthalene ring and carbonyl group frequency of NBTMH was calculated at 1147 cm⁻¹ and observed at 1163 with a 41% C-C character. The other C-C bonds between naphtylketo carbon and hydrazone carbone ($C_{nk}C_{h}$) and between methyl carbon and ketonic carbon (C_mC_{mk}) were calculated at 933 cm⁻¹ with nearly equal contribution to the PED in total of 30% and assigned to 949 cm⁻¹.

The stretching vibration of C_nC_{nk} belonging to NBTBH were calculated at 1173, 1152 cm⁻¹ and observed at 1178, 1134 cm⁻¹. For the same compound, the $C_{nk}C_h$ and C_mC_{mk} aliphatic stretchings were observed at 958 cm⁻¹ and calculated at 946 cm⁻¹. For NBTBFH, the C_nC_{nk} stretching vibration was observed at1144 cm⁻¹ and calculated at 1152 cm⁻¹ wavenumber.

3.2.4 C=O, C=N, N-N vibrations

The p-diketones, which have α -hydrogen, do not have the C=O stretching band at 1700-1750 cm⁻¹characteristic of normal conjugated ketones but instead they have very broad band between 1640-1530 cm⁻¹[30, 38]. This broad band has been attributed to a reduction of the double bond character by the resonance between forms H₁₂-N₁₁and H₁₂-O₃₉

The energy difference between keto and enol forms in NBTMH, NBTBH and NBTBFH compounds were found to be 1.2·10⁻⁵, 8.2·10⁻⁵ and 2.1·10⁻⁵ kcal/mol, respectively in DFT method. According to the calculations the keto forms are more stable than enol forms for each three compounds.

The C=O stretching were appeared at 1645 and 1626 cm⁻¹ in the vibrational spectra for NBTMH and these frequencies were calculated at 1655 and 1642 cm⁻¹. The same vibrations of NBTBH were observed at 1645, 1625 and calculated at 1658, 1636cm⁻¹. For NBTBFH there are more carbonyls therefore the bands at 1666, 1657 cm⁻¹ are correspond to calculated, 1665, 1650, 1642 cm⁻¹ numbers.

The stretching vibration of C=N group in NBTMH was observed 1516, 1514 cm⁻¹ and was calculated at 1538 cm⁻¹ with a 32% contribution of C=N stretching force constant. The C=N stretching vibrations for both NBTBH and NBTBFH were calculated at 1541, 1533 and 1511 cm⁻¹ and observed 1515, 1506, 1505 and 1500 cm⁻¹ respectively.

Doddof and his friends observed N-N stretching vibration for hydrazine at 1096 cm⁻¹ wavenumbers. The N-N stretching vibration was calculated at 1136, 1105, 1005, 860 cm⁻¹ wavenumbers [32]. The N-N stretching vibrations of NBTMH were observed at 1137, 1136, 1105, cm⁻¹ and were calculated at 1137 and 1102 cm⁻¹wavenumbers. The same stretchings were observed at 1108, 1103 and 860 cm⁻¹ for NBTBH and calculated at 1103 and 874 cm⁻¹. For NBTBFH the same stretching were observed at 1112, 1110 and 887 cm⁻¹ wavenumbers and calculated at 1101 and 878 cm⁻¹ wavenumbers.

3.2.5. C-Br vibrations

Krishnakumar *et al*, reported that C-Br vibrations were observed at 650- 400 cm⁻¹ with a very intense band and they observed this vibrations at 609 cm⁻¹ for 1-bromo-4-fluronaphthalene and at 544 cm⁻¹ for 4-bromo benzonitrile [39]. The out of plane bending vibration of C-Br was observed at 279 cm⁻¹[40].

The C-Br stretching vibrations for NBTBH were calculated at 667 cm⁻¹ and 358 cm⁻¹ and the out of planes of the same group were calculated at 239, 220 cm⁻¹ wavenumbers.

4. Discussion and Conclusion

The potential energy surfaces of the compounds were calculated by DFT/6-31G (d, p). Two remarkable H-bondings were obtained through NBO analysis in gas phase for NBTBFH. The most strong hyperconjugative interaction were calculated between the LP O_{21} atom and BD* ($C_{23} - H_{28}$) bond. The second remarkable interaction in gas phase was found between the LP O_{45} and BD* $C_{61} - H_{68}$ for NBTBFH.

The complete vibrational analysis has been performed by emphasizing on the vibrations of O-H, C=N, C-H, C=O/C-O, C=C/C-C (stretchings), CCH, HCH,CCC, COH (deformations).Our study may hopefully be assistance, theoretical results for the title compound in reaction intermediates, theoretical chemistry and health science. The vibrational dynamics of Hydrazones can be satisfactorily interpreted from the normal modes of N=N, C=N as obtained by Wilson's GF matrix method for finite systems. The vibrational dynamics of Hydrazone derivates can also interpret satisfactorily through normal modes analysis by the other researchers.

Acknowledgment

This study was supported financially by the Research Centre of Erciyes University. In this study, DFT calculations were performed at TUBİTAK ULAKBİM, (TR-Grid e-Infrastructure). Moreover, authors are thankful to Prof. Dr. Zeki BÜYÜKMUMCU for supervising DFT calculations. The authors are thankful to Bozok University Organic Chemistry Department. The authors are thankful to Şefik Süzer Turkey for recording Raman spectra.

References

- [1] Robertson, G.H. 1988. Diarylide Yellow and orange Pigments. 2nd edition. John Wiley& Sons, New York.
- [2] Christie, R. M. 1993. Pigments: Structures and Synthetic Procedures. Blackwell Scientific, Wembley.
- [3] Herbst, W. and Hunger, K. 1993. Industrial organik pigments.: Wiley-VCH GmbH&Co. KGaA, Weinheim.
- [4] Christie, R. M. and Standring, P. N., 1989. Colour and constitution relationships in organic pigments. Part 2: Disazoacetoacetanilides. 9; 11: p. 109-121.
- [5] Schmidt MU. Proceedings of colour science UK: Harrogate; 1998.
- [6] Aydın L., Koca irfan, Üngören H., Özpozan T., 1-(2-Naphthyl)Butane-1, 2, 3-trione 2-[(4-methylphenly)hydrazone] Sentezi ve Normal Koordinat Analizi,XXIV. Ulusal Kimya Kongresi, 29 Haziran-2 Temmuz 2010.
- [7] Spartan, Version 08. 2009. Wavefunction Inc., Irvine, CA, (2009).
- [8] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al. Gaussian 09, Revision B.01.
 2010.
- Becke A.D. 1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98(1993), 5648.
- [10] Gauss View 3.09, Gaussian Inc., Carnegie Office Park, Pittsburg, USA.
- [11] Wilson E.J., Decius J.C., Cross Paul C.1980. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra. Molecular Vibrations New York: Dover Publications Inc. 416s
- [12] Shimanouchi T. 1968. Programs for the Normal Coordinate Treatment of Polyatomic Molecules. University of Tokyo.
- [13] B. S, DH. B, J. O, B. 1980. S. Coupled calculation of vibrational frequencies and intensities I. Calculation of Intensities by a CNDO/2 method with extended basis set. Theoret. Chim. Acta., 54(1980), 301.
- [14] Fischer P., Grunenberg A., Bougeard D.; Schrader B. 1986 J.Mol. Struct. 113(1986), 51.
- [15] Fischer P., Bougeard D., Schrader B.1989. SPSIM Spektren Simulation. Universität-Gesamthochschule-Essen, Essen. 1989.
- [16] Colthup N.B., Dally L.H., Wiberley S.E. 1974. In Introduction to Infrared and Raman Spectroscopy. Newyork academic press, 523s.
- [17] Schrader B, 1990. Infrared and Raman Spectroscopy. WILEY-VCH Weinheim, 791s.
- [18] Jeffrey GA. 2010. An Introduction to Hydrogen Bonding : An Update Crystallography Reviews. (1994),135-176.
- [19] Ogruc-Ildiz G., Akyuz S., Ozel Aysen E. 2009. Experimental, ab initio and density functional theory studies on sulfadiazine. Journal of Molecular Structure (2009), 514–522.
- [20] Netto N., Scrocco M., Califano S. 1996. Simplified Valence Force Field of Aromatic Hydrocarbons-I Normal Coordinate Calculations for C6H6, C6D6, C10H8, C10D8, C14H10 and C14D10,. Spectrochim. Act. 22(1996), 1981-1998.
- [21] Buric Z, Kreuger. J. 1974. Vibrational Analysis of diethyl ketone and its deuterad analogues . S.Acta. 30(1974), 2069-2090.
- [22] Qayyum M., Venkatram R.B., Ramana R.G. 2004. Vibrational analysis of mononitro substituted benzamides, benzaldehydes and toluenesPart I. Vibrational spectra, normal coordinate analysis and transferability of force constants of nitrobenzamides, nitrobenzaldehydes and nitrotoluen 60(2004), 279-290.
- [23] Apal M. 2004. Bazı Sülfonil Hidrazin Türevi Metal Komplekslerinin Titreşim Spektroskopik İncelenmesi ve Spektrum Yapı İlişkisinin İrdelenmesi. Erciyes University, Master thesis. Kayseri
- [24] Figueroa K., Peña C. R., and Campos-Vallette M. M. 1989. Valence Force Constants of N-Benzylideneanilines. Z. Naturforsch. 44(1989), 923–927.
- [25] Synder R.G., Schachtschneider A. 1965. Valence force field for saturated hydrocarbons. J. Spectrochim. Acta. 21(1965), 169.

- [26] Büyükyıldız S. 1997. Trans-N-Benzil' den anilin Moleküllerine Ait Titreşim Spektrumlarının Teorik Hesaplanması ve Simülasyonu. Master thesis. Kayseri.
- [27] Rao P.V.R, Rao G.R. 2002. Vibrational analysis of substituted phenols, Part I, vibrational spectra, normal coordinate analysis and transferability of force constants of some formyl, methoxy-, formylmethoxy-, methyl- and halogeno-phenols. Spectrochimica Acta Part A. 58(2002), 3039-3065.
- [28] Shimanouchi T. Tables Of Moleculer vibrational frequencies consolidated volume II. J Phys Chem 6(1977), 621-673.
- [29] Abdel G., Issa NT, Mikosch Y.M., Bauer G.H. 1999. Spectral Studies and Normal Coordinate Analysis of Some Symmetric 1,5-Diaryl-3-cyanoformazans. Microchemical Journal. 61(1999), 85-93.
- [30] Yao H.C. 1964. Azohydrazone Conversion, II The couplingof Diazanium Ion with Beta Diketones. J. Org. Chem. (1964), 2959-2963.
- [31] Nigam S., Patel M. M. 2008. Arabinda R. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry. 28(2008), 1187-1205.
- [32] Dodoff NI. 1999. Normal Coordinate Analysis of Acetone Methanesulfonylhydrazone. Internet J. Vibr. Spectrosc.. (1999), 4-7.
- [33] Varsanyi G. 1973. Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives. Academic Kiado. 1973.
- [34] Subramanian N., SN, O. D, E. T. 2011. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular conformational analysis of 2,5-di-tert-butyl-hydroquinone. Spectrochimca Acta. 83(2011), 165-174.
- [35] Ravikumar C, Joe HI, Sajan DVcttsonopopcsa. Chemical Physics. 369(2010) 1–7.
- [36] Sellers H, Pulay P, Boggs EJ. 1985. Theoretical prediction of vibrational spectra. 2. Force field, spectroscopically refined geometry, and reassignment of the vibrational spectrum of naphthalene. J. Am. Chem. Soc.. 23(1985), 6487-6494.
- [37] Chakraborty D., Ambashta R., Manogaran S. 1996. Force field and assignment of the vibrational spectrum of anthracene: theoretical prediction. J. Phys. Chem. 100(1996), 13963-13970.
- [38] Shimanouchi T, Abe Y, Mikami M. 1968. Skeletal Deformation Vibrations and Rotational Isomerism of Some Ketones and Olefins. S.Acta. 24(1968),1037-1053.
- [39] Krishnakumar V, Balachandran V. 2005. Analysis of vibrational spectra of 5-fluoro, 5-chloro and 5-bromo-cytosines based on density functional theory calculations. Spectrochimica Acta Part A. 61(2005),1001–1006.
- [40] Krishnakumar V., Mathammal R., Muthunatesan V. 2008. Density functional theory study of vibrational spectra, and assignment of fundamental vibrational modes of 1-bromo 4-fluoronaphthalene. Spectrochimica Acta Part A. 70(2008),991–996.
- [41] Han Y., Vinh Huynh H., Koh LL. 2007. d(II) complexes of a sterically bulky, benzannulated N-heterocyclic carbene and their catalytic activities in the Mizoroki–Heck reaction. Journal of Organometallic Chemistry. 692 (2007),3606–3613.

Appendices

AppendixA Geometrical parameters of NBTMH

Bonding Atoms	Bond lengths(Å)	Bonding Atoms	Bond angles	Bonding Atoms	Bond angles
C ₂ -C ₁	1.39993	C ₃ -C ₁ -C ₂	117,71	C ₃₄ -C ₂₉ -H ₃₅	119.64413
C ₃ -C ₁	1.40365	$C_4-C_2-C_1$	121.38655	C ₃₁ -H ₃₆ - C ₂₆	118.80527
C ₄ -C ₂	1.39248	$C_2 - C_1 - H_5$	119.54116	C_{34} - C_{31} - H_{36}	120.44559
C ₂ -H ₅	1.08666	C2-C4-H5	119.07222	C32-H37- C27	120.27306
C6-C3	1.39010	$C_{6}-C_{3}-C_{1}$	121.84494	C ₂₆ -C ₃₂ -H ₃₇	118.77647
C ₃ -H ₇	1.08714	$C_3-C_1-H_7$	119.27556	C ₃₄ -H ₃₈ - C ₂₉	119.54203
C6-C8	1.40099	C6-C3-H7	118.87947	C34-H38- C31	119.99280
C8-C4	1.39958	C ₃ -C ₆ -C ₈	119.41237	O ₃₉ -C ₁₆ -C ₁₄	118.62368
C4 -H9	1.08668	$C_8 - C_4 - C_2$	119.87881	C_{22} - C_{16} - O_{39}	117.71778
C ₆ -H ₁₀	1.08314	5C ₄ -C ₈ -C ₆	119.76303	$C_2 - C_1 - C_{40}$	121.33152
N ₁₁ -C ₈	1.40462	C6-C8-H10	119.45447	C ₃ -C ₁ -C ₄₀	120.94615
N_{11} - H_{12}	1.02731	C ₂ -C ₄ -H ₉	120.23740	C40-H41-H42	107.94727
N ₁₃ -N ₁₁	1.30532	C8-C4-H9	119.88333	C_{40} - H_{41} - H_{43}	107.38534
C14-N13	1.32487	C ₃ -C ₆ -H ₁₀	121.13233	C40-H42-H43	107.07721
C15-C14	1.49221	N ₁₁ -C ₈ -C ₆	122.28796	C1-C40-H41	111.46868
C ₁₆ -C ₁₄	1.48918	C4-C8-N11	117.94893	C1-C40-H42	111.43794
C17-C15	1.52148	C8-N11-H12	121.32274	C1-C40-H43	111.30667
C ₁₇ -H ₁₈	1.09063	N ₁₁ -C ₈ -N ₁₃	121.63454		
C ₁₇ -H ₁₉	1.09367	N_{13} - N_{11} - H_{12}	116.99472		
C17-H20	1.09393	N ₁₃ -N ₁₁ -C ₁₄	122.01574		
C ₁₅ -O ₂₁	1.22329	N ₁₃ -C ₁₄ -C ₁₅	113.48766		
C ₁₆ -C ₂₂	1.49021	C ₁₆ -C ₁₄ -N ₁₃	122.29952		
C ₂₂ -C ₂₃	1.38306	C ₁₆ -C ₁₅ -C ₁₄	123.95640		
C ₂₃ -C ₂₄	1.41674	C ₁₇ -C ₁₅ -C ₁₄	117.84447		
C ₂₃ -C ₂₅	1.42159	C15-H18-C17	107.89792		
C ₂₃ -C ₂₆	1.43284	C15-H19-C17	111.49341		
C ₂₇ -C ₂₂	1.42481	C ₁₇ -H ₁₈ -H ₁₉	109.49473		

Bonding	Bond lengths(Å)	Bonding	Bond angles	Bonding
Atoms		Atoms		Atoms
C ₂₃ -C ₂₈	1.08354	C ₁₅ -H ₂₀ -C ₁₇	110.75544	
C25-C29	1.37597	C ₁₇ -H ₁₈ -H ₂₀	106.89032	
C ₂₅ -H ₃₀	1.08668	C17-H19-H20	110.31096	
C ₂₆ -C ₃₁	1.41905	C ₁₇ -C ₁₅ -O ₂₁	120.50913	
C ₂₆ -C ₃₁	1.42232	O ₂₁ -C ₁₅ -C ₁₄	121.60007	
C ₂₇ -C ₃₂	1.37150	C_{22} - C_{16} - C_{14}	123.52475	
C ₂₇ -H ₃₃	1.08400	C ₂₃ -C ₂₂ -C ₁₆	123.11197	
C ₂₉ -C ₃₄	1.41653	C ₂₄ -C ₂₃ -C ₂₂	121.18740	
C ₃₁ -C ₃₄	1.37736	C ₃₁ -C ₂₆ -C ₂₄	118.82753	
C ₂₉ -H ₃₅	1.08583	C ₃₂ -C ₂₆ -C ₂₄	118.62223	
C_{31} - H_{36}	1.08679	C ₃₂ -C ₂₂ -C ₂₇	120.73476	
C ₃₂ -H ₃₇	1.08675	C ₃₁ -C ₂₆ -C ₃₂	122.54965	
C ₃₄ -H ₃₈	1.08610	C ₂₇ -H ₃₃ - C ₂₂	118.22933	
C16-O39	1.24550	C ₃₂ -C ₂₇ -H ₃₃	121.03581	
C1-H40	1.50970	C34-C29-C25	120.18789	
$C_{40}H_{41}$	1.09476	C_{29} - C_{34} - C_{31}	120.46517	
C40H42	1.09354	C ₃₄ -C ₃₁ -C ₂₆	120.74912	
C ₄₀ -H ₄₃	1.09719	C ₂₉ -H ₃₅ - C ₂₅	120.16785	

Appendix A Geometrical parameters of NBTMH (Cont.)

Bonding Atoms	Bond lengths(Å)	Bonding Atoms	Bond angles	Bonding Atoms	Bond angles
C2-C1	1.39350	C ₃ -C ₁ -C ₂	120.81590	C17-H19-H20	110.29219
C3-C1	1.39530	C ₂ -C ₁ -C ₄₀	119.60775	C ₂₇ -C ₂₂ -C ₁₆	117.24960
C ₁ -Br ₄₀	1.90928	C3-C1-C40	119.57620	C ₂₃ -C ₂₂ -C ₁₆	123.04060
C ₄ -C ₂	1.39180	$C_4 - C_2 - C_1$	119.40720	C ₂₄ -C ₂₃ -C ₂₂	121.18140
C ₂ -H ₅	1.08380	C ₂ -C ₁ -H ₅	120.28750	C ₂₅ -C ₂₃ -C ₂₄	121.85010
C ₆ -C ₃	1.39090	$C_{4}-C_{2}-H_{5}$	120.30522	C ₂₅ -C ₂₄ -C ₂₆	119.03861
C3-H7	1.08410	$C_{6}-C_{3}-C_{1}$	119.84790	C ₂₆ -C ₂₄ -C ₂₃	119.11070
C8-C4	1.40150	C ₃ -C ₁ -H ₇	120.02450	C ₂₇ -C ₂₃ -C ₂₂	119.38038
C4-H9	1.08630	C6-C3-H7	120.02446	C ₂₄ -H ₂₈ - C ₂₃	118.19779
C6-C8	1.40148	C8-C4-C2	120.20970	C ₂₂ -C ₂₄ -H ₂₈	120.61820
C ₆ -H ₁₀	1.08290	C ₂ -C ₄ -H ₉	119.82220	C ₂₉ -C ₂₅ -C ₂₄	120.72960
N11-C8	1.40160	C8-C4-H9	119.96876	C ₂₅ -H ₃₀ - C ₂₄	118.73450
N_{11} - H_{12}	1.02700	C ₃ -C ₆ -C ₈	119.76845	C ₂₉ -C ₂₅ -H ₃₀	120.53501
N ₁₃ -N ₁₁	1.30900	C ₃ -C ₆ -H ₁₀	120.72540	C ₃₁ -C ₂₆ -C ₃₂	122.53279
C14-N13	1.32150	C6-C8-H10	119.50642	C ₃₂ -C ₂₆ -C ₂₄	118.64220
C ₁₅ -C ₁₄	1.49420	N_{11} - C_8 - C_6	122.11490	C ₃₁ -C ₂₆ -C ₂₄	118.82400
C ₁₆ -C ₁₄	1.49260	C4-C8-C6	119.95061	C ₃₂ -C ₂₂ -C ₂₇	120.69132
C ₁₇ -C ₁₅	1.52060	$C_4-C_8-N_{11}$	117.93514	C ₂₇ -H ₃₃ - C ₂₂	118.26129
C15-O21	1.22260	$C_8-N_{11}-H_{12}$	122.11490	C ₃₂ -C ₂₇ -H ₃₃	118.26150
C ₁₆ -C ₂₂	1.48840	N_{11} - C_8 - N_{13}	121.38846	C_{34} - C_{29} - C_{25}	120.19008
C16-O39	1.24458	N_{13} - $N_{11}H_{12}$	121.38850	C29-H35- C25	120.19000
C ₁₇ -H ₁₈	1.09050	N ₁₃ -N ₁₁ -C ₁₄	121.89230	C34-C29-H35	119.64543
C ₁₇ -H ₁₉	1.09390	N ₁₃ C ₁₄ -C ₁₅	113.62640	C_{25} - C_{31} - C_{26}	120.16420
C ₁₇ -H ₂₀	1.09380	C16-C14-N13	122.36820	C ₃₁ -H ₃₆ - C ₂₆	118.81520
C ₂₄ -C ₂₃	1.41650	C_{16} - C_{15} - C_{14}	123.73487	C ₃₄ -H ₃₈ - C ₂₉	119.53524
C ₂₂ -C ₂₃	1.38350	C17-C15-C14	117.91200	C56-C57-H65	119.53460
C ₂₄ -C ₂₅	1.42160	O_{21} - C_{15} - C_{14}	121.31790		
C ₂₄ -C ₂₆	1.43290	C17-C15-O21	117.91232		
C ₂₂ -C ₂₇	1.42500	C ₃₄ -C ₃₁ -H ₃₆	120.44608		
C ₂₃ -C ₂₈	1.08360	C_{26} - C_{32} - C_{27}	120.96679		
C ₂₅ -C ₂₉	1.37590	C ₂₆ -C ₃₂ -H ₃₇	118.77030		
C ₂₅ -H ₃₀	1.08670	C ₃₂ -H ₃₇ -C ₂₇	120.26118		
C ₂₆ -C ₃₁	1.41890	C ₂₉ -C ₃₄ -C ₃₁	120.47832		
C ₂₆ -C ₃₂	1.42250	C ₃₄ -H ₃₈ -C ₃₁	119.98620		
C ₂₇ -C ₃₂	1.37129	C_{22} - C_{16} - C_{14}	123.37090		
C ₂₇ -H ₃₃	1.08400	O ₃₉ -C ₁₆ -C ₁₄	118.47360		
C ₂₉ -C ₃₄	1.41650	C_{22} - C_{16} - O_{39}	118.01944		
C ₂₉ -H ₃₅	1.08580	C15-H18-C17	108.94860		
C ₃₁ -C ₃₄	1.37740	C_{15} - H_{19} - C_{17}	110.73900		
C ₃₁ -H ₃₆	1.08670	C_{15} - H_{20} - C_{17}	111.45140		
C ₃₂ -H ₃₇	1.08670	C_{17} - H_{18} - H_{19}	106.93207		
C34-H38	1.08600	C17-H18- H20	109.47837		

Appendix B Geometrical parameters of NBTBH

Bond	Bond lengt (Å)	hs Bond	Bond Iengths (Å	.) Bond	Bond angles(deg)	Bond	Bond angles(deg)	Bond	Bond angles(deg)
C ₂ -C ₁	1.40161	C54-C59	1.43288	C ₃ -C ₁ -C ₂	119.66980	C46-C44-O45	117.86304	C ₂₉ -C ₂₅ -C ₂₄	120.70410
C ₃ -C ₁	1.40361	C ₁₇ -H ₂₀	1.09055	$C_2 - C_1 - N_{40}$	118.10493	C ₂₂ -C ₁₆ -C ₁₄	122.90070	C54-C55-C56	120.73230
C1-Br40	1,4	C46-H47	1,09	C ₃ -C ₁ -N ₄₀	122.22520	C ₄₃ -C ₅₀ -C ₅₂	123.55840	H ₃₀ -C ₂₅ -C ₂₄	118.73360
C4-C2	1.38852	C46-H48	1.09395	C_4 - C_2 - C_1	120.16870	O ₃₉ -C ₁₆ -C ₁₄	118.65600	C54-C55-H63	118.73690
C_2 - H_5	1.08610	C ₂₂ -C ₂₇	1.42375	H ₅ -C ₂ -C ₁	119.95690	C ₂₂ -C ₁₆ -O ₃₉	118.34345	C ₂₉ -C ₂₅ -H ₃₀	120.56235
C ₆ -C ₃	1.38660	C ₂₃ -H ₂₈	1.08539	C ₄ -C ₂ -H ₅	119.87449	C52-C50-O51	117.84108	C56-C55-H63	120.52952
C_3 - H_7	1.08289	C ₂₅ -C ₂₉	1.37597	C ₆ -C ₃ -C ₁	120.16020	H ₁₈ -C ₁₇ -C ₁₅	110.67760	C_{31} - C_{26} - C_{32}	122.53203
C ₈ -C ₄	1.40150	C ₃₁ -C ₃₄	1.37731	H ₇ -C ₃ -C ₁	119.23820	H_{19} - C_{17} - C_{15}	111.41240	C_{58} - C_{59} - C_{60}	122.54030
C ₄ -H ₉	1.08606	C ₅₇ -C ₅₈	1.37738	C ₆ -C ₃ -H ₇	120.60102	H ₂₀ -C ₁₇ -C ₁₅	108.02300	C ₅₇ -C ₅₆ -H ₆₄	119.64271
C ₆ -C ₈	1.40356	C55-C56	1.37593	C8-C4-C2	120.15880	C44-C46-H49	107.92460	C54-C59-C60	118.62720
C ₆ -H ₁₀	1.08293	C ₂₅ -H ₃₀	1.08669	C ₂ -C ₄ -H ₉	119.87280	C ₄₄ -C ₄₆ -H ₄₈	110.70020	C_{31} - C_{26} - C_{24}	118839
N ₁₁ -C ₈	1.40072	C_{31} - H_{36}	1.08673	C ₈ -C ₄ -H ₉	119.96847	C ₄₄ -C ₄₆ -H ₄₇	111.50670	C ₅₄ -C ₅₉ -C ₅₈	118.83193

Appendix C Geometrical parameters of NBTBFH (bond length (Å) and bond angle (°) as input to the SPSIM

Bond	Bond lengths (Å)	Bond	Bond lengths (Å)	Bond	Bond angles(deg)	Bond	Bond angles(deg)	Bond	Bond angles(deg)
N_{11} - H_{12}	1.02834	C ₅₈ -H ₆₆	1.08673	C ₃ -C ₆ -C ₈	120.16082	H ₁₈ -C ₁₇ -H ₁₉	106.93688	C ₃₂ -C ₂₇ -C ₂₂	120.48058
N40-H41	1.02792	C55-C63	1.08668	C ₃ -C ₆ -H ₁₀	120.61130	H ₁₈ -C ₁₇ -H ₂₀	109.51418	H ₃₃ -C ₂₇ -C ₂₂	119.8485
N ₁₃ -N ₁₁	1.30764	C ₂₆ -C ₃₂	1.42200	H ₁₀ -C ₆ -C ₈	119.22750	H_{19} - C_{17} - H_{20}	110.27684	C_{61} - C_{60} - H_{67}	120.25543
N40-N42	1.30802	C53-C54	1.41656	N ₁₁ -C ₈ -C ₆	122.22660	H49-C46-H48	109.45134	C ₃₄ -C ₃₁ -C ₂₆	120.72384
C ₁₄ -N ₁₃	1.32369	C ₅₉ -C ₆₀	1.42238	C ₄ -C ₈ -N ₁₁	118.09290	H ₄₉ -C ₄₆ -H ₄₇	110.31360	C ₅₇ -C ₅₈ -C ₅₉	120.73670
N42-N43	1.32344	C ₂₇ -C ₃₂	1.37203	C4-C8-C6	119.68052	H47-C46-H48	106.94430	C_{31} - H_{36} - C_{26}	118.83720
C_2 - C_1	1.40161	C54-C59	1.43288	$C_3 - C_1 - C_2$	119.66980	C46-C44-O45	117.86304	C ₂₉ -C ₂₅ -C ₂₄	120.70410
C ₃ -C ₁	1.40361	C ₁₇ -H ₂₀	1.09055	C ₂ -C ₁ -N ₄₀	118.10493	C ₂₂ -C ₁₆ -C ₁₄	122.90070	C54-C55-C56	120.73230
C1-Br40	1,4	C46-H47	1,09	C ₃ -C ₁ -N ₄₀	122.22520	C ₄₃ -C ₅₀ -C ₅₂	123.55840	H ₃₀ -C ₂₅ -C ₂₄	118.73360
C ₄ -C ₂	1.38852	C ₄₆ -H ₄₈	1.09395	C ₄ -C ₂ -C ₁	120.16870	O ₃₉ -C ₁₆ -C ₁₄	118.65600	C_{54} - C_{55} - H_{63}	118.73690
C ₂ -H ₅	1.08610	C ₂₂ -C ₂₇	1.42375	H ₅ -C ₂ -C ₁	119.95690	C ₂₂ -C ₁₆ -O ₃₉	118.34345	C ₂₉ -C ₂₅ -H ₃₀	120.56235
C ₆ -C ₃	1.38660	C ₂₃ -H ₂₈	1.08539	C_4 - C_2 - H_5	119.87449	C ₅₂ -C ₅₀ -O ₅₁	117.84108	C_{56} - C_{55} - H_{63}	120.52952

Bond	Bond length (Å)	Bond	Bond lengt (Å)	hs Bond	Bond angles(deg)	Bond	Bond angles(deg)	Bond	Bond angles(deg)
N_{11} - H_{12}	1.02834	C ₅₈ -H ₆₆	1.08673	C ₃ -C ₆ -C ₈	120.16082	H ₁₈ -C ₁₇ -H ₁₉	106.93688	C ₃₂ -C ₂₇ -C ₂₂	120.48058
C ₈ -C ₄	1.40150	C ₃₁ -C ₃₄	1.37731	H7-C3-C1	119.23820	H ₁₉ -C ₁₇ -C ₁₅	111.41240	C58-C59-C60	122.54030
C4 -H9	1.08606	C ₅₇ -C ₅₈	1.37738	$C_{6}-C_{3}-H_{7}$	120.60102	H ₂₀ -C ₁₇ -C ₁₅	108.02300	C ₅₇ -C ₅₆ -H ₆₄	119.64271
C ₆ -C ₈	1.40356	C ₅₅ -C ₅₆	1.37593	C ₈ -C ₄ -C ₂	120.15880	C ₄₄ -C ₄₆ -H ₄₉	107.92460	C ₅₄ -C ₅₉ -C ₆₀	118.62720
C ₆ -H ₁₀	1.08293	C ₂₅ -H ₃₀	1.08669	C_2 - C_4 - H_9	119.87280	C ₄₄ -C ₄₆ -H ₄₈	110.70020	C_{31} - C_{26} - C_{24}	118839
N ₁₁ -C ₈	1.40072	C ₃₁ -H ₃₆	1.08673	C ₈ -C ₄ -H ₉	119.96847	C ₄₄ -C ₄₆ -H ₄₇	111.50670	C ₅₄ -C ₅₉ -C ₅₈	118.83193
N_{11} - H_{12}	1.02834	C ₅₈ -H ₆₆	1.08673	C ₃ -C ₆ -C ₈	120.16082	H ₁₈ -C ₁₇ -H ₁₉	106.93688	C ₃₂ -C ₂₇ -C ₂₂	120.48058
N ₄₀ -H ₄₁	1.02792	C55-C63	1.08668	C_3 - C_6 - H_{10}	120.61130	H ₁₈ -C ₁₇ -H ₂₀	109.51418	H ₃₃ -C ₂₇ -C ₂₂	119.8485
N ₁₃ -N ₁₁	1.30764	C ₂₆ -C ₃₂	1.42200	H ₁₀ -C ₆ -C ₈	119.22750	H ₁₉ -C ₁₇ -H ₂₀	110.27684	C ₆₁ -C ₆₀ -H ₆₇	120.25543
N40-N42	1.30802	C53-C54	1.41656	N ₁₁ -C ₈ -C ₆	122.22660	H ₄₉ -C ₄₆ -H ₄₈	109.45134	C ₃₄ -C ₃₁ -C ₂₆	120.72384
C ₁₄ -N ₁₃	1.32369	C59-C60	1.42238	C4-C8-N11	118.09290	H ₄₉ -C ₄₆ -H ₄₇	110.31360	C57-C58-C59	120.73670
N42-N43	1.32344	C ₂₇ -C ₃₂	1.37203	C4-C8-C6	119.68052	H47-C46-H48	106.94430	C ₃₁ -H ₃₆ -C ₂₆	118.83720

Bond	Bond lengt (Å)	ths Bond	Bond lengths (Å)	Bond	Bond angles(deg)	Bond	Bond angles(deg)	Bond	Bond angles(deg)
C ₁₅ -C ₁₄	1.49181	C ₆₀ -C ₆₁	1.37132	H_{12} - C_8 - N_{11}	121.59860	C ₂₃ -C ₂₂ -C ₁₆	117.36020	C ₅₉ -C ₅₈ -H ₆₆	118.80544
C ₄₃ -C ₄₄	1.49381	C ₂₇ -H ₃₃	1.08302	C_1 - N_{40} - H_{41}	121.59380	C_{50} - C_{52} - C_{53}	123.14430	C_{34} - C_{31} - H_{36}	120.43889
C ₁₆ -C ₁₄	1.48877	C ₂₉ -H ₃₅	1.08585	N ₁₁ -C ₈ -N ₁₃	121.54390	C_{27} - C_{22} - C_{16}	123.07820	C ₅₇ -C ₅₈ -H ₆₆	118.80540
C ₄₃ -C ₅₀	1.49106	C ₃₂ -H ₃₇	1.08653	C ₁ -N ₄₀ -N ₄₂	121.50150	C_{50} - C_{52} - C_{61}	117.18072	C_{26} - C_{32} - C_{27}	121.19467
C ₁₇ -C ₁₅	1.52021	C ₃₄ -H ₃₈	1.08607	H ₁₂ -N ₁₃ -N ₁₁	116.81209	C ₂₄ -C ₂₃ -C ₂₂	121.43470	C_{59} - C_{60} - C_{61}	120.95790
C ₄₄ -C ₄₆	1.52101	C ₅₆ -H ₆₄	1.08579	H ₄₁ -N ₄₀ -N ₄₂	116.83312	C_{52} - C_{53} - C_{61}	119.35270	C ₂₆ -C ₃₂ -H ₃₇	118.76680
C15-O21	1.22308	C57-H65	1.08606	N ₁₃ -N ₁₁ -C ₁₄	121.64650	C ₂₅ -C ₂₄ -C ₂₃	122.08000	C32-C27-H33	119.66010
C44-O45	1.22276	C ₆₀ -H ₆₇	1.08672	N40-N42-C43	121.86210	C52-C53-C54	121.18110	C ₃₄ -C ₂₉ -C ₂₅	120.21830
C ₁₆ -C ₂₂	1.49091	C53-H62	1.08351	N ₁₃ - C ₁₄ -C ₁₅	113.86171	C ₂₅ -C ₂₄ -C ₂₆	119.04011	C55-C56-H57	120.19220
C50-C52	1.48887	C ₆₁ -H ₆₈	1.08396	N42-C43-C44	113.45000	C53-C54-C55	121.83550	C29-C25-H35	120.15480
C16-O39	1.24544	C ₂₉ -C ₃₄	1.41671	C ₁₆ -C ₁₄ -N ₁₃	122.59970	C55-C54-C59	119.03136	C55-C56-H64	120.16499
C ₅₀ -O ₅₁	1.24561	C56-C57	1.41652	N42-C43-C50	122.33649	C ₂₆ -C ₂₄ -C ₂₃	118.87760	C34-C29-H35	119.62687

Bond	Bond lengths (Å)	Bond	Bond length (Å)	^s Bond	Bond angles(deg) Bond	Bond angles(deg) Bond	Bond angles(deg)
C ₁₇ -H ₁₈	1.09395	C ₆₁ -C ₅₂	1.42504	C ₁₆ -C ₁₅ -C ₁₄	123.29030	C53-C54-C59	119.13230	C ₅₉ -C ₆₀ -H ₆₇	118.78490
C ₁₇ -H ₁₉	1.09384	C ₅₂ -C ₅₃	1.38335	C ₄₄ -C ₄₃ -C ₅₀	122.33650	C ₂₇ -C ₂₂ -C ₂₃	119.34282	H ₃₇ -C ₃₂ -C ₂₇	120.03763
C54-C55	1.42160	C46-H49	1.09059	C ₁₇ -C ₁₅ -C ₁₄	118.06210	C52-C61-C60	120.72040	C ₂₉ -C ₃₄ -C ₃₁	120.47469
C59-C58	1.41891	C ₂₄ -C ₂₃	1.41560	C43-C44-C46	117.86300	H ₂₈ -C ₂₃ -C ₂₂	119.00310	C56-C57-C58	120.47490
C ₅₀ -C ₅₂	1.48887	C ₂₄ -C ₂₅	1.42170	O ₂₁ -C ₁₅ -C ₁₄	121.47330	C52-C61-H68	120.63939	C ₃₄ -H ₃₈ -C ₃₁	119.98990
C ₂₂ -C ₂₃	1.38422	C ₂₆ -C ₃₁	1.41908	C43-C44-O45	121.47330	C ₂₄ -C ₂₃ -H ₂₈	119.56183	C58-C57-H65	119.53460
C ₂₄ -C ₂₆	1.43313			C ₁₇ -C ₁₅ -O ₂₁	120.80647	C60-C61-H68	121.02840	C34-H38-C29	119.53537

Appendix	D	Force	constants	for	NBTMH
----------	---	-------	-----------	-----	-------

Force const.		Internal coordinate	Internal coordinate Force const. ^b Ref. ^c Force const.		Internal coordinate	Force const. ^b	Ref. ^c		
No	Sym.ª				No	Sym.ª			
1	Kb1	C ₂ -C ₁	500000	[20]*	23	K _{R3}	C17-H19	470300	[25]
2	K _{b2}	C ₃ -C ₁	500000	[20]*	24	K _{R2}	C ₁₇ -H ₂₀	470300	[25]
3	Kr1	C1-H40	430030	[22]	25	Kn10	C ₂₃ -C ₂₆	490000	[20]*
4	K _{b6}	C ₄ -C ₂	507330	[20]*	26	K _{n9}	C ₂₂ -C ₂₃	699800	[20]
5	Kr5	C ₂ -H ₅	507000	[20]*	27	Kn2	C ₂₄ -C ₂₅	485600	[20]*
6	Кьз	C6-C3	507330	[20]*	28	Kn1	C ₂₄ -C ₂₆	603400	[20]
7	K _{r2}	C ₃ -H ₇	507000	[20]*	29	K _{n8}	C ₂₂ -C ₂₇	487820	[20]*
8	K _{b5}	C8-C4	505000	[20]*	30	Кст	C ₂₃ -H ₂₈	490000	[20]*
9	K _{r4}	C4 -H9	505900	[20]*	31	K _{n3}	C ₂₅ -C ₂₉	588800	[20]*
10	K _{b4}	C6-C8	505000	[20]*	32	K _{C1}	C ₂₄ -H ₃₀	502200	[20]
11	K _{r3}	C6-H10	505900	[20]*	33	Kn11	C ₂₆ -C ₃₁	485600	[20]*
12	K _k	N ₁₁ -C ₈	512580	[22]	34	K _{n6}	C ₂₆ -C ₃₂	430000	[20]*
13	Ks	N ₁₁ -H ₁₂	581760	[22]*	35	K _{n7}	C ₂₇ -C ₃₂	600000	[20]*
14	Km	N13-N11	580000	[21]*	36	Ксб	C ₂₇ -H ₃₃	507970	[20]*
15	K _{k1}	C14-N13	690000	[26]*	37	Kn4	C ₂₉ -C ₃₄	590100	[20]
16	Kel	C15-C14	401700	[21]	38	Kc2	C ₂₉ -H ₃₅	507970	[20]*
17	Ke2	C ₁₆ -C ₁₄	399900	[21]*	39	K _{n5}	C ₃₁ -C ₃₄	588800	[20]*
18	Ke4	C17-C15	399900	[21]*	40	K _{C4}	C ₃₁ -H ₃₆	502200	[20]
19	K _{d1}	C15-O21	798000	[21]*	41	Kc5	C ₃₂ -H ₃₇	505050	[20]*
20	K _{c3}	C ₁₆ -C ₂₂	430030	[22]	42	K _{C3}	C ₃₄ -H ₃₈	507970	[20]*
21	K _{d2}	C16-O39	800000	[21]*	43	K _{R4}	C40H41	469850	[22]*
22	K _{R1}	C17-H18	470300	[25]	44	K _{R5}	C40-H42	469850	[22]*

Force const.		Internal coordinate	Force const. ^b	Ref. ^c	For	ce const.	Internal coordinate	Force const. ^b	Ref. ^c
No	Sym.ª				No	Sym.ª			
45	K rg	C ₄₀ -H ₄₃	469850	[22]*	62	H _{w4}	C4-C8-C6	110000	[20]*
46	H _{w1}	$C_3 - C_1 - C_2$	92000	[20]	63	Η _{γ4}	C4-C8-N11	105.00	[26]*
47	$H_{\mu 1}$	C ₂ -C ₁ -C ₄₀	86080	[22]	64	$H_{\psi 1}$	$C_8-N_{11}-H_{12}$	56000	[26]*
48	$H_{\gamma 1}$	C ₃ -C ₁ -C ₄₀	86080	[22]	65	Hδ	C8-N11-N13	64800	[26]*
49	Hwe	$C_4 - C_2 - C_1$	92000	[20]	66	Hτ	N ₁₃ -N ₁₁ -H ₁₂	60000	[26]*
50	H _{γ6}	$C_1 - C_2 - H_5$	50800	[20]	67	$H_{\tau 1}$	N ₁₁ -N ₁₃ -C ₁₄	64800	[26]*
51	$H_{\mu 6}$	C4-C2-H5	50800	[20]	68	Η Φ2	N13-C14-C15	139160	[23]
52	H _{w2}	C6-C3-C1	92000	[20]	69	$H_{\Phi 1}$	C ₁₆ -C ₁₄ -N ₁₃	139160	[23]
53	Η μ2	C1-C3-H7	50800	[20]	70	ΗΘ	C16-C14-C15	50800	[21]*
54	H _{γ2}	C6-C3-H7	50800	[20]	71	Hβ6	C ₁₇ -C ₁₅ -C ₁₄	50800	[21]*
55	H w5	C8-C4-C2	92000	[20]	72	Η β5	O ₂₁ -C ₁₅ -C ₁₄	105.00	[21]*
56	H _{γ5}	C2-C4-H9	50800	[20]	73	Η β4	C ₁₇ -C ₁₅ -O ₂₁	108800	[21]*
57	Η μ5	C8-C4-H9	50800	[20]	74	Η β2	C ₂₂ -C ₁₆ -C ₁₄	90800	[21]*
58	H _{w3}	C ₃ -C ₆ -C ₈	92000	[20]	75	H _{β3}	O ₃₉ -C ₁₆ -C ₁₄	100800	[21]
59	Ημ3	C ₃ -C ₆ -H ₁₀	50800	[22]*	76	Hβ1	C ₂₂ -C ₁₆ -O ₃₉	100800	[21]
60	Ηγз	C8-C6-H10	50800	[20]	77	H∆2	C15-H18-C17	60600	[21]*
61	Η μ4	N ₁₁ -C ₈ -C ₆	105000	[21]*	78	Η Δ1	C15-C17-H19	60600	[25]*

Force const.		Internal coordinate	Internal coordinate Force const. ^b Ref. ^c Force const.		Internal coordinate	Force const. ^b	Ref. ^c		
No	Sym.ª				No	Sym.ª			
79	Н∆з	C ₁₅ -H ₂₀ -C ₁₇	60600	[25]*	96	Η θ11	C32-C26-C24	64200	[20]*
80	H _{a2}	C ₁₇ -H ₁₈ -H ₁₉	54100	[25]	97	H ₀₁₂	C ₃₁ -C ₂₆ -C ₂₄	62900	[20]
81	Η α1	C ₁₇ -H ₁₈ -H ₂₀	54100	[25]	98	Нөб	C ₃₂ - C ₂₇ -C ₂₂	97900	[20]
82	$H_{\alpha 3}$	C ₁₇ -H ₁₉ -H ₂₀	54100	[25]	99	$H_{\chi 6}$	C ₂₂ -C ₂₇ -H ₃₃	49400	[20]
83	ΗΩ1	C ₂₇ -C ₂₂ -C ₁₆	86800	[22]	100	Η ε6	C ₃₂ -C ₂₇ -H ₃₃	49400	[20]
84	$H_{\Omega 2}$	C ₂₃ -C ₂₂ -C ₁₆	86800	[22]	101	Η _{θ2}	C ₃₄ -C ₂₉ -C ₂₅	97900	[20]
85	Hes	C ₂₄ -C ₂₃ -C ₂₂	97900	[20]	102	Hε2	C ₂₉ -H ₃₅ -C ₂₅	48400	[20]*
86	Η σ1	C ₂₅ -C ₂₃ -C ₂₄	88000	[20]	103	$H_{\chi 2}$	C34-C29-H35	49400	[20]
87	Н ө10	C ₂₅ -C ₂₄ -C ₂₆	62900	[20]	104	Н ө4	C ₃₄ -C ₃₁ -C ₂₆	97900	[20]
88	Н өэ	C ₂₆ - C ₂₄ -C ₂₃	62900	[20]	105	Η χ4	C ₂₆ -C ₃₁ -H ₃₆	51400	[20]*
89	Η _{θ7}	C ₂₇ - C ₂₂ -C ₂₃	97900	[20]*	106	Η _{ε4}	C_{34} - C_{31} - H_{36}	51400	[20]*
90	Η χ7	C ₂₄ -C ₂₃ -H ₂₈	49400	[22]*	107	Ηθ5	C ₂₆ -C ₃₂ -C ₂₇	97900	[20]
91	Ηε7	C ₂₂ -C ₂₃ -H ₂₈	49900	[22]*	108	Hε5	C ₂₆ -C ₃₂ -H ₃₇	51400	[20]
92	Н ө1	C ₂₉ -C ₂₅ -C ₂₄	97900	[20]	109	$H_{\chi 5}$	C ₂₇ -C ₃₂ -H ₃₇	51400	[20]
93	Hε1	C ₂₄ -C ₂₅ -H ₃₀	51400	[20]*	110	Нөз	C ₂₉ -C ₃₄ -C ₃₁	97900	[20]
94	$H_{\chi 1}$	C ₂₉ -C ₂₅ -H ₃₀	51400	[20]*	111	Η _{χ3}	C ₃₁ -C ₃₄ -H ₃₈	48400	[20]*
95	Η σ1	C ₃₁ -C ₂₆ -C ₃₂	51400	[20]*	112	Hε3	C ₂₉ -C ₃₄ -H ₃₈	49400	[20]

Appenaix D Cont

	Force const.	Internal coordinate	Force const.	Ref.		Force const.	Internal coordinate	Force const.	Ref
No.	Sym.				No	Sym.			
113	Н ∆8	C1-C40-H41	64220	[22]	135	P _(C)	P (C ₂₉)	75800	[20]
114	$H_{\Delta 4}$	C1-C40-H42	64220	[22]	136	P _(C)	P (C ₃₁)	75800	[20]
115	H ∆6	C1-C40-H43	64220	[22]	137	P _(C)	P (C ₃₂)	27840	[26]
116	Η α4	C40-H41-H42	55120	[22]	138	P _(C)	P (C ₃₄)	75800	[20]
117	Η α5	C40-H41-H43	55120	[22]	139	T _(CC)	T(C1-C2)	27840	[26]
118	Η α6	C40-H42-H43	55120	[22]	140	T _(CC)	T(C1-C3)	27840	[26]
119	P _(C)	P (C ₁)	3060	[22]	141	T _(CC)	T(C ₂ -C ₄)	27840	[26]
120	P _(C)	P(C ₂)	78400	[20]	142	T _(CC)	T(C ₃ -C ₆)	27840	[26]
121	P _(C)	P (C ₃)	78400	[20]	143	T _(CC)	$T(C_8C_4)$	27840	[26]
122	P _(C)	P (C ₄)	78400	[20]	144	T _(CC)	$T(C_6-C_8)$	27840	[26]
123	P _(C)	P (C ₆)	78400	[20]	145	T _(CN)	T(N ₁₁ -C ₈)	1900	[24]
124	P _(C)	P (C ₈)	92380	[23]*	146	T _(NN)	T(N ₁₁ -N ₁₃)	3000	[26]
125	P(N)	P (N ₁₁)	20640	[23]	147	T _(CN)	T(N ₁₃ -C ₁₄)	49100	[28]
126	P _(C)	P (C ₁₄)	21700	[21]	148	T _(CC)	T(C ₁₅ -C ₁₄)	5000	[28]
127	P(c)	P (C15)	70800	[28]	149	T _(CC)	T(C14-C16)	5000	[28]
128	P(c)	P (C ₁₆)	70800	[28]	150	T _(CC)	T(C17-C15)	5000	[28]
129	P _(C)	P (C ₂₂)	75800	[20]	151	T _(CC)	T(C ₁₆ -C ₂₂)	5000	[26]
130	P(c)	P (C ₂₃)	47800	[20]	152	T(CC)	T(C ₂₄ -C ₂₃)	27840	[26]
131	P _(C)	P (C ₂₄)	65060	[20]*	153	T _(CC)	T(C ₂₂ -C ₂₃)	27840	[26]
132	P _(C)	P (C ₂₅)	114.72	[20]*	154	T(CC)	T(C ₂₄ -C ₂₅)	27840	[26]
133	P _(C)	P(C ₂₆)	75800	[20]	155	T _(CC)	T(C ₂₄ -C ₂₆)	27840	[26]
134	P _(C)	P (C ₂₇)	75800	[20]	156	T _(CC)	T(C ₂₂ -C ₂₇)	27840	[26]

Force const.		Internal coordinate Force const.		Ref.	Force	const.	Internal coordinate	Force const.Ref
No.	Sym.				No	Sym.		
156	T _(CC)	T(C22-C27)	27840	[26]				
157	T _(CC)	T(C ₂₉ -C ₂₅)	27840	[26]				
158	T _(CC)	T(C ₂₆ -C ₃₁)	27840	[26]				
159	T _(CC)	T(C ₃₂ -C ₂₆)	27840	[26]				
160	T(CC)	T(C32-C27)	27840	[26]				
161	T _(CC)	T(C ₃₄ -C ₂₉)	27840	[26]				
162	T(CC)	T(C34-C31)	27840	[26]				
163	T _(CC)	T(C ₁ -C ₄₀)	3600	[22]				

^a K; stretching; H; in-plane; P; out-of-plane bending; T; torsion; and F; is interaction force constants, Sym; symbols, ^b units in N/m for stretching, Nm/rad² for bending (H & P) and N[®]/rad for stretch/Bend interactions, ^cReferences for the transferred force constants, * refined force constants.