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We obtain the resolvent operator of the matrix Schrödinger equation on the half-line with a quasi-

selfadjoint matrix potential 𝑄. We also assume each entry of 𝑄 is Lebesgue measurable on (0, ∞) and 

𝑄 has a finite first moment. We impose the general boundary condition at 𝑥 = 0. This boundary value 

problem is not selfadjoint which makes it valuable and difficult in terms of the spectral analysis. 

Moreover, considering the most general boundary conditions generalizes many studies in the 

literature. We introduce the Jost matrix of this boundary value problem. We examine asymptotical 

and analytical properties of the Jost matrix in order to derive the resolvent operator and point spectrum. 

We use the quasi-selfadjointness of the matrix potential 𝑄 to obtain these properties. We show that 

the resolvent set consists of squares of the non-singular points of the Jost matrix in the upper complex 

plane. Moreover, we obtain the Green’s function of this boundary value problem with the help of the 

Jost matrix. In the light of this main result, we show that the continuous spectrum is [0, ∞)  and the 

point spectrum consist of squares of the singular points of the Jost matrix in the upper complex plane. 

We also show that the set of spectral singularities is empty. 
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1. INTRODUCTION 

Self-adjoint operators defined on a Hilbert space correspond to physical observables in quantum mechanics. 

For this reason, one-dimensional Schrödinger equation 

−𝑦′′ + 𝑞(𝑥)𝑦 = 𝑘2𝑦, 𝑥 ∈ (0, ∞) (1) 

where 𝑞 is a potential and 𝑘2 is a spectral parameter has been studied in detail (Levitan & Sargsyan, 1975; 

Birman & Solomjak, 1987; Schmüdgen, 2012). It is well-known that if the potential 𝑞 in Eq. (1) is real-valued 

and the boundary condition at 𝑥 =  0 is given 

cos(𝑡) 𝑦(0) + sin(𝑡) 𝑦′(0) = 0, 𝑡 ∈ (0, 𝜋] (2) 

then the operator generated by the boundary value problem (1)-(2) is selfadjoint. On the other hand, if the 

potential 𝑞 in Eq. (1) is complex-valued then the operator is not symmetric and hence not selfadjoint. There is 

a vast literature on the spectral properties of non-selfajoint differential operators in the last decades. This is 

because, non-selfajoint differential operators have many applications in quantum physics. In particular, non-
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selfadjoint operators are observed in physical systems which do not involve the conservation of energy law.  

Some selfadjoint problems also yields non-selfadjoint operators after separation of variables. One can consult 

for the first results about non-selfajoint differential operators to Naimark (1968) and for recent results and 

applications in quantum physics to Bagarello et. al., (2015) and Sjöstrand (2019).  

There have been many attempts for the generalizations of the quantum mechanics. A recent attempt is to 

consider Hamiltonians which have an exact PT-symmetry instead of Hermitian Hamiltonians (Bender et. al., 

2002; 2003; Bender, 2007). Later, Mostafazadeh (2010) replaced these Hamiltonians with pseudo-Hermitian 

Hamiltonians which are more general. Scholtz et al. (1992) introduced quasi-Hermitian Hamiltonians which 

constitute an important class of pseudo-Hermitian Hamiltonians. A quasi-Hermitian operator is a non-

selfadjoint operator 𝐻 in a Hilbert space such that 𝐻∗ = 𝑇𝐻𝑇−1 where 𝑇 is a positive, bounded operator which 

has a bounded inverse. A consistent quantum theory awaits to be built for quasi-selfadjoint Hamiltonians. 

The matrix Schrödinger equation on the half-line is given by 

−𝑦′′ + 𝑄(𝑥)𝑦 = 𝑘2𝑦, 𝑥 ∈ (0, ∞) (3) 

where 𝑘
2
 is a spectral parameter and 𝑄 is an 𝑛 × 𝑛 matrix potential. Equation (3) has several applications in 

scattering problems in quantum mechanics and especially in quantum graphs (Berkolaiko & Kuchment, 2013). 

To be more precise, Equation (3) corresponds to a quantum star graph with 𝑛 edges of infinite length and 

describes the behavior of 𝑛 connected very thin quantum wires forming a one-vertex graph with open ends. 

This model can be useful in designing elementary gates in quantum computing and nanotubes for microscopic 

electronic devices, where, for example, strings of atoms may form a star-shaped graph. There is a substantial 

interest on quantum graphs recently. In particular, Kottos & Smilansky (1997) revealed that quantum graphs 

enable us to model quantum chaos. After that, there has been a burst of interest in quantum graphs. In the study 

of quantum graphs, general boundary conditions are encountered most. That’s the reason we consider the most 

general boundary conditions on the contrary to previous studies (Olgun & Coskun, 2010; Arpat & Mutlu, 

2015). 

In the selfadjoint case, Aktosun et al. (2011); Weder (2017); Aktosun & Weder (2013; 2018; 2020) studied 

Equation (3) together with general selfadjoint boundary conditions at 𝑥 = 0 where 𝑄 is selfadjoint, Lebesgue 

measurable on (0,∞) and 

∫ (1 + 𝑡)‖𝑄(𝑡)‖𝑑𝑡
∞

0

< ∞ (4) 

holds for any matrix norm ‖, ‖. Note that general selfadjoint boundary condition at the origin has been given 

in several equivalent forms (Aktosun et al., 2011; Aktosun & Weder, 2013; 2018; 2020; Weder, 2017). One 

of these forms is 

𝑀𝑦(0) + N𝑦′(0) = 0 (5) 

where 𝑀 and 𝑁 are 𝑛 × 𝑛 constant matrices (not dependent on 𝑘) which satisfy 

𝑀𝑁∗ = 𝑁𝑀∗ (6) 

𝑟𝑎𝑛𝑘(𝑀|𝑁) = 𝑛  

where “*” denotes the adjoint of a matrix (Aktosun et al., 2011). Aktosun et al. (2011) investigated the small-

energy analysis and later, Aktosun & Weder (2013) studied the high-energy analysis for the above boundary 

value problem (3)-(5). Equation (3) where 𝑄(𝑥) is a non-selfadjoint, completely continuous operator in an 

infinite dimensional separable Hilbert space for each 𝑥 ∈ (0, ∞) is called Schrödinger’s operator equation. 

This equation is the generalization of the Equation (3) to the infinite dimension. Gasymov et al. (1967) studied 
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the point spectrum of Schrödinger’s operator equation with selfadjoint, completely continuous operator 

coefficients.  

For the non-selfadjoint case, Equation (3) where 𝑄 ≠ 𝑄∗ together with the Dirichlet boundary condition was 

studied in Olgun & Coskun (2010) and conditions involving spectral parameter was studied in Yokus & 

Coskun (2018; 2019). Eigenvalues and spectral singularities correspond to the singular points of the Jost matrix 

(Olgun & Coskun, 2010). Furthermore, these results are generalized to infinite dimensional case by considering 

Schrödinger’s operator equation, namely, Equation (3) with 𝑄(𝑥) is a non-selfadjoint, completely continuous 

operator in an infinite dimensional separable Hilbert space for each 𝑥 ∈ (0, ∞) (Bairamov et al., 2017). In this 

infinite dimensional case, eigenvalues and spectral singularities correspond to the singular points of the Jost 

operator which is an operator-valued function. Hence new methods are used from operator theory. Recently, 

Mutlu & Kır Arpat (2020) considered Schrödinger’s operator equation on the real line and examined its 

spectral properties.  

In this study, we consider Equation (3) where 

• 𝑛 × 𝑛 matrix potential 𝑄(𝑥) is Lebesgue measurable on (0, ∞) for every 𝑥 ∈ (0, ∞),  

• 𝑄 satisfies the condition (4),  

• 𝑄 is quasi-selfadjoint i.e. 𝑄∗(𝑥) = 𝑃𝑄(𝑥)𝑃−1 for each 𝑥 ∈ (0, ∞) where 𝑃 is a Hermitian positive-

definite 𝑛 × 𝑛 matrix.  

We consider general boundary conditions at the origin which can be stated 

−𝐵∗𝑦(0) + 𝐴∗𝑦′(0) = 0 (7) 

where 𝐴 and 𝐵 are 𝑛 × 𝑛 constant matrices (not dependent on 𝑘) such that 

𝐵∗𝑃−1𝐴 = 𝐴∗𝑃−1𝐵 (8) 

𝑟𝑎𝑛𝑘(𝐴|𝐵) = 𝑛 (9) 

Note that the condition (9) can be exchanged with (Aktosun et al., 2011) 

𝐴∗𝐴 + 𝐵∗𝐵 > 0 (10) 

The equation (9) is required to ensure that there are correct number of independent boundary conditions, and 

the equation (7) reduces to (6) when 𝑃 = 𝐼𝑛. Therefore, this paper generalizes the studies Aktosun et al. (2011); 

Aktosun & Weder (2013; 2018; 2020); Weder (2017). Moreover, this study complements the study Olgun & 

Coskun (2010) in which only the Dirichlet condition at origin is considered. Note that the introduction of the 

general boundary condition (7) completely changes the structure of the Jost matrix. Clearly the boundary value 

problem under consideration is not selfadjoint. Let us denote this non-selfadjoint operator by 𝐿 hereafter.  

This paper consists of 5 sections. In section 2 we present the methods applied in the spectral analysis of 𝐿. We 

state certain auxiliary results related to the spectral properties of 𝐿 in Section 3. We present our results in 

Section 4. In particular, we obtain the Jost matrix and investigate its properties. Then, we derive the resolvent 

of 𝐿 and obtain the point spectrum, continuous spectrum and spectral singularities of 𝐿. Finally, we present 

some concluding remarks in Section 5. 

Here we introduce the notations used throughout this paper. We will write 𝑀 > 0 to indicate that the matrix 

𝑀 is positive-definite. Let us denote the upper-half complex plane by 𝐻, its closure by 𝐻̅ = 𝐻 ∪ ℝ, the 

complex conjugate of a complex number 𝑧 by 𝑧̅ and  𝑛 × 𝑛 unit matrix by 𝐼𝑛. Let 𝐿2(ℝ+, ℂ𝑛) denote the Hilbert 

space of complex-valued vector functions 𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥)) (0 < 𝑥 < ∞) such that each 

component of 𝑓 lies in 𝐿2(0, ∞). 
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2. MATERIAL AND METHOD  

In scattering theory, the Jost function of equation (1) is the Wronskian of the regular solution (a solution of 

equation (1) which satisfies 𝑦(0, 𝑘) = 0, 𝑦′(0, 𝑘) = 1) and the Jost solution (a solution of equation (1) which 

satisfies the asymptotic relation 𝑓(𝑥, 𝑘) = 𝑒𝑖𝑘𝑥[1 + 𝑜(1)], 𝑥 → ∞). The eigenvalues of the operator can be 

obtained as zeros of the Jost function (called the dispersion relation). Jost function is also used in the 

construction of the Green’s function of the operator. Analogously, we can define the Jost function which is 

now an 𝑛 × 𝑛 matrix 𝐽(𝑘) and call it the Jost matrix of the matrix Schrödinger equation.  In this case the 

dispersion relation becomes   𝑑𝑒𝑡𝐽(𝑘) = 0 (Agranovic & Marchenko, 1965). 

It is well known that the Jost matrix is very fundamental for spectral analysis of matrix Schrödinger equations 

(Agranovic & Marchenko, 1965). The Jost matrix provides the dispersion relation of matrix Schrödinger 

operators. For this reason, we define the Jost matrix of the boundary value problem generated by (3) and (7)-

(9). In order to guarantee the existence of Jost matrix we use the quasi-selfadjointness of the potential 𝑄. Then, 

we investigate the analytic and asymptotic behaviors of the Jost matrix. Subsequently, we use these properties 

in order to construct the Green’s function and the resolvent operator of 𝐿. Using the structure of the Green’s 

function, we deduce that the continuous spectrum is filling the positive half axis and the eigenvalues 

correspond to the squares of the singular points in the upper complex plane of the Jost matrix. We also prove 

that there are not any spectral singularities. 

3. PRELIMINARIES 

In this section, we outline relevant properties of certain solutions of Equation (3) including the Jost solution. 

For the proofs of the very well-known results presented in these sections we refer the interested reader to 

Agranovic & Marchenko (1965); Aktosun et al. (2011).  

The domain of 𝐿 consists of vector functions 𝑓 from 𝐿2(ℝ+, ℂ𝑛) such that 

• 𝑓 has absolutely continuous derivative 𝑓′ on every interval [0, 𝑎], (0 < 𝑎 < ∞), 

• 𝐿𝑓 ≔ −𝑓′′ + 𝑄𝑓 ∈ 𝐿2(ℝ+, ℂ𝑛), 

• The boundary condition (7) holds. 

The Jost solution 𝐹(𝑥, 𝑘) of Equation (3) is 𝑛 × 𝑛 matrix function which satisfies the asymptotic relations 

𝐹(𝑥, 𝑘) = 𝑒𝑖𝑘𝑥[𝐼𝑛 + 𝑜(1)], 𝐹𝑥(𝑥, 𝑘) = 𝑖𝑘𝑒𝑖𝑘𝑥[𝐼𝑛 + 𝑜(1)], 𝑥 → ∞, 𝑘 ∈ 𝐻̅\{0}  

The Jost solution has the representation 

𝐹(𝑥, 𝑘) = 𝑒𝑖𝑘𝑥𝐼𝑛 + ∫ 𝑒𝑖𝑘𝑡𝐾(𝑥, 𝑡)𝑑𝑡
∞

𝑥

, 𝑘 ∈ 𝐻̅\{0}  

where 

‖𝐾(𝑥, 𝑡)‖ ≤ 𝑐 ∫ ‖𝑄(𝑢)‖𝑑𝑢

∞

𝑥+𝑡
2

,   𝑘 ∈ 𝐻̅\{0}  

where 𝑐 > 0 is a constant (Agranovic & Marchenko, 1965). 𝐹(𝑥, 𝑘) and 𝐹𝑥(𝑥, 𝑘) are analytic functions of 𝑘 

in 𝐻 and continuous in 𝐻̅ for every fixed 𝑥. (Agranovic & Marchenko, 1965). 

There exists a matrix solution 𝐺(𝑥, 𝑘) of Equation (3) which satisfies the asymptotic relations 

𝐺(𝑥, 𝑘) = 𝑒−𝑖𝑘𝑥[𝐼𝑛 + 𝑜(1)], 𝐺𝑥(𝑥, 𝑘) = −𝑖𝑘𝑒−𝑖𝑘𝑥[𝐼𝑛 + 𝑜(1)], 𝑥 → ∞, 𝑘 ∈ 𝐻̅\{0}  
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Similarly, 𝐺(𝑥, 𝑘) and 𝐺𝑥(𝑥, 𝑘) are analytic functions of 𝑘 in 𝐻 and continuous in 𝐻̅ for every 𝑥. (Agranovic 

& Marchenko, 1965). It is also well-known that for 𝑘 ∈ 𝐻̅\{0}, every vector solution to Equation (3) can be 

expressed 

𝑢(𝑥, 𝑘) =  𝐹(𝑥, 𝑘)𝛼 + 𝐺(𝑥, 𝑘)𝛽  

where 𝛼, 𝛽𝜖ℂ𝑛 are constant vectors (Agranovic & Marchenko, 1965). 

It is well-known that there exist 𝑛 × 𝑛 matrix solutions which satisfy given specific initial conditions at a finite 

number. Therefore, there exists a matrix solution 𝑅(𝑥, 𝑘) of Equation (3) which satisfies the initial conditions 

𝑅(0, 𝑘) = 𝑃−1𝐴, 𝑅′(0, 𝑘) = 𝑃−1𝐵 (11) 

where 𝑃 is the Hermitian, positive-definite 𝑛 × 𝑛 matrix appearing in Equation (8) and 𝐴 and 𝐵 are 𝑛 × 𝑛 

matrices appearing in Equation (7) (Aktosun et al., 2011). For each fixed 𝑥, 𝑅(𝑥, 𝑘) is entire and for these 

reason 𝑅(𝑥, 𝑘) is called the regular solution of Equation (3) (Aktosun et al., 2011). 

4. RESULTS  

4.1 The Jost Matrix 

In this subsection we present the Jost matrix of the Equation (3) where quasi-selfadjoint matrix potential 𝑄 is 

Lebesgue measurable on (0,∞) and satisfies condition (4) and then examine some of its properties.  

Let 𝑈 and 𝑉 be 𝑛 × 𝑛 matrix solutions of Equation (3). Let the Wronskian of 𝑈 and 𝑉 is defined by 

[𝑈, 𝑉] ≔ 𝑈𝑉′ − 𝑈′𝑉  

Taking the matrix adjoint of Equation (3) and using the fact that 𝑄 is quasi-selfadjoint we obtain the adjoint 

equation 

−𝑧′′ + 𝑧𝑃𝑄(𝑥)𝑃−1 = (𝑘̅)
2

𝑧, 𝑥 ∈ (0, ∞) (12) 

For a real value of 𝑘, it is obvious that if 𝑦(𝑥, 𝑘) is a matrix solution of (3), then 𝑦(𝑥, 𝑘)∗ and 𝑦(𝑥, −𝑘)∗ are 

solutions of (12). Moreover if 𝑦(𝑥, 𝑘) has an analytic extension for each fixed 𝑥 as a function of 𝑘 from the 

real line to the upper-half complex plane, then 𝑦(𝑥, −𝑘)∗ also has an analytic extension from the real line to 

the upper-half complex plane and that extension coincides with 𝑦(𝑥, −𝑘̅)
∗
 for 𝑘 ∈ 𝐻. Therefore, 𝐹(𝑥, −𝑘)∗ 

and 𝐹𝑥(𝑥, −𝑘)∗ have analytic extensions from the real line to the upper-half complex plane which are 

𝐹(𝑥, −𝑘̅)
∗
 and 𝐹𝑥(𝑥, −𝑘̅)

∗
 for 𝑘 ∈ 𝐻 respectively.  

Let 𝑈(𝑥, 𝑘) and 𝑉(𝑥, 𝑘) be 𝑛 × 𝑛 matrix solutions of Equation (3). It easily follows by a direct computation 

that the Wronskians [𝑉(𝑥, 𝑘)∗, 𝑃𝑈(𝑥, 𝑘)] = [𝑉(𝑥, 𝑘)∗𝑃, 𝑈(𝑥, 𝑘)] and [𝑈(𝑥, 𝑘)∗, 𝑃𝑉(𝑥, 𝑘)] =
[𝑈(𝑥, 𝑘)∗𝑃, 𝑉(𝑥, 𝑘)] are independent of 𝑥 for real values of 𝑘. Furthermore if 𝑈(𝑥, 𝑘) and 𝑉(𝑥, 𝑘) have analytic 

extensions from the real line to the upper-half complex plane, then the Wronskians [𝑉(𝑥, −𝑘̅)
∗
, 𝑃𝑈(𝑥, 𝑘)] and 

[𝑉(𝑥, 𝑘̅)
∗
, 𝑃𝑈(𝑥, 𝑘)] are independent of 𝑥 for 𝑘 ∈ 𝐻̅. As a result, we can obtain various equalities by evaluating 

the Wronskian at 𝑥 = 0 or 𝑥 → ∞. For example 

[𝐹(𝑥, ±𝑘)∗, 𝑃𝐹(𝑥, ±𝑘)] = ±2𝑖𝑘𝑃, 𝑘 ∈ ℝ (13) 

[𝐹(𝑥, −𝑘̅)
∗
, 𝑃𝐹(𝑥, 𝑘)] = 0, 𝑘 ∈ 𝐻̅ (14) 
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The Jost matrix is defined by 

𝐽(𝑘) ≔ [𝐹(𝑥, −𝑘̅)
∗
, 𝑃𝑅(𝑥, 𝑘)], 𝑘 ∈ 𝐻̅ (15) 

where 𝑅(𝑥, 𝑘) is the regular solution described by (11) and 𝐹(𝑥, 𝑘) is the Jost solution. Note that the Wronskian 

(15) is independent of 𝑥. Evaluating the Wronskian at 𝑥 = 0 and imposing the initial value conditions (11) we 

have 

𝐽(𝑘) = 𝐹(0, −𝑘̅)
∗
𝐵 − 𝐹′(0, −𝑘̅)

∗
𝐴, 𝑘 ∈ 𝐻 (16) 

It easily follows from (16) and the fact that 𝐹(0, −𝑘̅)
∗
 and 𝐹𝑥(0, −𝑘̅)

∗
 are analytic in 𝐻 that the Jost matrix is 

analytic in 𝐻 and continuous in 𝐻̅. 

Theorem 1 The Jost matrix 𝐽(𝑘) has an inverse for each real nonzero 𝑘. 

Proof. The condition (10) and 𝑃 > 0 yields 

𝐵∗𝑃−2𝐵 + 𝐴∗𝐴 > 0  

and hence there exists a unique matrix 𝑀 > 0 given by 

𝑀 ≔ (𝐵∗𝑃−2𝐵 + 𝐴∗𝐴)1 2⁄   

Since 𝑀 > 0 it follows 𝑀∗ = 𝑀, 𝑀 is invertible and thus 

𝑀∗−1(𝐵∗𝑃−2𝐵 + 𝐴∗𝐴)𝑀−1 = 𝐼𝑛  

Let us define 

𝐶 = (𝑃−1𝐵 𝐴
𝐴 −𝑃−1𝐵

) , 𝐻 = 𝐶 (𝑀−1 0
0 𝑀−1)  

Using (8) we have 𝐻∗𝐻 = 𝐼2𝑛 and 𝐻 is unitary. Therefore 𝐻𝐻∗ = 𝐼2𝑛 yielding 

𝑃−1𝐵𝑀−2𝐵∗𝑃−1 + 𝐴𝑀−2𝐴∗ = 𝐼𝑛 (17) 

𝐴𝑀−2𝐵∗𝑃−1 − 𝑃−1𝐵𝑀−2𝐴∗ = 0 (18) 

Let 

𝑆(𝑘): = 𝐹′(0, −𝑘)∗𝑃−1𝐵𝑀−2 + 𝐹(0, −𝑘)∗𝑃𝐴𝑀−2, 𝑘 ∈ ℝ (19) 

Using (13), (16), (17) and (19) we get 

𝐽(𝑘)𝑆(𝑘)∗ − 𝑆(𝑘)𝐽(𝑘)∗ = [𝐹(𝑥, −𝑘)∗, 𝑃𝐹(𝑥, −𝑘)] = −2𝑖𝑘𝑃 (20) 

Suppose that 𝐽(𝑘) does not have an inverse for a real nonzero 𝑘0. There exists a nonzero vector 𝑤 ∈ ℂ𝑛 such 

that 𝑤∗𝐽(𝑘0) = 𝐽(𝑘0)𝑤 = 0. This implies together with (20) and 𝑃 > 0 that 

0 = 𝑤∗𝐽(𝑘0)𝑆(𝑘0)∗𝑤 − 𝑤∗𝑆(𝑘0)𝐽(𝑘0)∗𝑤 = −2𝑖𝑘0𝑤∗𝑃𝑤 ≠ 0  

which gives a contradiction. Therefore, 𝐽(𝑘) is invertible for each real nonzero 𝑘. 
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4.2 Resolvent Operator 

In this subsection we derive the resolvent operator 𝑅𝑘(𝐿) ≔ (𝐿 − 𝑘2𝐼) of 𝐿 where 𝐼 denotes the identity 

operator. Later, we obtain the point spectrum, continuous spectrum and the set of spectral singularities of 𝐿. 

Theorem 2 The resolvent set 𝜌(𝐿) of 𝐿 is 

𝜌(𝐿) = {𝑘2:  𝑘 ∈ 𝐻, 𝑑𝑒𝑡𝐽(𝑘) ≠ 0}  

and the resolvent operator 𝑅𝑘(𝐿) = (𝐿 − 𝑘2𝐼) is defined by 

𝑅𝑘(𝐿)𝑔(𝑥) = ∫ 𝐾(𝑥, 𝑡; 𝑘)𝑔(𝑡)𝑑𝑡
∞

0

  

where 𝑔 ∈ 𝐿2(ℝ+, ℂ𝑛) and 

𝐾(𝑥, 𝑡; 𝑘) = {
𝐹(𝑥, 𝑘)(𝐽(𝑘)∗)−1𝑅(𝑡, 𝑘̅)

∗
𝑃, 0 ≤ 𝑡 ≤ 𝑥,

𝑅(𝑥, 𝑘)𝐽(𝑘)−1𝐹(𝑡, −𝑘̅)
∗
𝑃, 𝑥 < 𝑡 < ∞.

  

Proof. We must solve 

−𝑦′′ + 𝑄(𝑥)𝑦 − 𝑘2𝑦 = 𝑔(𝑥), 𝑥 ∈ (0, ∞) (21) 

where 𝑦, 𝑔 ∈ 𝐿2(ℝ+, ℂ𝑛) and the vector-valued function 𝑦(𝑥, 𝑘) satisfies (7). Note that a vector solution of the 

homogeneous part of (21) can be expressed 

𝑦(𝑥, 𝑘) =  𝑅(𝑥, 𝑘)𝛼 + 𝐹(𝑥, 𝑘)𝛽  
 

 

where 𝛼 and 𝛽 are constant vectors in and ℂ𝑛 and 𝑘 ∈ 𝐻. Suppose that 𝑑𝑒𝑡𝐽(𝑘) ≠ 0 for 𝑘 ∈ 𝐻. Using 

variation of parameters method we try to find the general solution of (21) in the following form 

𝑦(𝑥, 𝑘) =  𝑅(𝑥, 𝑘)𝑎(𝑥) + 𝐹(𝑥, 𝑘)𝑏(𝑥) (22) 

such that 𝑎(𝑥) and 𝑏(𝑥) are vector functions taking values in ℂ𝑛. Differentiating (22) with respect to x 

we get 

𝑦′(𝑥, 𝑘) =  𝑅′(𝑥, 𝑘)𝑎(𝑥) + 𝑅(𝑥, 𝑘)𝑎′(𝑥) + 𝐹′(𝑥, 𝑘)𝑏(𝑥) + 𝐹(𝑥, 𝑘)𝑏′(𝑥) (23) 

Suppose that 

𝑅(𝑥, 𝑘)𝑎′(𝑥) + 𝐹(𝑥, 𝑘)𝑏′(𝑥) = 0 (24) 

Differentiating (23) with respect to 𝑥 we have 

𝑦′′(𝑥, 𝑘) =  𝑅′′(𝑥, 𝑘)𝑎(𝑥) + 𝑅′(𝑥, 𝑘)𝑎′(𝑥) + 𝐹′′(𝑥, 𝑘)𝑏(𝑥) + 𝐹′(𝑥, 𝑘)𝑏′(𝑥) (25) 

Plugging (25) and (22) in (21) yields 

𝑅′(𝑥, 𝑘)𝑎′(𝑥) + 𝐹′(𝑥, 𝑘)𝑏′(𝑥) = −𝑔(𝑥) (26) 
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Multiplying (24) with 𝑅′(𝑥, 𝑘̅)
∗
𝑃 and (26) with 𝑅(𝑥, 𝑘̅)

∗
𝑃 from left and subtracting two equalities yields 

[𝑅(𝑥, 𝑘̅)
∗
, 𝑃𝑅(𝑥, 𝑘)]𝑎′(𝑥) + [𝑅(𝑥, 𝑘̅)

∗
, 𝑃𝐹(𝑥, 𝑘)]𝑏′(𝑥) = −𝑅(𝑥, 𝑘̅)

∗
𝑃𝑔(𝑥) (27) 

Since the Wronskian [𝑅(𝑥, 𝑘̅)
∗
, 𝑃𝑅(𝑥, 𝑘)] is independent of 𝑥 evaluating at 𝑥 = 0 and using (8) we have 

[𝑅(𝑥, 𝑘̅)
∗
, 𝑃𝑅(𝑥, 𝑘)] = 𝑅(0, 𝑘̅)

∗
 𝑃𝑅′(0, 𝑘) − 𝑅′(0, 𝑘̅)

∗
𝑃𝑅(0, 𝑘)  

= (𝑃−1𝐴)∗𝑃𝑃−1𝐵 − (𝑃−1𝐵)∗𝑃𝑃−1𝐴 = 0  

Furthermore, the Wronskian [𝑅(𝑥, 𝑘̅)
∗
, 𝑃𝐹(𝑥, 𝑘)] is independent of 𝑥 and using (11) 

[𝑅(𝑥, 𝑘̅)
∗
, 𝑃𝐹(𝑥, 𝑘)] = 𝑅(0, 𝑘̅)

∗
 𝑃𝐹′(0, 𝑘) − 𝑅′(0, 𝑘̅)

∗
𝑃𝐹(0, 𝑘)     

= (𝑃−1𝐴)∗𝑃𝐹′(0, 𝑘) − (𝑃−1𝐵)∗𝑃𝐹(0, 𝑘) = 𝐴∗𝐹′(0, 𝑘) − 𝐵∗𝐹(0, 𝑘) (28) 

and also 

(𝐴∗𝐹′(0, 𝑘) − 𝐵∗𝐹(0, 𝑘))
∗

= 𝐹′(0, 𝑘)∗𝐴 − 𝐹(0, 𝑘)∗𝐵 = 𝐹′(0, −𝑘̅)
∗
𝐴 − 𝐹(0, −𝑘̅)

∗
𝐵 = −𝐽(𝑘) (29) 

From (28) and (29) we have 

[𝑅(𝑥, 𝑘̅)
∗
, 𝑃𝐹(𝑥, 𝑘)] = −𝐽(𝑘)∗  

Since 𝐽(𝑘) is invertible, 𝐽(𝑘)∗ is also invertible and from (27) we have 

𝑏′(𝑥) = (𝐽(𝑘)∗)−1𝑅(𝑥, 𝑘̅)
∗
 𝑃𝑔(𝑥)  

and hence 

𝑏(𝑥) = ∫ (𝐽(𝑘)∗)−1𝑅(𝑡, 𝑘̅)
∗
𝑃𝑔(𝑡)𝑑𝑡

𝑥

0

+ 𝛽 (30) 

for some constant vector 𝛽. 

If we multiply equation (24) with 𝐹′(𝑥, −𝑘̅)
∗
𝑃 from left and equation (26) with 𝐹(𝑥, −𝑘̅)

∗
𝑃 from left and then 

subtract two resulting equalities we have 

[𝐹(𝑥, −𝑘̅)
∗
, 𝑃𝑅(𝑥, 𝑘)]𝑎′(𝑥) + [𝐹(𝑥, −𝑘̅)

∗
, 𝑃𝐹(𝑥, 𝑘)]𝑏′(𝑥) = −𝐹(𝑥, 𝑘̅)

∗
𝑃𝑔(𝑥)  

From (14) and (15) it follows 

𝐽(𝑘)𝑎′(𝑥) = −𝐹(𝑥, −𝑘̅)
∗
𝑃𝑔(𝑥) (31) 

Since 𝐽(𝑘) is invertible we have from (31) that 

𝑎′(𝑥) = −(𝐽(𝑘))
−1

𝐹(𝑥, −𝑘̅)
∗
𝑃𝑔(𝑥)  
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and hence 

𝑎(𝑥) = 𝛼 + ∫ (𝐽(𝑘))
−1

𝐹(𝑡, −𝑘̅)
∗
𝑃𝑔(𝑡)

∞

𝑥

𝑑𝑡 (32) 

for some constant vector 𝛼. 

Plugging (30) and (32) in (22) 

𝑦(𝑥, 𝑘) =  𝑅(𝑥, 𝑘)𝛼 + 𝑅(𝑥, 𝑘) ∫ (𝐽(𝑘))
−1

𝐹(𝑡, −𝑘̅)
∗
𝑃𝑔(𝑡)

∞

𝑥

𝑑𝑡 + 𝐹(𝑥, 𝑘) ∫ (𝐽(𝑘)∗)−1𝑅(𝑡, 𝑘̅)
∗
𝑃𝑔(𝑡)𝑑𝑡

𝑥

0

+ 𝐹(𝑥, 𝑘)𝛽 

Since the vector function 𝑦(𝑥, 𝑘) should lie in 𝐿2(ℝ+, ℂ𝑛) it follows that 𝛼 = 0. We have 

𝑦′(𝑥, 𝑘) =  𝑅′(𝑥, 𝑘)𝑎(𝑥) + 𝐹′(𝑥, 𝑘)𝑏(𝑥) (33) 

Evaluating (33) at 𝑥 = 0 yields 

𝑦′(0, 𝑘) = 𝑃−1𝐵 ∫ (𝐽(𝑘))
−1

𝐹(𝑡, −𝑘̅)
∗
𝑃𝑔(𝑡)

∞

0

𝑑𝑡 + 𝐹′(0, 𝑘)𝛽  

Imposing the boundary condition (7) 

−𝐵∗ [𝑃−1𝐴 ∫ (𝐽(𝑘))
−1

𝐹(𝑡, −𝑘̅)
∗
𝑃𝑔(𝑡)

∞

0

𝑑𝑡 + 𝐹(0, 𝑘)𝛽]

+ 𝐴∗ [𝑃−1𝐵 ∫ (𝐽(𝑘))
−1

𝐹(𝑡, −𝑘̅)
∗
𝑃𝑔(𝑡)

∞

0

𝑑𝑡 + 𝐹′(0, 𝑘)𝛽] = 0 

Using (8) the last equation simplifies to 

[𝐴∗𝐹′(0, 𝑘) − 𝐵∗ 𝐹(0, 𝑘)]𝛽 = 0  

and using (29) we have 𝐽(𝑘)∗𝛽 = 0. Since 𝐽(𝑘) is invertible this gives 𝛽 = 0. Finally, we find 

𝑦(𝑥, 𝑘) =  𝑅(𝑥, 𝑘) ∫ (𝐽(𝑘))
−1

𝐹(𝑡, −𝑘̅)
∗
𝑃𝑔(𝑡)

∞

𝑥

𝑑𝑡 + 𝐹(𝑥, 𝑘) ∫ (𝐽(𝑘)∗)−1𝑅(𝑡, 𝑘̅)
∗
𝑃𝑔(𝑡)𝑑𝑡

𝑥

0

  

Corollary 1 Let us denote the continuous spectrum, point spectrum and the set of spectral singularities of 𝐿 

by 𝜎𝑐(𝐿), 𝜎𝑑(𝐿) and 𝜎𝑠𝑠(𝐿) respectively. Then, it follows 

𝜎𝑐(𝐿) = [0, ∞)  

𝜎𝑑(𝐿) = {𝑘2:  𝑘 ∈ 𝐻, 𝑑𝑒𝑡𝐽(𝑘) = 0}  

𝜎𝑠𝑠(𝐿) = ∅  

Proof. It follows from Theorem 2 that 𝑘2 is an eigenvalue of 𝐿 iff 𝑑𝑒𝑡𝐽(𝑘) =  0 for 𝑘 ∈ 𝐻 i.e. the resolvent 

operator doesn’t exist. It is easy to show similarly to the scalar case that 𝜎𝑐(𝐿) = [0, ∞) (Naimark, 1968). 

Spectral singularities are the poles of the kernel of the resolvent and are also in the continuous spectrum. 

Therefore, Theorem 1 and Theorem 2 implies that 𝜎𝑠𝑠(𝐿) = ∅. 
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5. CONCLUSIONS 

The present paper is aimed at complementing the studies Olgun & Coskun (2010); Bairamov et al. (2017) 

regarding the matrix Schrödinger equation with non-selfadjoint operator coefficients on the half-line together 

with Dirichlet boundary condition at 𝑥 = 0 and generalizing the studies Aktosun et al. (2011); Weder (2017); 

Aktosun & Weder (2013; 2018; 2020) regarding the selfadjoint matrix Schrödinger operator generated by (3)-

(5). We consider the matrix Schrödinger equation on the half-line with the quasi-selfadjoint matrix potential 

together with (7)-(9) which will contribute to the understanding of recently introduced pseudo-Hermitian 

quantum mechanics by Mostafazadeh (2010). 

Even though the matrix Schrödinger operator 𝐿 with quasi-selfadjoint potential is non-selfadjoint, there aren’t 

any spectral singularities, and the structure of the spectrum is the same as the selfadjoint matrix Schrödinger 

operator i.e. 𝑄 = 𝑄∗. However, there may be complex eigenvalues of 𝐿. 

The particular case 𝐴 = 0 implies that 𝐵 is invertible from (9) and thus yielding the Dirichlet boundary 

condition at 𝑥 = 0. Therefore, the boundary value problem under investigation generalizes Olgun & Coskun 

(2010). On the other hand, the particular case 𝑃 = 𝐼  in the quasi-selfadjointness relation 𝑄∗(𝑥) = 𝑃𝑄(𝑥)𝑃−1 

implies that 𝑄∗ = 𝑄 and thus one obtains the selfadjoint matrix Schrödinger operator studied in Agranovic & 

Marchenko (1965); Aktosun et al. (2011); Weder (2017); Aktosun & Weder (2013; 2018; 2020). Therefore, 

our study also generalizes these studies. 

The boundary value problem investigated in this paper is intimately related to non-compact quantum star 

graphs which have many applications in scattering problems in quantum mechanics. As for quantum graphs, 

consideration of most general boundary conditions rather than just Dirichlet boundary conditions is more 

relevant. For this reason, most general boundary conditions are imposed in our study. As a result, the results 

obtained in this paper will be useful for studying spectral properties of such quantum graphs.  
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