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ABSTRACT. In this paper, we investigate the resolvent operator of the singular ¢-
Sturm-Liouville problem defined as

2Dy Dy @) + [ (2) = A (@) = O
with the boundary condition
y(0,A)cos 8+ D -1y (0,A\)sin 8 =0,
where A € C, r is a real-valued function defined on [0, c0), continuous at zero

and r € Lé loc[O, 00). We give a representation for the resolvent operator and

investigate some properties of this operator. Furthermore, we obtain a formula
for the Titchmarsh-Weyl function of the singular g-Sturm-Liouville problem.

1. INTRODUCTION

Quantum (or ¢) calculus is a very interesting field in mathematics. It has nu-
merous in statistic physics, quantum theory, the calculus of variations and number
theory; see, e.g., ) The first results in g-calculus be-
long to the Euler. In 2005, Annaby and Mansour investigated g-Sturm-Liouville
problems . Later in @7 the authors studied the Titchmarsh-Weyl theory for
g-Sturm-Liouville equations. In , the authors proved the existence of a spectral
function for g-Sturm-Liouville operator.

In this article, we investigate the following g-Sturm-Liouville problem defined as

— %ququy (z) +u(z)y(z) = Ay (v), 1)
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where 0 < z < co. The resolvent operator for this problem is constructed. Using
the spectral function, an integral representation is obtained. Furthermore, some
properties of this operator are investigated. A formula for the Titchmarsh-Weyl
function of Eq. is given. Historically, in 1910, H. Weyl was first obtained a
representation theorem for the resolvent of Sturm-Liouville problem defined by

—(py) +qy = My, € (0,00),

1

1oe[0,00). Similar representation theorems

where p, ¢ are real-valued and p~',q € L
were proved in [25}20,/2,5,/6, 7).

2. PRELIMINARIES

In this section, we give a brief introduction to quantum calculus and refer the
interested reader to |17.[8l(12].
Let 0 < ¢ <1 and let A C R is a g-geometric set, i.e., gr € A for all z € A. The
Jackson g-derivative is defined by
Dgy (z) = p" (2) [y (qz) —y ()]

where p () = gr —z and « € A. We note that there is a connection the Jackson g-
derivative between and ¢-deformed Heisenberg uncertainty relation (see [23|). The
g-derivative at zero is defined as

Dyy (0) = lim [¢"] " [y (¢"z) =y (0)] (z € A), (2)

if the limit in exists and does not depend on x. The Jackson q-integration is
given by

/wa(t)dqt=fc(1—q)Zq”f(q"w) (z € 4),
n=0

provided that the series converges, and

/abf(t)dqt:/Obf(t)dqt—/oaf(t)dqt,

where a,b € A. The g-integration for a function over [0, c0) defined by the formula

([13])

(o]

Tiwdi= Y ' F @),

n—=——oo

0

Let f be a function on A and let 0 € A. For every = € A, if
lim f(2q") = [ (0).

then f is called g-regular at zero. Throughout the paper, we deal only with functions
g-regular at zero.
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The following relation holds

/Oag(t)qu(t)qu/Oaf(qt)Dqg(t)dqt:f(a)g(a)—f(O)g(O),

where f and g are g-regular at zero.
Let L2[0,00) be the Hilbert space consisting of all functions f satisfying ( [9])

1 = / 1 (@) dyz < +o0

D= [t

The ¢-Wronskian of the functions y (.) and z (.) is defined by the formula
W (y,2) () ==y (w) Dyz (z) — 2 (z) Doy (z),

with the inner product

where z € [0, 00).

3. MAIN RESULTS

Consider the g-Sturm-Liouville equation

L(y) = —éDqﬂqu (2) + 7 (2)y (2) = My (). 3)

satisfying the conditions
y(0,X)cos B+ Dy-1y (0,\)sin 8 = 0, (4)
y (q_”, )\) cosa+ Dy-1y (q_", )\) sina=0, o, €R, neN:={1,2,...}, (5)

where A € C, r is a real-valued function defined on [0, 00), continuous at zero and
7€ L} 1500, 00).
Let ¢ (z,A\) and 6 (z, A) be the solutions of the Eq. satisfying the following
conditions
0 (0,\) =sing, D _1<p(0,)\) —cos f3, (6)
(9(0 A) =cosf, D,-16(0,\) =sinf.

Lemma 1 ( |9]). Let A ¢ R and let
Xg-n (2,A) =0 (2, A) +1 (A, q") ¢ (,)) € L7 (0,00),
where n € N. Then we have

Xg— (T, A) — x(z, ),

q
/ | nqt)\|d:c—>/ m)\|dmn—>oo
0
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Putting
X (@ Nt N), t<z
oo (@1,4) { P (@ N Xgn (BN, >,

y(z,A) = (qunf) (z,\) =

/q Gyn (2,6, ) f () dgt, (A€ C, TmA # 0),
0

705

(7)

Where f € L2[0,q7"]. Now, we shall show that the equality @ satisfies the equation
(y) — Ay(z ) f( ), z € (0,g7™) (A € C, Im\ # 0) and the boundary conditions

. @). From (7)), we get
y(@X) = g (@A) / o (qt. ) £ (qt) dyt
0

—n

q

+qp (z, ) / Xg-n (qt, A) f(qt) dgt.

x

From , it follows that

Dy (e = aDyxyn (@) / o (gt ) £ (gt) dyt

—n

q

+aDyp () / Xaor (at. N)  (gt) dt.

xT
and

x
Dy1Dgy (z,)) = qDg-1Dgxy-n (x,)\)/ @ (qt, A) f(qt) dgt
0

—-n

q

Dy Dy (,\) / Xaor (at, V) f (at) dt

x

—qWy (Xg—»9) f (@)
Hence, by W, (¢, xqfn) =1 (n € N), we deduce that

1
——Dy-1Dgy (z,\)
q

= O=r@)ag @) [ e @

—-n

q

= (@) ap (2, ) / X (at.N) £ (qt) dyt + f (2)

x

= A=r@)y(@,A)+f(2),
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i.e., the function y (z, A) satisfies the equation L(y) — \y(z) = f(z), = € (0,¢7").
Moreover,

—-n

y(0,)) = mmf Yoo (at ) £ (at) dyt
= qCOSﬁ/ ¢ (at, A) f(qt) dgt,
Dwmmm=:wqwmm/ o (@A) F gt dot

= —qsmﬁ/ » (gt A) f (qt) dgt,

i.e., y(z,\) satisfies (4]). Similarly, we may infer that y (z, \) satisfies .
Note that the problem . . ) has a purely discrete spectrum [10].
Let A, o be the eigenvalues of the problem (i3] . Let ¢,, ,-n be the corre-

sponding eigenfunctions and

q
s 1= [emanll = | [

where ¢,, - (%) := @, g-n (T, Ay g-n) and m € N.
Then we have the following Parseval equality (see [8])

1
2

wgl,q*" (IL') d(ﬂ) 9

—-n

2

q " ) B > 1 q "
/O ‘f(x)l dqx - Z a2 {/0 f(.%‘) @'rn,q*" (l‘) dqx} ’ (9)

m=1 m,q~"

where f(.) € L2[0,q7"].
Now, let us define the nondecreasing step function g,-» on [0,00) by

- ZA<>\ _.<0 0‘2;, for A <0
0 () = a0 T
a 2 0<xa —— for A > 0.

< —n<\ «
m,q g

It follows from @ that

[ s@Pae= [P0y, 0. (10)
0 —00

where

—n

Fm:Aqume%w
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Lemma 2. Let k > 0. Then the following relation holds

Vi W)= Y =g ®-op (R <T, ()

—k<A <k mM,qT"

m,q

where T =T (k) is a positive constant not depending on ¢~ ™.

Proof. Let sin 8 # 0. Since ¢ (z, A) is continuous at zero, by condition ¢ (0,\) =
sin 8, there exists a positive number h and nearby 0 such that

1
o (2, )| > = [sinBl, 0 < <h

h 2 A 2
<;L/ o (x,\) d,ﬂ) > (\/gh sinﬁ/ dqx> = %sin2 B. (12)
0 0

Let us define fj, (x) by

and

It follows from and that

/Ohfﬁ(x)dq:c = ;z/: (lll/ohgo(x,)\)dqx>2dgqn()\)
- / (fll /oh“”“"’ A dqz>2d@qn )

> %sin2 I} {qun (k) — 04—n (*ﬁ)} )

which proves the inequality .
Let sin3 =0 and
0, x>h
fh(m){ & 0<az<h
By , we can get the desired result. (Il

We now return to the formula , whose right-hand side has been called the
resolvent. The resolvent is known to exist for all A which are not eigenvalues of the
problem —. Now, we will get the expansion of the resolvent.

Since the function y (x, \) satisfies the equation L(y)—Ay(z) = f(x), = € (0,47 ™)
(A e C, X # X\pgn, m € N) and the boundary conditions , , via the ¢-
integration by parts, we find (the operator A generated by the expression L and
the boundary conditions (), is a self-adjoint (see [10]))

(Ay7 SONL,q_")
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—n

= [ P @)+ @ @) g (@)

= (y,ASDm,q*")

—n

= /0 ! y (z,\) [—;Dqquwm,qn (@) +7 () Py gn (w)} dqx

—n

q
Am,g—n /0 Y (2, N) Qg (7) dg.

Pm,qg—n (I) (
«
m

The set of all eigenfunctions m € N) of the self-adjoint operator A

—n

form an orthonormal basis for L?I(O,wq*”) (see [10]). Then, the function y (., \) €
Lg((),q*”) (A€ C, A # Ay g-n, m € N) can be expanded into Fourier series of

eigenfunctions w (m € N) of the problem — (or of the operator A).
Then we have N
= (pm, -n (.’L‘)
) = 3 b (1) P 1)
m=1

am’qfn

where t,, () is the Fourier coefficient, i.e.,

me,q*” (1')

dgx, m € N.
Qpy g—n

tm()\):/()q y(x, )

Since y (x,A) (A € C, X # Xy, g-n, m € N) satisfies the equation

~D, Dy () + (@) = Ny () = f (), @ € (007,

we get
qa " .
= / f(x) g (2) dqx
0 O[m’q—n
q_" 1 @m -n (I)
e A T S R
0 q Oy g1
| y(z, A
= / |: 7Dq_1Dq90m,q*" (ZC) + (T (JJ) - A)(pm,q*" (.’L’):| ( )dq.’II
0 q Qi q—n
"
y(z, A
= / P‘m,q*”@m,q*" (ZL‘) - )“pm,q*" (:E)] ( )dql’
0 O‘m,q*"

= )‘m,q—"tm ()\) - )\tm ()\) , m c N
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Thus, we have

a

tm (\) = Y

Am,g—n — A
and
"
y (q;-’ >\) = / Gq—n (IE, ta >\) f (t) dqt
0
_ i am LPm,q—n(x) ANEC, A# Apg-n, meN).
Amyg—n — A Qo g—n ’ e
m=1 ’ ’

Then

y(x,z) = (Rq—"f) (iL',Z)

—-n

_ Z Pm,q—n (m) z) /Oq f(t) Pm,q—n (t) dgt

2 ( _
Ozm7q_n >\m$q7n

m=1
oz, A a "
B /_oo % {/0 J (@) @ g—n (1, A) dqt} dog—n (A). (13)
Lemma 3. The following formula holds
00 A 2
/ ’SD)\(:iz) dog—n (V) < K, (14)

where x is a fized number and z is a non-real number.

Proof. Let f (t) = w. By , we conclude that

”

—n

q
/ Gy (8,2) oy gn (£) dgt =
O‘m,q*" 0

Under and @[), we see that

-n o0

/0‘1 |Gyn (m,t,z)|2dqt Z . | g—n ()]

m=1 O‘m)q—n |)\m,q*" - Z|

[ 2 a0

N

1 Spm,q*" (1:)

R p—

2

2

It follows from Lemma 1 that the last integral is convergent. The proof is complete
O

Now, we present below for the convenience of the reader.
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Theorem 4 ( [19]). Let (wy),cy be a uniformly bounded sequence of real non-
decreasing function on a finite interval [a,b]. Then
(i) there exists a subsequence (wn, ),cy and a non-decreasing function w such that

Tim w,, (3) = w (),
where a < XA < b.

(73) suppose
lim w, (A) =w (),

n—oo
where a < A < b. Then, we have
b

b
tim [ 7O dw () = [ F ) dw ().
where f € Cla, b).
By Lemma 2 and Theorem 4, one can find a sequence {¢g~"*} such that
A og-ni (A) = 0(A),
where p (A\) is a monotone function.

Lemma 5. Let z ¢ R. Then we have
/ = e\
o | A2
where  is a fized number.

Proof. Let n > 0. It follows from that

2 do(A) < K, (16)

2

n
o (2, )
. K.
/n o, () <
Then ) )
* ez . e (2, )
= 1 . K.
/_w'kz\dm Jim [ 5D oy ) <

Lemma 6. Let n > 0. Then we have
1 do (A > do(A
/ o )2 < 00, / o )2 < 00. (17)
oo A—7] A4

Proof. Let sin 8 # 0. From , we deduce that

/°° do (N) <o
oo A= 2
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Let sin 8 = 0. Hence we see that

1 "
/ Omg-n (1) Dy .z [Gq_n (z,t, z)} dgt =
O‘m,q*" 0

It follows from @ that

q " oo 2
/ | Dy [Gor (2,1, 2)] |2 dqt = / Dq’iﬁpf(x’)\)
0 —o z

Proceeding similarly, we can get the desired result. O

Dq,l’gom,q*" ((E)

Oy g—n ()\Tn/’qfn — z) '

dog—n (A).

Lemma 7. Let (2.2) 0 (t.2)
) x(x,2)p(t,z), x>t
G“¢”{¢u@xw@,x<u

and let f (.) € L2[0,00). Then we have

‘A\mﬁ@ZHdw<f/j ) dy,

Uﬁﬂ%@=£mGwmdf®%u

where

and z = u + .
Proof. See [9). O
Now we shall state the main result of this paper.

Theorem 8. The following relation holds
< oz, A
rn) o) = [ EED R 0ae ), (18)

o A—Z

lim
s—»loo/ f A) dyz,

Proof. Define the function f¢ (z) as

fu@{ PR AR BUERY e

such that f¢ (x) satisfies . By (13| , we conclude that
(Rq—nfg) (z,2)

- /OO @A(i’ 2) Fe (A) dog— (A) = /*“ SOA(? ;\) Fe (V) dog=r ()

—0o0 — 00

where f (.) € L2]0,00),
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+ [ %Fg (A) dgy-n (A) + / h %Fg (N doy—n (V)

= L+ 1+ I, (19)

where

Fe()) = / D F@ e dye,

and a > 0.
It follows from that

nl = |5 R 0ag, )

— 00

[rar @[ J fe () g (0 dgt

<
o Z_ o? A —z‘
k,q_”< a k;,q*”' k,q—"
) @) 1/2
Prog— T
< x At
Apgon<—a Vg g=n Mg — 2|
_¢ o\ 1/2
1 q
X Z — l/ fe (x) Okq—n (x) dqa:] . (20)
Ak)q—n<—a k,q—™ 0

Using the g-integration-by-parts formula in the integral below, we have

—£

[ 5@ oy @) o
0

—£
1 4 1
[ @ { DDk @) 4 @) e 0 bt
"
qfﬁ

1 1
= )\k /O {_qu—qufE (CC) +7r (x) fg (x)} Pl g—n (x) dqx. (21)
’q*’n
From Lemma 3, we get
1 1/2
‘I | < Kl/2 Z)\k,q,"<f¢z W
1| < £

a

X [f()sz {_%ququfg (x) +r(z) fe (33)} Ppg—n (T) dqxr
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Application of Bessel inequality yields
_ 1/2
!

/Oq {—qu_qufi(x)+r(x)f5(x)}2dq;g] :%

Likewise, we show that |I3] < % Then I, I3 — 0, as a — oo, uniformly in ¢~™. By
virtue of and Theorem 4, we see that

(Rfe) (x,2) = / * o)

oo A—Z

We can find a sequence { f¢ (m)}zil which satisfies the previous conditions and tend

Fe(A)do(X). (22)

to f(z) as £ — oo, since f(.) € L2[0,00). It follows from @[) that the sequence of
Fourier transform converges to the transform of f (z) . Using Lemmas 5 and 7, one
can pass to the limit £ — oo in . O
Remark 9. The following formula holds.

T ENGN

| Eneaswae= [ 22 Haw, (23)
where e
G(’\):QE& ; 9 (z) ¢ (z,A) dgz,
and

F(\) = lim /Oq fx)p(z, ) de.

§—o0

Now, we will study some properties of the resolvent operator. We give the fol-
lowing definition and theorems.

Definition 10. Let M (z,t) be a complex-valued function, where x,t € (a,b). If

b b
/ / |M (2,t)| dyzdyt < 400,
then M (z,t) is called the q-Hilbert-Schmidt kernel.
Theorem 11 ( [22]). Let us define the operator A as

A{zi} ={yi},

where -
i =Y aixzy, i € N. (24)
k=1
If
> laal® < +o0 (25)
i,k=1

then A is a compact operator in the sequence space 2.
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Theorem 12. Let the limit circle case holds for Eq. (@ and

Gl =G ={ FEN r (20

Then the function G (z,t) defined by (26) is a q-Hilbert-Schmidt kernel.
Proof. 1t follows from that

o0 x
/ dqgc/ G (2,8)|% dyt < +00,
0 0
and - o
/ dqx/ |G(x,t)\2dqt < +o00,
0 T
since the integrals
| 16w 0P
0
and
oo
[ 1@l
0

exist and are a linear combination of the products ¢ (z) x (¢), and these products
belong to L2[0,00) x L2[0,00). Then

/0 /0 |G (2, t)|” dyzdyt < +o0. (27)
O
Theorem 13. Let us define the operator R as

FN@ = [ Gworodr
Under the assumptions of Theorem 12, R is a compact operator.

Proof. Let ¢; = ¢; (t) (i € N) be a complete, orthonormal basis of L2[0,00). By
Theorem 12, we can define

- U¢»=Aw@uﬁumw

g = m@»=4m@umamw

Qi = / / b, ()9, ()G (1) dywdgt,
o Jo

where i,k € N. Then, Lg [0, 00) is mapped isometrically [2. Therefore, the operator
R transforms into A defined by in [? by this mapping, and (27) is translated
into . It follows from Theorem 11 that A is compact operator. Consequently,
R is a compact operator. [l
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Now, we will give some auxiliary lemmas.

Lemma 14. The following equalities hold.

lim W, (x (z,A),x (z, X)) = 0,
o m(\) —m (N
/ x (2, \),x (a:, )\') dez = )\)\,()7
0 _
where A and X' are any fived nonreal numbers.

Proof. See [9)].
Using and setting A = u + v and A’ = )\, we obtain
o Im {m (A
| @R age = -2
0 v
Lemma 15. For fixed w1 and us, we have

/uzflm{m(u+i5)}du:0(1), as 0 — 0.

1

Proof. Let sin 8 # 0. It follows from @D and that

A |X(t,2)‘ dqt_‘/ioo (u—)\)Q—l—vz’

where z = u + v.

715

(28)

(29)

(30)

(31)

(32)

Let sin 8 = 0. If the equality is g-differentiated throughout with respect to

x, and the limit is taken as n — oo, then we can get the desired result.
By virtue of and , we conclude that

_Im{m(u—l—ié)}26/7OO (7,L—d£))\)(2>\)—|—52

Then we have

—/u1 Im{m(u+15}du—5/ / +52

Let (a,b) be a finite interval where a < u; and b > us. Frorn , we see that

A e

_do(h)
)?
do (N) _
(%1 du/b (u—XN2+0> ow-

N2, 52

Hence, we get

ug—A

of [ e [0 [ s o0,
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Assume that o (A) = o1 (\) + i3 (\) is a complex bounded variation on the
entire line. Set

o) = [y el 0B

zZ=041T.

_l/oo 7| do (A)

T ) AN=0)> 472
Theorem 16 ( [20]). Let the points a,b are points of continuity of o (X\). Then we
obtain

b
o(b)—o(a)= lir%/ - (o,7)do.
Theorem 17. Let the endpoints of A = (A, X+ A) be the points of continuity of
0(N). Then, we deduce that

Q(A+A)fg(>\):%%ii% [t (0 i0)) (33)

Proof. Let f (.),g(.) € L2[0,00) vanish outside a finite interval. By 7 we deduce
that

y(A)

AWUVH%@Q@WM

[T QG ) [~ de)

— 00 — 00

where
p@) = [ PG ).
It follows from Theorem 16 that

p(A) = —%}ii%/AIm {¢ (u+i6)} du. (34)

Furthermore, we have

(6t i0)) = [ g(@)dga
x{/ow [0 (z,u+1i0) +m (u+id) ¢ (z,u+1i0)] ¢ (t,u+10) f (t)dgt

—i-/w [0 (t,u+i0) +m(u—+1i0) @ (t,u+id)] ¢ (z,u+1id) f(t)dyt},

where 6 (z,u), ¢ (z,u),g(x) and f(x) are real-valued functions. It follows from
and Lemma 15 that

p(A) = %}E% [t (u4+9)) G () F () (35)
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If we choose g (z) and f (x) conveniently, we can make G (u) and F (u) differ as
little from unity in the fixed interval A. From Lemma 15 and , we get the
O

desired result.

Theorem 18. Let z ¢ R. Then we have

_ * do(N)
m(z) = COtﬁ_F/—oo)\_Z. (36)
Proof. 1t follows from that
o A—z
since f (x) is an arbitrary function. By definition, we get
_J 02 +m(z) et 2)]e(x2), t>a
cwia={ G TnOLGINED 2
By virtue of (@ and , we conclude that
G (0,0,z) = sinfB{cosB+m(z)sinS}
> sin? g
= /_oo Aizdg()\%
i.e.,
_ > do(N)
m(z) = COtﬁ_F[oo Py
O
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