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Abstract. In this work, we describe a Frenet frame in 4-dimensional Euclidean space and call this frame as
parallel transport frame (PTF). PTF is an alternative approach to defining a moving frame. This frame is obtained
by rotating the tangent vector and the first binormal vector of a unit speed curve by an euler angle and then we give
curvature functions according to PTF of the curve. Also, we introduce (k,m)-type slant helices according to PTF in
Euclidean 4-Space. Additionally, we obtain the characterization of slant helices according to this frame in E4 and
give an example of our main result.
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1. Introduction

Some special curves and surfaces are of great importance in differential geometry. Frenet equations and curvatures
of the curve play a key role in studies on curves. Frenet equations are used in the construction of many curve theories,
and offer interesting results. One of the most important of these curves is the helix curve and the characterizations
on the curvature and torsion play an important role to define special curve types such as so-called helices. Helices
are defined as curves whose tangent vector makes a constant angle with a fixed direction. The curve is a (k,m)-type
slant helix, then there exists a non-zero constant vector field, and with this constant vector field, the vector fields which
have the same index of a parallel transport frame make a constant angle (as in the Euclidean space E4 ). Recently,
many research papers related to this concept. The slant helix concept in Euclidean 3-space is defined by Izumiya and
Takeuchi [7]. M.A. Soliman, N. H.Abdel-All, R. A. Hussien and T. Youssef studied [8] evolution of space curves using
type-3 Bishop frame. S. Yilmaz and M. Turgut [10,11] introduced a new version of Bishop frame and an application to
spherical images. M.Y. Yilmaz and M. Bektaş defined (k,m)-type slant helices in 4-dimensional Euclidean space and
null curves in Minkowski 4-space [1, 9]. In addition, F. Bulut and M. Bektaş [3] obtained special helices on Equiform
differential geometry of spacelike curves in Minkowski space-time. On the other hand, the Bishop frame was intro-
duced by R. L. Bishop in 1975 utilizing parallel vector fields [2].
In the working, the parallel transport frame (PTF) are studied. The aim of this paper is to introduce slant helix in
Euclidean 4-Space according to PTF. In particular, the definition of PTF created with a t parameter is granted. Subse-
quently, important characterizations are given for PTF to be (k,m)-type slant helix in 4-dimensional Euclidean space.
Also, it is given an example for the curve in E4.
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2. Geometric Preliminaries

In this section we present basic tools for the space curves in E4. A detailed information can be found in [5]. Let
γ : I ⊂ R → E4 be an arbitrary curve in Euclidean space E4. Let E4 = {(a1, a2, a3, a4)|a1, a2, a3, a4 ∈ R} be a
4-dimensional vector space. The standard scalar product in E4 given by

〈a, b〉 =

4∑
k=1

akbk.

Then the curve γ is said to be of unit speed (or parametrized by arclength) if it satisfies 〈
.
γ(t),

.
γ(t)〉 = 1 for any t ∈ I.

The norm of a vector a ∈ E4 is defined by ‖a‖ =
√
|〈a, a〉|.

Let {T,N,B1,B2} be the moving frame along the unit speed curve γ; where T(t),N(t),B1(t) and B2(t) denote, the
tangent, the principal normal, first and second binormal vector fields of the curve γ, respectively. Then the following
Frenet formulas is given in [11] 

T
N
B1
B2


′

=


0 κ1 0 0
−κ1 0 κ2 0
0 −κ2 0 κ3
0 0 −κ3 0




T
N
B1
B2

 , (2.1)

where κ1, κ2 and κ3 denote the first, the second and the third curvature functions according to of γ, respectively. Here,
since {T,N,B1,B2} is an orthonormal frame, then we can write

〈T,T〉 = 〈N,N〉 = 〈B1,B1〉 = 〈B2,B2〉 = 1,
〈T,N〉 = 〈T,B1〉 = 〈T,B2〉 = 〈N,B1〉 = 〈N,B2〉 = 〈B1,B2〉 = 0.

Now, we rotate this frame in E4 arbitrarily. So, when we rotate {T,N,B1,B2} vectors, we get {T∗,N∗,B1
∗,B2

∗} vec-
tors. If we sort the {T,N,B1,B2} vectors as {V1,V2,V3,V4} vectors in order, then {T∗,N∗,B1

∗,B2
∗} vectors will be{

V∗1 ,V
∗
2 ,V

∗
3 ,V

∗
4

}
. The Euler angles are introduced by Leonhard Euler to describe the orientation of a rigid body with

respect to a fixed coordinate system [6]. Alternative forms can represent the orientation of a mobile frame of reference
in physics or the orientation of a general basis in 3-dimensional linear algebra. If θ is an Euler angle, using we using θi j

Euler angles between the vector Vi and the vector V∗j , 1 ≤ i, j ≤ 4, then the rotational transform is given by an arbitrary
rotation matrix below: 

V∗1
V∗2
V∗3
V∗4

 =


cosθ11 cosθ21 cosθ31 cosθ41
cosθ12 cosθ22 cosθ32 cosθ42
cosθ13 cosθ23 cosθ33 cosθ43
cosθ14 cosθ24 cosθ34 cosθ44




V1
V2
V3
V4

 .
Here, if we leave the N and B2 vectors motionless, we rotate only the vectors T and B1 in the {T,B1} plane by an angle
θ. Then, we can find


V∗1
V∗2
V∗3
V∗4

 =



cosθ cos
(
π

2

)
cos

(
π

2
− θ

)
cos

(
π

2

)
cos

(
π

2

)
cos (0) cos

(
π

2

)
cos

(
π

2

)
cos

(
π

2
+ θ

)
cos

(
π

2

)
cosθ cos

(
π

2

)
cos

(
π

2

)
cos

(
π

2

)
cos

(
π

2

)
cos (0)




V1
V2
V3
V4

 .

PTF of a curve and the relations between the frame and Frenet frame of the curve in 4-dimensional Euclidean space by
using the Euler angles is given in [4]. In this section, we proved with this similar thinking the following theorem.

Theorem 2.1. Let {T(t),N(t),B1(t),B2(t)} be a Frenet frame along a unit speed curve γ : I ⊂ R→ E4 and{
T(t),N(t),B1(t),B2(t)

}
denotes the PTF of the curve γ. The relation can be expressed as

T(t) = T(t)cosθ(t) + B1(t)sinθ(t)
N(t) = N(t)
B1(t) = −T(t)sinθ(t) + B1(t)cosθ(t)
B2(t) = B2(t).

(2.2)
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The alternative parallel transport frame equations are
T
N
B1

B2


′

=


0 κ1 0 tanθκ3
−κ1 0 κ2 0
0 −κ2 0 κ3

−tanθκ3 0 −κ3 0




T
N
B1

B2

 ,
where κ1, κ2, κ3 are curvature functions according to PTF of the curve γ and their expression as follows

κ1(t) = κ1(t)cosθ(t) − κ2(t)sinθ(t)
κ2(t) = κ2(t)cosθ(t) + κ1(t)sinθ(t)
κ3(t) = κ3(t)cosθ(t),

where θ(t) = constant, θ(t) ∈
[
− π2 ,

π
2

]
.

Proof. Let {T(t),N(t),B1(t),B2(t)} be a Frenet frame and
{
T(t),N(t),B1(t),B2(t)

}
denotes the PTF along a unit speed

curve γ in E4. The relation between Frenet frame and PTF as follows
T
N
B1

B2

 =


cosθ(t) 0 sinθ(t) 0

0 1 0 0
−sinθ(t) 0 cosθ(t) 0

0 0 0 1




T
N
B1
B2

 .
Since the matrix in the middle is an orthogonal matrix, the inverse exists and from inverse matrix, we find

T = Tcosθ(t) − B1sinθ(t)
N = N
B1 = Tsinθ(t) + B1cosθ(t)
B2 = B2.

(2.3)

Differentiating (2.2) with respect to t, we get

T
′

= T′cosθ(t) − Tsinθ(t)θ′(t) + B1
′sinθ(t) + B1cosθ(t)θ′(t)

N
′

= N′

B1
′

= −T′sinθ(t) − Tcosθ(t)θ′(t) + B1
′cosθ(t) − B1sinθ(t)θ′(t)

B2
′

= B2
′,

where substituting the equation (2.1) instead of T′(t),N′(t),B1
′(t),B2

′(t), we get

T
′
(t) = κ1Ncosθ − T(t)sinθθ′ + (−κ2N + κ3B2)sinθ + B1(t)cosθθ′

N
′
(t) = N′ = −κ1T + κ2B1

B1
′
(t) = −κ1Nsinθ − T(t)cosθθ′ + (−κ2N + κ3B2)cosθ − B1(t)sinθθ′

B2
′
(t) = B2

′ = −κ3B1

and (2.3) results are written instead of T,N,B1,B2, we have

T
′

= (κ1cosθ(t) − κ2sinθ(t)) N + θ′(t)B1 + κ3sinθ(t)B2

N
′

= (κ2sinθ(t) − κ1cosθ(t)) T + (κ2cosθ(t) + κ1sinθ(t)) B1

B1
′

= −Tθ′(t) − (κ1sinθ(t) + κ2cosθ(t)) N + κ3cosθ(t)B2

B2
′

= −κ3sinθ(t)T − κ3cosθ(t)B1,

where θ(t) = constant, θ′(t) = 0 and θ(t) ∈
[
− π2 ,

π
2

]
. Then, we define this frame as PTF [10]. So, the PTF formulas are

given by 
T
N
B1

B2


′

=


0 κ1 0 tanθκ3
−κ1 0 κ2 0
0 −κ2 0 κ3

−tanθκ3 0 −κ3 0




T
N
B1

B2

 ,
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where θ(t) = constant, θ(t) ∈
[
− π2 ,

π
2

]
and curvatures are defined by

κ1 = κ1cosθ − κ2sinθ
κ2 = κ2cosθ + κ1sinθ
κ3 = κ3cosθ.

The proof is completed.
�

3. (k,m)-type Slant Helices

In this section, we define (k,m)-type slant helices for PTF in E4 such as [9].

Definition 3.1 ( [9]). Let γ : I ⊂ R → E4 be a regular unit speed curve in E4 with PTF {V1,V2,V3,V4}. We call γ is a
(k,m)-type slant helix if there exists a non-zero constant vector field U ∈ E4 satisfies 〈Vk,U〉 = a and 〈Vm,U〉 = b (a, b
are constants) for 1 ≤ k,m ≤ 4, k , m. The constant vector U is on axis of (k,m)-type slant helix [1,9]. We decompose
U with respect to PTF

{
T(t),N(t),B1(t),B2(t)

}
. Here we denote V1 = T, V2 = N, V3 = B1, V4 = B2.

Theorem 3.2. Let γ be a regular curve in E4 with PTF
{
T(t),N(t),B1(t),B2(t)

}
. If the curve γ is a (1, 2)-type slant

helix in E4, then we have

〈B1,U〉 =
κ1

κ2
c1

and

〈B2,U〉 =
−κ1

tanθκ3
c2,

where c1 are c2 are constants.

Proof. If the curve γ is a (1, 2)-type slant helix in E4, then for a constant field U, we can write

〈T ,U〉 = c1 (3.1)

and
〈N,U〉 = c2 (3.2)

are constants. Differentiating (3.1) and (3.2) with respect to t, we get

〈T
′
,U〉 = 0

and
〈N
′
,U〉 = 0.

Using PTF, we find the following equations:

〈κ1N + tanθκ3B2,U〉 = 0

and it follows that
〈−κ1T + κ2B1,U〉 = 0.

In that case, we have
κ1〈N,U〉 + tanθκ3〈B2,U〉 = 0 (3.3)

− κ1〈T ,U〉 + κ2〈B1,U〉 = 0. (3.4)
By setting (3.1) in (3.4), we find

−κ1c1 + κ2〈B1,U〉 = 0.
Substituting (3.4) to (3.3), we obtain as below:

κ1c2 + tanθκ3〈B2,U〉 = 0.

Finally, we obtain

〈B1,U〉 =
κ1

κ2
c1
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and for θ(t) = constant, θ(t) ∈
[
− π2 ,

π
2

]
〈B2,U〉 =

−κ1

tanθκ3
c2.

The proof is completed. �

Theorem 3.3. Let γ be a regular curve in E4 with PTF
{
T(t),N(t),B1(t),B2(t)

}
. Then, there are no (1, 3)-type slant

helix in E4.

Proof. If the curve γ is a (1, 3)-type slant helix in E4, then for a constant field U, we can write as below:

〈T ,U〉 = c1 (3.5)

and
〈B1,U〉 = c3 (3.6)

are constants. Differentiating (3.5) and (3.6) with respect to t, we get

〈T
′
,U〉 = 0

and
〈B1

′
,U〉 = 0.

Using PTF, we obtain the following equations:

κ1〈N,U〉 + tanθκ3〈B2,U〉 = 0, (3.7)

and we have that
− κ2〈N,U〉 + κ3〈B2,U〉 = 0. (3.8)

( We know that U is constant). By setting equation (3.8) in equation (3.7), we get(
tanθ

κ2 κ3

κ1
+ κ3

)
〈B2,U〉 = 0,

it is clear that

tanθ
κ2 κ3

κ1
+ κ3 , 0.

Then 〈B2,U〉 = 0, this means that U is orthogonal to B2. Then, there are no (1, 3)-type slant helices in E4. �

Theorem 3.4. Let γ be a regular curve in E4 with PTF
{
T(t),N(t),B1(t),B2(t)

}
. If the curve γ is a (1, 4)-type slant

helix in E4, then there exists a constant such that

〈N,U〉 = −tanθ
κ3

κ1
c4

and
〈B1,U〉 = −tanθc1,

where c1 are c4 are constants.

Proof. Assume that γ is a (1, 4)-type slant helix in E4, then for a constant field U, we can write the following equations:

〈T ,U〉 = c1 (3.9)

and
〈B2,U〉 = c4 (3.10)

are constants. Differentiating (3.9) and (3.10) with respect to t, we get

〈T
′
,U〉 = 0

and
〈B2

′
,U〉 = 0.

Using PTF, we get
κ1〈N,U〉 + tanθκ3〈B2,U〉 = 0 (3.11)
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and
κ3〈B1,U〉 + tanθκ3〈T ,U〉 = 0. (3.12)

By setting (3.10) in (3.11), we have

〈N,U〉 = −tanθ
κ3

κ1
c4.

Substituting (3.9) to (3.12), we obtain

〈B1,U〉 = −tanθc1.

The proof is completed. �

Theorem 3.5. Let γ be a regular curve in E4 with PTF
{
T(t),N(t),B1(t),B2(t)

}
. If the curve γ is a (2, 3)-type slant

helix in E4, then there exists a constant such as

〈T ,U〉 =
κ2

κ1
c3

and

〈B2,U〉 =
κ2

κ3
c2

where c2 are c3 are constants.

Proof. If the curve γ is a (2, 3)-type slant helix in E4, then for a constant field U, we can write

〈N,U〉 = c2 (3.13)

is a constant and
〈B1,U〉 = c3 (3.14)

is a constant. Differentiating (3.13) and (3.14) with respect to t, we find

〈N
′
,U〉 = 0

and
〈B1

′
,U〉 = 0.

Using PTF, the following equations can be obtained:

− κ1〈T ,U〉 + κ2〈B1,U〉 = 0 (3.15)

and
− κ2〈N,U〉 + κ3〈B2,U〉 = 0. (3.16)

By setting (3.14) in (3.15), we get

〈T ,U〉 =
κ2

κ1
c3

and substituting (3.13) to (3.16), we have

〈B2,U〉 =
κ2

κ3
c2.

The proof is completed. �

Theorem 3.6. Let γ be a regular curve in E4 with PTF
{
T(t),N(t),B1(t),B2(t)

}
. Then, there are no (2, 4)-type slant

helix in E4.
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Proof. If the curve γ is a (2, 4)-type slant helix in E4, then for a constant field U. We can write the following equations:

〈N,U〉 = c2 (3.17)

and
〈B2,U〉 = c4 (3.18)

are constants. By differentiating (3.17) and (3.18) with respect to t, we get the following equations:

〈N
′
,U〉 = 0

and
〈B2

′
,U〉 = 0.

Using PTF, we find
− κ1〈T ,U〉 + κ2〈B1,U〉 = 0, (3.19)

tanθκ3〈T ,U〉 + κ3〈B1,U〉 = 0. (3.20)
Substituting (3.19) to (3.20), we obtain as follows:(

tanθ
κ2

κ1
+ 1

)
κ3〈B1,U〉 = 0,

it is clear that

tanθκ3
κ2

κ1
+ κ3 , 0.

Then 〈B1,U〉 = 0, this means that U is orthogonal to B1. Then, there are no (2, 4)-type slant helices in E4. �

Theorem 3.7. Let γ be a regular curve in E4 with PTF
{
T(t),N(t),B1(t),B2(t)

}
. If the curve γ is a (3, 4)-type slant

helix in E4, then there exists a constant such that

〈T ,U〉 = −
c3

tanθ
and

〈N,U〉 =
κ3

κ2
c4

where c3, c4 are constants.

Proof. If the curve γ is a (3, 4)-type slant helix in E4, then for a constant field U, we can write as follows:

〈B1,U〉 = c3 (3.21)

is a constant and
〈B2,U〉 = c4 (3.22)

is a constant. By differentiating (3.21) and (3.22) with respect to t, we have the following equations:

〈B1
′
,U〉 = 0

and
〈B2

′
,U〉 = 0.

Using PTF, we find as below:
− tanθκ3〈T ,U〉 − κ3〈B1,U〉 = 0 (3.23)

and
− κ2〈N,U〉 + κ3〈B2,U〉 = 0. (3.24)

Substituting (3.21) to (3.23) and for θ(t) ∈
[
− π2 ,

π
2

]
we can write

〈T ,U〉 = −
c3

tanθ
,

and by setting (3.22) in (3.24), we obtain

〈N,U〉 =
κ3

κ2
c4.
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The proof is completed. �

Example 3.8. Let γ(t) =

cos

√
2t
√

3
, sin

√
2t
√

3
,−cos

t
√

3
,−sin

t
√

3

 be a regular unit speed curve in E4 with Frenet frame

{T(t),N(t),B1(t),B2(t)}. Frenet frame formulas can be expressed as:

T(t) =

 1
√

3
sin

√
2t
√

3
,−

1
√

3
cos

√
2t
√

3
,−

√
2
√

3
sin

√
2t
√

3
,

√
2
√

3
cos

√
2t
√

3


N(t) =

− 2
√

5
cos

√
2t
√

3
,−

2
√

5
sin

√
2t
√

3
,

1
√

5
cos

√
2t
√

3
,

1
√

5
sin

√
2t
√

3


B1(t) =

− 1
√

3
sin

√
2t
√

3
,

1
√

3
cos

√
2t
√

3
,−

√
2
√

3
sin

√
2t
√

3
,

√
2
√

3
cos

√
2t
√

3


B2(t) =

− 1
√

5
cos

√
2t
√

3
,−

1
√

5
sin

√
2t
√

3
,−

2
√

5
cos

√
2t
√

3
,−

2
√

5
sin

√
2t
√

3

 ,
where

κ1 =
1
√

3
,

κ2 = −

√
2

3
√

5
,

κ3 =

√
2
√

5
.

Equation (2.3) results are written instead of {T(t),N(t),B1(t),B2(t)} for θ(t) = π
3 , we find

{
T(t),N(t),B1(t),B2(t)

}
and

their curvature functions expression as follows

κ1 =

√
15 + 1
√

30
,

κ2(t) =
3
√

5 −
√

2

6
√

5
,

κ3(t) =
1
√

10
.

4. Conclusion

In this study, we construct (k,m)-type slant helices using a PTF equations in E4. (1, k)-type for 2 ≤ k ≤ 4 slant
helices do not exist according to Frenet frame in E4 obtained in [9]. On the contrary, in our paper, we have investigated
a PTF in E4 and furthermore, we have showed that according to PTF in 4-dimensional Euclidean space E4, (k,m)-type
(m is constant) for 1 ≤ k ≤ 4, k , m (m is constant) slant helices exist and but (1, 3)-type, (2, 4)-type slant helices do
not exist.
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[4] Gökçelik, F., Gök, İ., Ekmekci, F.N., Yayli, Y., Characterizations of inclined curves according to parallel transport frame in E4 and bishop

frame in E3, Konuralp Journal of Mathematics, 7(1)(2019), 16–24.
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