

# ACHROMATIC COLORING OF QUADRILATERAL SNAKES

Akhlak Mansuri(🖂)<sup>1</sup>, Yashwant K Panwar<sup>2</sup>

<sup>1</sup>Department Of Mathematics, Govt. Girls College, Mandsaur-India <sup>2</sup>Department of Mathematics, Govt. Model College, Jhabua-India

Research Article Received: 16.02.2021/Accepted: 30.04.2021 (🖂) Corresponding author: akhlaakmansuri@gmail.com

## ABSTRACT

The main objective of this article is to discuss achromatic coloring and to investigate the

achromatic number of the central graph of k-quadrilateral and k-alternate quadrilateral

snakes that is  $\chi_a(C(kQ_n)) = 2k(n-1) + 1$  and  $\chi_a(C(k(AQ_n))) = \frac{n(4k-1)}{2}$ .

**Keywords:** Achromatic coloring; Achromatic number; Central graph; Quadrilateral and alternate quadrilateral snakes.

# ÖZET

Bu makalenin temel amacı, akromatik renklendirmeyi tartışmak ve k-dörtgen ve k-alternatif dörtgen yılanların merkez grafiğinin akromatik sayısını yani  $\chi_a(C(kQ_n)) = 2k(n-1) + 1$  ve  $\chi_a(C(k(AQ_n))) = \frac{n(4k-1)}{2}$ . araştırmaktır.

<u>Anahtar Kelimeler</u>: Akromatik renklendirme, Akromatik sayı, Merkezi grafik, Dörtgen ve alternatif dörtgen yılanlar.

## 1. Introduction

The achromatic coloring [1, 4, 8, 9, 14, 15] is kind of proper vertex coloring of a graph G in which every pair of different colors are adjacent by at least one edge and the largest number of colors are required for achromatic coloring is called achromatic number, denoted by  $\chi_a(G)$ . For a given graph G = (V, E) by subdividing each edge exactly once and joining all the non-adjacent vertices of G, obtained graph is called central graph [1, 4, 15] of G denoted by C(G). A quadrilateral snake  $Q_n$  [5, 10, 11, 12, 13] is obtained from a path  $u_1, u_2, ..., u_n$  by joining  $u_i$  and  $u_{i+1}$  to new vertices  $v_i$  and  $w_i$  respectively and adding edges  $v_i w_i$  for  $(1 \le i \le n - 1)$ . That is every edge of a path is replaced by a cycle  $C_4$ . In this article we investigate the achromatic number of the central graph of quadrilateral snake, double quadrilateral snake, triple quadrilateral snake, k –quadrilateral snake (k –quadrilateral snake, double alternate quadrilateral snakes with a common path), alternate quadrilateral snake, double alternate quadrilateral snake graph  $k(AQ_n)$  consists of kalternate quadrilateral snake with a common path), denoted by  $\chi_a(C(Q_n))$ ,  $\chi_a(C(kQ_n))$ ,  $\chi_a(C(TQ_n))$ ,  $\chi_a(C(kQ_n))$ ,  $\chi_a(C(AQ_n))$ ,  $\chi_a(C(D(AQ_n)))$ ,  $\chi_a(C(T(AQ_n)))$ ,  $\chi_a(C(k(AQ_n)))$ ) respectively.

Throughout the paper we consider n as the number of vertices of the path  $P_n$ .

#### 2. Definitions

**Definition 2.1.** A quadrilateral snake  $Q_n$  [5, 10, 11, 12, 13] is obtained from a path  $u_1, u_2, ..., u_n$  by joining  $u_i$  and  $u_{i+1}$  to new vertices  $v_i$  and  $w_i$  respectively and adding edges  $v_i w_i$  for  $(1 \le i \le n - 1)$ . That is every edge of a path is replaced by a cycle  $C_4$ .

**Definition 2.2.** A double quadrilateral snake  $D(Q_n)$  [5, 10, 11, 12, 13] consists of two quadrilateral snakes that have a common path. That is, a double quadrilateral snake is obtained from a path  $u_1, u_2, ..., u_n$  by joining  $u_i$  and  $u_{i+1}$  to new vertices  $v_i, x_i$  and  $w_i, y_i$  and then joining  $v_i$  and  $w_i, x_i$  and  $y_i$  for  $(1 \le i \le n - 1)$ .

**Definition 2.3.** A triple quadrilateral snake  $T(Q_n)$  [5, 11, 12, 13] is obtained from a path  $u_1, u_2, ..., u_n$  by joining  $u_i$  and  $u_{i+1}$  to a new vertex  $v_i, x_i, p_i$  and  $w_i, y_i, q_i$  and then joining  $v_i$  and  $w_i, x_i$  and  $y_i, p_i$  and  $q_i$  for  $(1 \le i \le n - 1)$ .

**Definition 2.4.** An alternate quadrilateral snake  $AQ_n$  [5, 12, 13] is obtained from a path  $u_1, u_2, ..., u_n$  by joining  $u_i$  and  $u_{i+1}$  (alternatively) to new vertices  $v_i$  and  $w_i$  respectively and

adding edges  $v_i w_i$  for  $(1 \le i \le n - 1)$ . That is every alternate edge of a path is replaced by a cycle  $C_4$ .

**Definition 2.5.** A double alternate quadrilateral snake  $D(AQ_n)$  [5, 11, 12, 13] is obtained from a path  $u_1, u_2, ..., u_n$  by joining  $u_i$  and  $u_{i+1}$  (alternatively) to new vertices  $v_i, x_i$  and  $w_i, y_i$  and then joining  $v_i$  and  $w_i, x_i$  and  $y_i$  for  $(1 \le i \le n - 1)$ .

**Definition 2.6.** A triple alternate quadrilateral snake  $T(AQ_n)$  [5, 11, 12, 13] is obtained from a path  $u_1, u_2, ..., u_n$  by joining  $u_i$  and  $u_{i+1}$  (alternatively) to a new vertex  $v_i, x_i, p_i$  and  $w_i, y_i, q_i$  and then joining  $v_i$  and  $w_i, x_i$  and  $y_i, p_i$  and  $q_i$  for  $(1 \le i \le n - 1)$ .

## **3.** Achromatic number of $C(Q_n)$ , $D(Q_n)$ , $T(Q_n)$

**Theorem 3.1.** For quadrilateral snake  $Q_n$ , the achromatic number,  $\chi_a(C(Q_n)) = 2n, n \ge 2$ .

**Proof.** Let  $P_n$  be the path with n vertices  $u_1, u_2, ..., u_n$  and  $Q_n$  be the quadrilateral snake. To obtain central graph, let each edge  $u_i u_{i+1}$ ,  $u_i v_i$ ,  $u_i w_i$  and  $v_i w_i$   $(1 \le i \le n-1)$  of  $Q_n$  be subdivided by the vertices  $e_i, e'_i, l'_i$  and  $l''_i$   $(1 \le i \le n-1)$ .  $V(C(Q_n)) = \{u_i: 1 \le i \le n\} \cup \{v_i, w_i: 1 \le i \le n-1\} \cup \{e_i, e'_i: 1 \le i \le n-1\} \cup \{l'_i, l''_i: 1 \le i \le n-1\}$ . Now coloring the vertices of  $C(Q_n)$  as follows: define  $c: V(C(Q_n)) \to \{1, 2, 3, ..., 2n\}$  for  $n \ge 2$  by  $c(u_i) = 2i - 1$  for  $(1 \le i \le n)$  and  $c(v_i) = 2i - 1$ ,  $c(w_i) = 2i$ ,  $c(e'_i) = 2n - 2$ ,  $c(e_i) = 2n$ ,  $c(l'_i) = 2n$ ,  $c(l''_i) = 2n$  for  $(1 \le i \le n)$ .

**Claim 1:** *c* is proper; from above each  $c(u_i), c(v_i), c(w_i)$  and its neighbors are assigned by different colors. Hence it is proper coloring.

**Claim 2:** *c* is achromatic; it is clear that every pair of different colors is assigned by at least one edge, so achromatic. Figure 1 shows the achromatic coloring for  $C(Q_3)$ .



**Figure 1.**  $C(Q_n)$  with coloring,  $\chi_a(C(Q_3)) = 6$ .

Claim 3: *c* is maximum. Case (*i*): all the vertices are colored by 2n colors. Now if we assign  $(2n + 1)^{th}$  color on any vertex, then we lead to contradict the achromatic coloring. Therefore, it is maximum. Case (*ii*): Assume that the adjacent vertices of  $u_i, v_i$  and  $w_i$  are assigned by the  $(2n + 1)^{th}$  color, again we get a contradiction. Therefore, the maximum number of colors are required for this coloring is 2n. Therefore, c is maximum. Hence  $\chi_a(C(Q_n)) = 2n$ .

**Theorem 3.2.** For double quadrilateral snake  $DQ_n$ , achromatic number,  $\chi_a(C(DQ_n)) = 4 n - 3, n \ge 2$ .

**Proof.** Let  $P_n$  be the path with n vertices  $u_1, u_2, ..., u_n$  and  $DQ_n$  be the double quadrilateral snake. Now we obtain the central graph as described in theorem 3.1, therefore  $V(C(DQ_n)) = \{u_i: 1 \le i \le n\} \cup \{v_i, w_i: 1 \le i \le n-1\} \cup \{x_i, y_i: 1 \le i \le n-1\} \cup \{e'_i, e''_i, e''_i, e_i, : 1 \le i \le n-1\} \cup \{l'_i, l''_i: 1 \le i \le n-1\} \cup \{m'_i, m''_i: 1 \le i \le n-1\}$ . Now coloring the vertices of  $C(DQ_n)$  as follows: define  $c: V(C(DQ_n)) \rightarrow \{1, 2, 3, ..., 4n - 3\}$  for  $n \ge 2$  by  $c(u_i) = 1, c(u_n) = n, c(v_i) = 2i - 1, c(w_i) = 2i, c(x_i) = 2n + 2i - 3, c(y_i) = 2n + 2i - 2, c(e_i) = c(e'_i) = c(e''_i) = 4n - 3, c(l''_i) = c(v_i), c(l'_i) = c(w_i), c(m''_i) = c(x_i), c(e'_i) = c(y_i)$  and at last  $c(u_{i+1}) = c(w_i)$  for  $(1 \le i \le n-1)$ . Figure 2 shows the achromatic coloring for  $C(DQ_3)$ . To prove c is achromatic and maximum, follow theorem 3.1. Mansuri A,. Panwar Y.K., (2021). A Chromatic Coloring of Quadrilateral Snakes, Journal of Amasya University the Institute of Sciences and Technology, 2(1), 1-10



**Figure 2.**  $C(DQ_3)$ . with coloring,  $\chi_a(C(DQ_3)) = 49$ .

**Theorem 3.3.** For triple quadrilateral snake  $TQ_n$ , the achromatic number,  $\chi_a(C(TQ_n)) = 6n - 5, n \ge 2$ .

**Proof.** Let  $P_n$  be the path with n vertices  $u_1, u_2, ..., u_n$  and  $TQ_n$  be the triple quadrilateral snake. Now we obtain the central graph as described in theorem 3.1, therefore  $V(C(TQ_n)) = \{u_i: 1 \le i \le n\}$  $U \{v_i, w_i: 1 \le i \le n-1\}$   $U \{x_i, y_i: 1 \le i \le n-1\}$   $U \{p_i, q_i: 1 \le i \le n-1\}$  $U\{e_i, e'_i, e''_i, e'''_i: 1 \le i \le n-1\}$   $U \{l'_i, l''_i: 1 \le i \le n-1\}$   $U \{m'_i, m''_i: 1 \le i \le n-1\}$   $U \{z'_i, z''_i: 1 \le i \le n-1\}$   $U \{l'_i, l''_i: 1 \le i \le n-1\}$   $U \{m'_i, m''_i: 1 \le i \le n-1\}$   $U \{z'_i, z''_i: 1 \le i \le n-1\}$ . Now coloring the vertices of  $C(TQ_n)$  as follows: define  $c: V(C(TQ_n)) \rightarrow \{1, 2, 3, ..., 6n-5\}$  for  $n \ge 2$ by  $c(u_1) = 1$ ,  $c(u_n) = n$ ,  $c(v_i) = 2i - 1$ ,  $c(w_i) = 2i$ ,  $c(x_i) = 2n + 2i - 3$ ,  $c(y_i) = 2n + 2i - 2$ ,  $c(p_i) = 4n + 2i - 5$ ,  $c(q_i) = 4n + 2i - 4$ ,  $c(e_i) = c(e'_i) = c(e''_i) = 6n - 5$ ,  $c(l''_i) = c(w_i)$ ,  $c(m''_i) = c(x_i)$ ,  $c(e'_i) = c(y_i)$ ,  $c(z''_i) = c(p_i)$ ,  $c(z'_i) = c(q_i)$  and at last  $c(u_{i+1}) = c(w_i)$  for  $(1 \le i \le n - 1)$ . Figure 3 shows the achromatic coloring for  $C(TQ_3)$ . To prove c is achromatic and maximum, follow theorem 3.1. Mansuri A,. Panwar Y.K., (2021). A Chromatic Coloring of Quadrilateral Snakes, Journal of Amasya University the Institute of Sciences and Technology, 2(1), 1-10



**Figure 3.**  $C(TQ_3)$  with coloring,  $\chi_a(C(TQ_3))=13$ .

#### 4. Achromatic Number of k-Quadrilateral Snake

**Theorem 4.1.** For k-quadrilateral snake  $kQ_n$ , the achromatic number,  $\chi_a(C(kQ_n)) = 2k(n-1) + 1$  for  $n, k \ge 2$ .

**Proof.** By continuing in the same manner as discussed in theorem 3.1, 3.2 and 3.3, it is easy to conclude that the achromatic number of the central graph of k –quadrilateral snake is 2k(n-1) + 1 for  $k \ge 2$ , where k denotes the quadrilateral snakes like double, triple etc.

#### **5.** Achromatic Number of $C(AQ_n)$ , $D(AQ_n)$ , $T(AQ_n)$

**Theorem 5.1.** For alternate quadrilateral snake  $AQ_n$ , the achromatic number,  $\chi_a(C(AQ_n)) = \frac{3n}{2}$ , where *n* is even and  $n \ge 4$ .

**Proof.** Let  $P_n$  be the path with n vertices  $u_1, u_2, ..., u_n$  and  $AQ_n$  be an alternate quadrilateral snake. Now we obtain the central graph as described in theorem 3.1, therefore  $V(C(AQ_n)) = \{u_i: 1 \le i \le n\} \cup \{v_i, w_i: (1 \le i \le \frac{n}{2})\} \cup \{e_i: (1 \le i \le n-1)\} \cup \{e_i': (1 \le i \le \frac{n}{2})\} \cup \{l_i', l_1'': (1 \le i \le \frac{n}{2})\}$ . Now coloring the vertices of  $C(AQ_n)$  as follows : define  $c: V(C(AQ_n)) \rightarrow \{1, 2, 3, ..., \frac{3n}{2}\}$  for  $n \ge 4$ by  $c(u_1) = 1, c(u_n) = n, c(v_i) = 2i - 1, c(w_i) = 2i, c(e_i) = n + 1, c(e_i') = n + 1$  for  $(1 \le i \le \frac{n}{2}),$  $c(u_i) = n + 1 + \frac{i}{2}$  (i = 2, 4, 6, ..., n - 2) and  $c(u_i) = n + 1 + \frac{i-1}{2}$  (i = 3, 5, 7, ..., n - 1) and  $c(l_i'') = 1$   $c(v_i), c(l'_i) = c(w_i)$  for  $(1 \le i \le \frac{n}{2})$ . Figure 4 shows the coloring of  $C(AQ_4)$ . To prove *c* is achromatic and maximum, follow theorem 3.1.



**Figure 4.**  $C(AQ_4)$  with coloring,  $\chi_a(C(AQ_n)) = 6$ .

**Theorem 5.2.** For double alternate quadrilateral snake  $D(AQ_n)$ , the achromatic number,  $\chi_a(C(D(AQ_n))) = \frac{5n}{2}$ , where *n* is even and  $n \ge 4$ .

**Proof.** Let  $P_n$  be the path with n vertices  $u_1, u_2, ..., u_n$  and  $D(AQ_n)$  be the double alternate quadrilateral snake. Now we obtain the central graph as described in theorem 3.1, therefore  $V(C(D(AQ_n))) = \{u_i: 1 \le i \le n\} \cup \{v_i, w_i: (1 \le i \le \frac{n}{2})\} \cup \{x_i, y_i: (1 \le i \le \frac{n}{2})\} \{e_i: (1 \le i \le n-1)\} \cup \{e_i', e_i'': (1 \le i \le \frac{n}{2})\} \cup \{l_i', l_1'': (1 \le i \le \frac{n}{2})\} \cup \{m_i', m_1'': (1 \le i \le \frac{n}{2})\}$ . Now coloring the vertices of  $C(D(AQ_n))$  as follows: define  $c: V(C(D(AQ_n))) \rightarrow \{1, 2, 3, ..., \frac{5n}{2}\}$  for  $n \ge 4$  by  $c(u_1) = 1$ ,  $c(u_n) = n$ ,  $c(v_i) = 2i - 1$ ,  $c(w_i) = 2i$ ,  $c(x_i) = n + 2i - 1$ ,  $c(y_i) = n + 2i$  for  $(1 \le i \le \frac{n}{2})$ ,  $c(e_i) = 2n + 1$  (i = 1, 3, 5, ...),  $c(e_i) = i$  ( $i = 2, 4, 6, ..., \frac{n}{2} - 1$ ),  $c(e_i') = c(e_i'') = 2n + 1$  for  $(1 \le i \le \frac{n}{2})$ ,  $c(u_i) = 2n + 1 + \frac{i}{2}$  (i = 2, 4, 6, ..., n - 2) and  $c(u_i) = 2n + 1 + \frac{i-1}{2}$  (i = 3, 5, 7, ..., n - 1) and at last  $c(l_i'') = c(v_i)$ ,  $c(l_i') = c(w_i)$ ,  $c(m_i') = c(x_i)$ ,  $c(m_i') = c(y_i)$  for  $(1 \le i \le \frac{n}{2})$ . Figure 5 shows the coloring of  $C(D(AQ_4))$ . To prove c is achromatic and maximum, follow theorem 3.1.

Mansuri A,. Panwar Y.K., (2021). A Chromatic Coloring of Quadrilateral Snakes, Journal of Amasya University the Institute of Sciences and Technology, 2(1), 1-10



**Figure 5.**  $C(D(AQ_4))$  with coloring,  $\chi_a(C(D(AQ_4))) = 10$ 

**Theorem 5.3.** For triple alternate quadrilateral snake  $T(AQ_n)$ , the achromatic number,  $\chi_a(C(T(AQ_n))) = \frac{7n}{2}$ , where *n* is even and  $n \ge 4$ .

**Proof.** Let  $P_n$  be the path with n vertices  $u_1, u_2, ..., u_n$  and  $T(AQ_n)$  be the triple alternate quadrilateral snake. Now we obtain the central graph as described in theorem 3.1, therefore  $V(C(T(AQ_n))) = \{u_i: 1 \le i \le n\} \cup \{v_i, w_i, x_i, y_i, p_i, q_i: (1 \le i \le \frac{n}{2})\} \{e_i: (1 \le i \le n-1)\} \cup \{e'_i, e''_i, e'''_i: (1 \le i \le \frac{n}{2})\} \cup \{l_i, l'_i, l''_1: (1 \le i \le \frac{n}{2})\} \cup \{m'_i, m''_1, m''_1: (1 \le i \le \frac{n}{2})\}$ . Now coloring the vertices of  $C(T(AQ_n))$  as follows; define  $c: V(C(T(AQ_n))) \to \{1, 2, 3, ..., \frac{7n}{2}\}$  for  $n \ge 4$  by  $c(u_1) = 1, c(u_n) = n, c(v_i) = 2i - 1, c(w_i) = 2i, c(x_i) = n + 2i - 1, c(y_i) = n + 2i, c(p_i) = 2n + 2i - 1, c(q_i) = 2n + 2i$  for  $(1 \le i \le \frac{n}{2}), c(e_i) = 3n + 1$  (i = 1, 3, 5, ...),  $c(e_i) = i$  ( $i = 2, 4, 6, ..., \frac{n}{2} - 1$ ),  $c(e'_i) = c(e''_i) = c(e''_i) = 3n + 1$  for  $(1 \le i \le \frac{n}{2}), c(u_i) = 3n + 1 + \frac{i-1}{2}$  (i = 2, 4, 6, ..., n - 2) and  $c(u_i) = 3n + 1 + \frac{i-1}{2}$  (i = 3, 5, 7, ..., n - 1) and at last  $c(l''_i) = c(v_i), c(l'_i) = c(w_i), c(m'_i) = c(x_i), c(m'_i) = c(y_i), c(m_i) = c(p_i), c(l_i) = c(q_i)$  for  $(1 \le i \le \frac{n}{2})$ . To prove c is achromatic and maximum, follow theorem 3.1. Figure 6 shows the coloring of  $C(T(AQ_a))$ .

Mansuri A,. Panwar Y.K., (2021). A Chromatic Coloring of Quadrilateral Snakes, Journal of Amasya University the Institute of Sciences and Technology, 2(1), 1-10



**Figure 6.**  $C(T(AQ_4))$  with coloring,  $\chi_a(C(T(AQ_n))) = 14$ .

#### 6. Achromatic Number of k-Alternate Quadrilateral Snake

**Theorem 6.1.** For k – quadrilateral snake  $kQ_n$ , the achromatic number,  $\chi_a C((kAQ_n)) = \frac{n(4k-1)}{2}$ , where *n* is even and  $n \ge 4$ .

**Proof.** By continuing in the same manner as discussed in theorems 5.1, 5.2 and 5.3, it is easy to conclude that the achromatic number of the central graph of k –alternate quadrilateral snake is  $\frac{n(4k-1)}{2}$ .

## 7. Conclusion

We obtain the achromatic number of the central graph of k-quadrilateral and k-alternate quadrilateral snakes that is  $\chi_a C((kQ_n)) = 2k(n-1) + 1$  and  $\chi_a C((kAQ_n)) = \frac{n(4k-1)}{2}$ . For motivation and future scope, we can examine the different type of colorings for these quadrilateral snakes.

## Acknowledgement

Authors are very thankful to the anonymous referees for their valuable suggestions that improved in this paper.

#### References

- [1]. Aparna, K. M., Correya, H. & Manjusha (2018). Achromatic Number of Some Graphs, *International Journal of Pure and Applied Mathematics*, 18(20), 941- 949.
- [2]. Agasthi, P. & Parvathi, N. (2018). Some Labeling of Quadrilateral Snake, *International Journal of Pure and Applied Mathematics*, 119(12), 2975-2992.
- [3]. Bondy, J. A. & U.S.R. Murty (1976). Graph theory with Applications, London: MacMillan,
- [4].Chandel, R. S., Mansuri, A. & Mehta, R. (2014). Study on Achromatic Coloring of Triple Star Graph Families, JP Journal of Mathematical Sciences, 10(1 & 2), 7-16.
- [5].Gallian, J. A. (2019). *A Dynamic survey of graph labeling*, The electronic Journal of Combinatorics.
- [6].Gopi, R. (2016). Odd sum labeling of alternative quadrilateral snake, *Int. J. EnginSci., Adv. Comput. and Bio-Tech.*, 7(3), 73-77.
- [7]. Harary, F. (2001). Graph Theory, Narosa Publishing House.
- [8].Harary, F. & Hedetniemi, S.T. (1970). The achromatic number of a graph, *Journal of Combinatorial Theory*, (8), 154-161.
- [9].Hell, P. & Miller, D. J. (1976). Graph with given Achromatic number, *Discrete Mathematics*, (16), 195-207.
- [10]. Ponraj R. & Narayanan, S. S. (2014). Difference Cordiality of Some Snake Graphs, J. Appl. Math. & Informatics, 32(3-4), 377-387.
- [11]. Ponraj R. & Narayanan, S. S. (2013). Difference Cordiality of Some Snake Graphs obtained from double alternate snake graphs, *Global J. Math. Sciences: Theory and Practical*, (5), 167-175.
- [12]. Sandhya, S. S., Merly, E. R. & Shiny, B. (2015). Subdivision of super geometric mean labeling for quadrilateral snake graphs, *Internat. J. Math. Trends Tech.*, 24(1), 1-16.
- [13]. Sandhya, S. S., Merly, E. R. & Shiny, B. (2015). Super geometric mean labeling on doublequadrilateral snake graphs, *Asian Pacific J. Res.*, 1(XXI) 128-135.
- [14]. Thilagavthi, K. Thilagavathy, K.P. & Roopesh, N. (2009). The achromatic colouring of graphs, *Discrete Mathematics*, (33), 153-156.
- [15]. Vivin, J. V., Venkatachalam, M. & Akbar, M.M.A. (2009). A note on achromatic coloring of star graph families, *Filomat*, (23), 251-255.