
Journal of Thermal Engineering, Vol. 7, No. 3, pp. 409-414, March, 2021 
Yildiz Technical University Press, Istanbul, Turkey                                                                                                                   

 

This paper was recommended for publication in revised form by Regional Editor Baha Zafer 
1 Department of Mechanical Engineering, University of Thi-Qar, Iraq 
*E-mail address: ahmedshkara@gmail.com, shkarah@utq.edu.iq  
Orcid id: 0000-0001-9762-3201 
Manuscript Received 4 March 2019, Accepted 1 June 2019 

 
 

CONVECTIVE HEAT TRANSFER AND FULLY DEVELOPED FLOW FOR 
CIRCULAR TUBE NEWTONIAN AND NON-NEWTONIAN FLUIDS CONDITION 

 
Ahmed Jassim Shkarah1,* 

 
 
ABSTRACT  

We represent a conceptual scrutiny for completely organized convective heat transfer ring within the 

circular pipeline with power law liquids by means of realizing that the heat diffusivity has been a temperature 

gradient. The investigative resolution is availed and the behaviour of the heat transfer is inspected under a persistent 

thermic flux frontier condition. It has been demonstrated that the Nu stubbornly relies upon the power-law index 

n value. The Nu (Nusselt number) recognizably gets reduced in a range of n from 0 to 0.1. Nonetheless, for n 

greater than 0.5, there is a monotonic decrement in the Nu with the incremental n, and for n greater than 20, values 

of the Nu have approached a constant.  
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INTRODUCTION 

In recent time, weighable attention has been drawn by the shortcoming of how foresee a behavioural flow 

of heat transfer for non-Newtonian liquids. The key ground for this is perhaps that liquids (like slurries, molten 

plastics, emulsions, pulps, etc.) that do not abide by Newtonian, hypothesize that the stress-tensor is 

straightforwardly proportionate to the deformation-tensor, are gained industry-wise enhanced quantities and have 

been therefore, on a few occasions, simply as plausible to just get impelled in a plant as generic Newtonian liquids. 

Scholars have been striving for establishing a mathematical form so as to determine the connection between the 

deformation and stress and heat transfer appropriate to non-Newtonian liquids [1-4]. Howell et al. [5] and Barletta 

et al. [2] have experimented the heat transfer and momentum on a ceaseless poignant surface in relation with the 

power-law liquids. Many authors [6-9] have made analysis on the mixed convection typed heat transfer using a 

horizontal or vertical plate for a liquid, which is non-Newtonian; with homogeneous heat flux of the surface. 

Hussanien et al. [10] inspected on the heat transfer within a power-law liquid over a Non-isothermal widened sheet. 

According to Kumari et al.[11], the convection-free flow at border-layer of non-Newtonian liquid, the length of a 

vertical surface remains wavy. Huang and Li [12] emphasized on the completely organized convective heat transfer 

ring within a pipeline for a non-Newtonian liquid, the arithmetical models had been set up for power-law liquid, 

the Bingham liquid and Carson liquid, and the resolutions had been represented respectively. For the prime 

references that belong to the huge literature of this subject matter in non-Newtonian liquids, for example [4, 11-

15]. In above mentioned works that were cited, the power-law kinematic glueyness had been implemented solely 

to the momentum equations, while the conductivity based on heating, k yet seems to be constant. This is seemingly 

contradictory because of the fact that the glueyness change is very likely to affect both the thermic equations and 

the momentum. Throughout the whole letter, within a pipeline, a fully organized power-law non-Newtonian liquid-

based convectional heat transfer has been measured by us.  

MATHEMATICAL MODELLING 

We have proposed a thermic-centric equation replica by bearing the power-law kinematic glueyness 

effects in mind and then provide the similarity resolution. For an uncompressed power-law non-Newtonian liquid 

in cylinder-based organizes systems, its stress of shear has been typified as: 
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 and kinematic glueyness is  
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 n=1, this case keeps up a correspondence to a piece of Newtonian liquid and 0 < n < 1, this case has been the 

power-law relationship proposed like getting depictive of pseudo-plastic non-Newtonian liquids and n > 1, this 

case depicts the dilatants liquid [5, 10, 14, 16-20].  

The continuality equation as well as the equations of momentum in the circumferential and radial directions 

becomes mislaid and the equation of momentum in flow is likely to get simplified into  
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with boundary condition: 
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The coupled Eq. (3) with boundary conditions are availed to be [21]  
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and  
2m

Q
u

r
=  

The heat transformed in each unit surface zone and each unit time has been surmised by the vector of heat flux q 

(qx, qy, qz) (|J/m2 s), specified thermal capability of the isobar is surmised by cp, furthermore, the condensation ratio 

is surmised by ρ. Applying Fourier’s equation of heat, that can be get the following:  

  q = −k∇T          .                               (6) 

This equation interprets the molecular transmission of heat to be in isotropic. For little amount of temperature 

gradient, thermal conductivity is nominally utilized as an invariable, where for big temperature gradient, thermal 

conductivity has been a relational functioning with the temperature  

( )K K T=         (7) 

The dissipation’s function is: 

( ) ( )   = −                         (8) 

with: 

p
h e


= +        (9) 

and: 

dh dp
q

dt dt
 = = − + +                        (10) 

Finally, the energy equation is:  
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It has been presumed that the heat has been relocated to the flow region using the surrounding walls, therefore a 

thermal zone creates together with the speed, and the region of temperature has a speed zone character as well at 

the top Reynolds numbers. As an instance, we have implemented this presumption to the fully developed 

convectional heat transfer. On this occasion, by bearing the power-law glueyness effects and the equivalence 

between the thermal zone and velocity zone in mind, the thermal conductivity can be elected a form: 

1

( )
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                     (12) 

along with k to be a positive invariable.  

and: 
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                          (13) 

Then, in the nonexistence of the body effect, exterior pressure gradients as well as gluey indulgence, the thermic 

equation conveying energy conservation for the fully developed convectional heat transfer within a circular 

pipeline becomes able to be written as  
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with:  
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for constant wall temperature:  

wT T r R= → =             (16)  

with dimensionless form:  
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But 0
x
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
 for fully developed flow in tube, so Eq. (17) become: 
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and then for constant wall temperature:  
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We can define the mean temperature as:  
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for heat flux: 
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Then we get:  
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By solving Eq(14) with Eq(5) ,Eq(19) and Eq(12) we can get : 

1
1 1

1 3 1
1

1

n
n n

n
w m

m

m w p p

T T dTn r T T k T T
u r r

n R T T dx c r r r c r r r r 

+
+ −                           

−+      
− = =

+ −      
(23) 

with boundary conditions:  
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We integrate Eq. (23) by applying boundary conditions on Eq. (24) and for special case for n=1 we can find the 

Temperature profile as fully developed flow and heat transfer: 
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For Nusselt number: 
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where 
y

b
 =  

We solve Eq. (26) numerically as on table 1  

Table 1. Nusselt number 

n Nu 

0.001 633.333 

0.01 65.877 

0.05 15.787 

0.1 9.59 

1.0 4.565 

1.4 4.234 

1.9 4.176 

5.0 4.058 
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RESULTS & DISCUSSION   
It is familiar to us that for fully developed convectional heat transfer for Newtonian liquid, The Nu 

becomes an invariable, Nu≈4.464 for invariable heat flux q=qw. Nonetheless, for a power-law non-Newtonian 

liquid, the common Nu becomes a power-law index function and at the same time it is stubbornly reliant upon the 

value of n. Table 1 signifies that Nu has been a lessening function of n. We find it to be clear that Nu has a sharp 

decrement in the range of 0<n<1. Nevertheless, for n>0.5, Nu gets reduced monotonically with increased n and in 

appropriation with the power-law index, n≥20, the Nu value has approached an invariable, which is asymptotic as 

in Figure 1. 

 
Figure 1. Nusselt number with n 

CONCLUSION 

The issue of constrained convection in regards to the Heat transfer, with gluey dissemination inside a 

pipeline, which subjects to determined divider temperature, is settled scientifically that has been a sort of Graetz 

issue. Full diagnostic goals for the fluid temperature just as nearby Nu (Nusselt number) have been profited. The 

effect of the Br and the rheological power-law list (properties) upon nearby Nu profile are exhibited through 

numerical measurements. The neighbourhood Nu in heat zone is going to develop with a decrement in a list of 

intensity law reproduction (n). It uncovered the gluey dispersal inside a fluid is probably going to surprisingly 

make sway on laminar flow heat transfer. 

NOMENCLATURE  

Cp  specific heat 

h  local heat transfer coefficient 

n  power-law model parameter 

Nu  local Nusselt number 

r  radial coordinate 

R  pipe radius 

T     fluid temperature (K) 

u     axial fluid velocity (m/s) 

um      mean axial fluid velocity (m/s) 

qw   constant heat flux 
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