ACHROMATIC COLORING OF QUADRILATERAL SNAKES

Akhlak Mansuri($\left.{ }^{(\boxed{ })}\right)^{1}$, Yashwant K Panwar ${ }^{2}$
${ }^{1}$ Department Of Mathematics, Govt. Girls College, Mandsaur-India
${ }^{2}$ Department of Mathematics, Govt. Model College, Jhabua-India

Research Article

Received: 16.02.2021/Accepted: 30.04.2021
(\boxtimes) Corresponding author: akhlaakmansuri@gmail.com

Abstract

The main objective of this article is to discuss achromatic coloring and to investigate the achromatic number of the central graph of k-quadrilateral and k-alternate quadrilateral snakes that is $\chi_{a}\left(C\left(k Q_{n}\right)\right)=2 k(n-1)+1$ and $\chi_{a}\left(C\left(k\left(A Q_{n}\right)\right)\right)=\frac{n(4 k-1)}{2}$.

Keywords: Achromatic coloring; Achromatic number; Central graph; Quadrilateral and alternate quadrilateral snakes.

ÖZET

Bu makalenin temel amacı, akromatik renklendirmeyi tartışmak ve k-dörtgen ve k-alternatif dörtgen yılanların merkez grafığinin akromatik sayısını yani $\chi_{a}\left(C\left(k Q_{n}\right)\right)=2 k(n-1)+1$ ve $\chi_{a}\left(C\left(k\left(A Q_{n}\right)\right)\right)=\frac{n(4 k-1)}{2}$. araştırmaktır.

Anahtar Kelimeler: Akromatik renklendirme, Akromatik sayı, Merkezi grafik, Dörtgen ve alternatif dörtgen yılanlar.

1. Introduction

The achromatic coloring $[1,4,8,9,14,15]$ is kind of proper vertex coloring of a graph G in which every pair of different colors are adjacent by at least one edge and the largest number of colors are required for achromatic coloring is called achromatic number, denoted by $\chi_{a}(G)$. For a given graph $G=(V, E)$ by subdividing each edge exactly once and joining all the non-adjacent vertices of G , obtained graph is called central graph $[1,4,15]$ of G denoted by $C(G)$. A quadrilateral snake $Q_{n}[5,10,11,12,13]$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to new vertices v_{i} and w_{i} respectively and adding edges $v_{i} w_{i}$ for $(1 \leq i \leq n-1)$. That is every edge of a path is replaced by a cycle C_{4}. In this article we investigate the achromatic number of the central graph of quadrilateral snake, double quadrilateral snake, triple quadrilateral snake, k-quadrilateral snake (k-quadrilateral snake graph $k\left(Q_{n}\right)$ consists of k quadrilateral snakes with a common path), alternate quadrilateral snake, double alternate quadrilateral snake, triple alternate quadrilateral snake and k-alternate quadrilateral snake (k-alternate quadrilateral snake graph $k\left(A Q_{n}\right)$ consists of k alternate quadrilateral snakes with a common path), denoted by $\chi_{a}\left(C\left(Q_{n}\right)\right), \chi_{a}\left(C\left(D Q_{n}\right)\right)$, $\chi_{a}\left(C\left(T Q_{n}\right)\right), \chi_{a}\left(C\left(k Q_{n}\right)\right), \chi_{a}\left(C\left(A Q_{n}\right)\right), \chi_{a}\left(C\left(D\left(A Q_{n}\right)\right)\right), \chi_{a}\left(C\left(T\left(A Q_{n}\right)\right)\right), \chi_{a}\left(C\left(k\left(A Q_{n}\right)\right)\right)$ respectively.
Throughout the paper we consider n as the number of vertices of the path P_{n}.

2. Definitions

Definition 2.1. A quadrilateral snake $Q_{n}[5,10,11,12,13]$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to new vertices v_{i} and w_{i} respectively and adding edges $v_{i} w_{i}$ for $(1 \leq i \leq n-$ $1)$. That is every edge of a path is replaced by a cycle C_{4}.
Definition 2.2. A double quadrilateral snake $D\left(Q_{n}\right)[5,10,11,12,13]$ consists of two quadrilateral snakes that have a common path. That is, a double quadrilateral snake is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to new vertices v_{i}, x_{i} and w_{i}, y_{i} and then joining v_{i} and w_{i}, x_{i} and y_{i} for $(1 \leq i \leq n-1)$.
Definition 2.3. A triple quadrilateral snake $T\left(Q_{n}\right)[5,11,12,13]$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to a new vertex v_{i}, x_{i}, p_{i} and w_{i}, y_{i}, q_{i} and then joining v_{i} and w_{i}, x_{i} and y_{i}, p_{i} and q_{i} for $(1 \leq i \leq n-1)$.
Definition 2.4. An alternate quadrilateral snake $A Q_{n} \quad[5,12,13]$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} (alternatively) to new vertices v_{i} and w_{i} respectively and
adding edges $v_{i} w_{i}$ for $(1 \leq i \leq n-1)$. That is every alternate edge of a path is replaced by a cycle C_{4}.

Definition 2.5. A double alternate quadrilateral snake $D\left(A Q_{n}\right)[5,11,12,13]$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} (alternatively) to new vertices v_{i}, x_{i} and w_{i}, y_{i} and then joining v_{i} and w_{i}, x_{i} and y_{i} for $(1 \leq i \leq n-1)$.
Definition 2.6. A triple alternate quadrilateral snake $T\left(A Q_{n}\right)[5,11,12,13]$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} (alternatively) to a new vertex v_{i}, x_{i}, p_{i} and w_{i}, y_{i}, q_{i} and then joining v_{i} and w_{i}, x_{i} and y_{i}, p_{i} and q_{i} for $(1 \leq i \leq n-1)$.
3. Achromatic number of $C\left(Q_{n}\right), D\left(Q_{n}\right), T\left(Q_{n}\right)$

Theorem 3.1. For quadrilateral snake Q_{n}, the achromatic number, $\chi_{a}\left(C\left(Q_{n}\right)\right)=2 n, n \geq 2$.
Proof. Let P_{n} be the path with n vertices $u_{1}, u_{2}, \ldots, u_{n}$ and Q_{n} be the quadrilateral snake. To obtain central graph, let each edge $u_{i} u_{i+1}, u_{i} v_{i}, u_{i} w_{i}$ and $v_{i} w_{i}(1 \leq i \leq n-1)$ of Q_{n} be subdivided by the vertices $e_{i}, e_{i}^{\prime}, l_{i}^{\prime}$ and $l_{i}^{\prime \prime}(1 \leq i \leq n-1) . V\left(C\left(Q_{n}\right)\right)=\left\{u_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i}, w_{i}\right.$: $1 \leq i \leq n-1\} \cup\left\{e_{i}, e_{i}^{\prime}: 1 \leq i \leq n-1\right\} \cup\left\{l_{i}^{\prime}, l_{i}^{\prime \prime}: 1 \leq i \leq n-1\right\}$. Now coloring the vertices of $C\left(Q_{n}\right)$ as follows: define $c: V\left(C\left(Q_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 2 n\}$ for $n \geq 2$ by $c\left(u_{i}\right)=2 i-1$ for $(1 \leq$ $i \leq n)$ and $c\left(v_{i}\right)=2 i-1, c\left(w_{i}\right)=2 i, c\left(e_{i}^{\prime}\right)=2 n-2, c\left(e_{i}\right)=2 n, c\left(l_{i}^{\prime}\right)=2 n, c\left(l_{i}^{\prime \prime}\right)=2 n$ for $(1 \leq i \leq n)$.

Claim 1: c is proper; from above each $c\left(u_{i}\right), c\left(v_{i}\right), c\left(w_{i}\right)$ and its neighbors are assigned by different colors. Hence it is proper coloring.

Claim 2: c is achromatic; it is clear that every pair of different colors is assigned by at least one edge, so achromatic. Figure 1 shows the achromatic coloring for $C\left(Q_{3}\right)$.

Figure 1. $C\left(Q_{n}\right)$ with coloring, $\chi_{a}\left(C\left(Q_{3}\right)\right)=6$.
Claim 3: $\quad c$ is maximum. Case (\boldsymbol{i}): all the vertices are colored by $2 n$ colors. Now if we assign $(2 n+1)^{\text {th }}$ color on any vertex, then we lead to contradict the achromatic coloring. Therefore, it is maximum. Case (ii): Assume that the adjacent vertices of u_{i}, v_{i} and w_{i} are assigned by the $(2 n+1)^{\text {th }}$ color, again we get a contradiction. Therefore, the maximum number of colors are required for this coloring is $2 n$. Therefore, c is maximum. Hence $\chi_{a}\left(C\left(Q_{n}\right)\right)=2 n$.

Theorem 3.2. For double quadrilateral snake $D Q_{n}$, achromatic number, $\chi_{a}\left(C\left(D Q_{n}\right)\right)=4 n-3, n \geq$ 2.

Proof. Let P_{n} be the path with n vertices $u_{1}, u_{2}, \ldots, u_{n}$ and $D Q_{n}$ be the double quadrilateral snake. Now we obtain the central graph as described in theorem 3.1, therefore $V\left(C\left(D Q_{n}\right)\right)==\left\{u_{i}: 1 \leq\right.$ $i \leq n\} \cup\left\{v_{i}, w_{i}: 1 \leq i \leq n-1\right\} \cup\left\{\left\{x_{i}, y_{i}: 1 \leq i \leq n-1\right\} \cup\left\{e_{i}^{\prime}, e_{i}^{\prime \prime}, e_{i}: 1 \leq i \leq n-1\right\} \cup\right.$ $\left\{l_{i}^{\prime}, l_{i}^{\prime \prime}: 1 \leq i \leq n-1\right\} \cup\left\{m_{i}^{\prime}, m_{i}^{\prime \prime}: 1 \leq i \leq n-1\right\}$. Now coloring the vertices of $C\left(D Q_{n}\right)$ as follows: define $c: V\left(C\left(D Q_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 4 n-3\}$ for $n \geq 2$ by $c\left(u_{i}\right)=1, c\left(u_{n}\right)=n, c\left(v_{i}\right)=$ $2 i-1, c\left(w_{i}\right)=2 i, c\left(x_{i}\right)=2 n+2 i-3, c\left(y_{i}\right)=2 n+2 i-2, c\left(e_{i}\right)=c\left(e_{i}^{\prime}\right)=c\left(e_{i}^{\prime \prime}\right)=4 n-3$, $c\left(l_{i}^{\prime \prime}\right)=c\left(v_{i}\right), c\left(l_{i}^{\prime}\right)=c\left(w_{i}\right), c\left(m_{i}^{\prime \prime}\right)=c\left(x_{i}\right), c\left(e_{i}^{\prime}\right)=c\left(y_{i}\right)$ and at last $c\left(u_{i+1}\right)=c\left(w_{i}\right)$ for $(1 \leq i \leq$ $n-1)$. Figure 2 shows the achromatic coloring for $C\left(D Q_{3}\right)$. To prove c is achromatic and maximum, follow theorem 3.1.

Figure 2. $C\left(D Q_{3}\right)$. with coloring, $\chi_{a}\left(C\left(D Q_{3}\right)\right)=49$.

Theorem 3.3. For triple quadrilateral snake $T Q_{n}$, the achromatic number, $\chi_{a}\left(C\left(T Q_{n}\right)\right)=6 n-5, n$ ≥ 2.

Proof. Let P_{n} be the path with n vertices $u_{1}, u_{2}, \ldots, u_{n}$ and $T Q_{n}$ be the triple quadrilateral snake. Now we obtain the central graph as described in theorem 3.1, therefore $V\left(C\left(T Q_{n}\right)\right)=\left\{u_{i}: 1 \leq i \leq\right.$ $n\} \cup\left\{v_{i}, w_{i}: 1 \leq i \leq n-1\right\} \cup\left\{x_{i}, y_{i}: 1 \leq i \leq n-1\right\} \cup\left\{p_{i}, q_{i}: 1 \leq i \leq n-1\right\}$ $\cup\left\{e_{i}, e_{i}^{\prime}, e_{i}^{\prime \prime}, e_{i}^{\prime \prime \prime}: 1 \leq i \leq n-1\right\} \cup\left\{l_{i}^{\prime}, l_{i}^{\prime \prime}: 1 \leq i \leq n-1\right\} \cup\left\{m_{i}^{\prime}, m_{i}^{\prime \prime}: 1 \leq i \leq n-1\right\} \cup$ $\left\{z_{i}^{\prime}, z_{i}^{\prime \prime}: 1 \leq i \leq n-1\right\}$. Now coloring the vertices of $C\left(T Q_{n}\right)$ as follows: define $\mathrm{c}: V\left(C\left(T Q_{n}\right)\right) \rightarrow$ $\{1,2,3, \ldots, 6 n-5\}$ for $n \geq 2$ by $c\left(u_{1}\right)=1, c\left(u_{n}\right)=n, c\left(v_{i}\right)=2 i-1, c\left(w_{i}\right)=2 i, c\left(x_{i}\right)=2 n+$ $2 i-3, c\left(y_{i}\right)=2 n+2 i-2, c\left(p_{i}\right)=4 n+2 i-5, c\left(q_{i}\right)=4 n+2 i-4, c\left(e_{i}\right)=c\left(e_{i}^{\prime}\right)=c\left(e_{i}^{\prime \prime}\right)=$ $6 n-5, c\left(l_{i}^{\prime \prime}\right)=c\left(v_{i}\right), c\left(l_{i}^{\prime}\right)=c\left(w_{i}\right), c\left(m_{i}^{\prime \prime}\right)=c\left(x_{i}\right), c\left(e_{i}^{\prime}\right)=c\left(y_{i}\right), \mathrm{c}\left(z_{i}^{\prime \prime}\right)=c\left(p_{i}\right), \mathrm{c}\left(z_{i}^{\prime}\right)=c\left(q_{i}\right)$ and at last $c\left(u_{i+1}\right)=c\left(w_{i}\right)$ for $(1 \leq i \leq n-1)$. Figure 3 shows the achromatic coloring for $C\left(T Q_{3}\right)$. To prove c is achromatic and maximum, follow theorem 3.1.

Figure 3. $C\left(T Q_{3}\right)$ with coloring, $\chi_{a}\left(C\left(T Q_{3}\right)\right)=13$.

4. Achromatic Number of k-Quadrilateral Snake

Theorem 4.1. For k-quadrilateral snake $k Q_{n}$, the achromatic number, $\chi_{a}\left(C\left(k Q_{n}\right)\right)=$ $2 k(n-1)+1$ for $n, k \geq 2$.

Proof. By continuing in the same manner as discussed in theorem 3.1, 3.2 and 3.3, it is easy to conclude that the achromatic number of the central graph of k-quadrilateral snake is $2 k(n-1)+$ 1 for $k \geq 2$, where k denotes the quadrilateral snakes like double, triple etc.
5. Achromatic Number of $C\left(A Q_{n}\right), D\left(A Q_{n}\right), T\left(A Q_{n}\right)$

Theorem 5.1. For alternate quadrilateral snake $A Q_{n}$, the achromatic number, $\chi_{a}\left(C\left(A Q_{n}\right)\right)=\frac{3 n}{2}$, where n is even and $n \geq 4$.

Proof. Let P_{n} be the path with n vertices $u_{1}, u_{2}, \ldots, u_{n}$ and $A Q_{n}$ be an alternate quadrilateral snake. Now we obtain the central graph as described in theorem 3.1, therefore $V\left(C\left(A Q_{n}\right)\right)=\left\{u_{i}: 1 \leq i \leq\right.$ $n\} \cup\left\{v_{i}, w_{i}:\left(1 \leq i \leq \frac{n}{2}\right)\right\} \cup\left\{e_{i}:(1 \leq i \leq n-1)\right\} \cup\left\{e_{i}^{\prime}:\left(1 \leq i \leq \frac{n}{2}\right)\right\} \cup\left\{l_{i}^{\prime}, l_{1}^{\prime \prime}:\left(1 \leq i \leq \frac{n}{2}\right)\right\}$. Now coloring the vertices of $C\left(A Q_{n}\right)$ as follows : define $c: V\left(C\left(A Q_{n}\right)\right) \rightarrow\left\{1,2,3, \ldots, \frac{3 n}{2}\right\}$ for $n \geq 4$ by $c\left(u_{1}\right)=1, c\left(u_{n}\right)=n, c\left(v_{i}\right)=2 i-1, c\left(w_{i}\right)=2 i, c\left(e_{i}\right)=n+1, c\left(e_{i}^{\prime}\right)=n+1$ for $\left(1 \leq \mathrm{i} \leq \frac{n}{2}\right)$, $c\left(u_{i}\right)=n+1+\frac{i}{2}(i=2,4,6, \ldots, n-2)$ and $c\left(u_{i}\right)=n+1+\frac{i-1}{2}(i=3,5,7, \ldots, n-1)$ and $c\left(l_{i}^{\prime \prime}\right)=$
$c\left(v_{i}\right), c\left(l_{i}^{\prime}\right)=c\left(w_{i}\right)$ for $\left(1 \leq i \leq \frac{n}{2}\right)$. Figure 4 shows the coloring of $C\left(A Q_{4}\right)$. To prove c is achromatic and maximum, follow theorem 3.1.

Figure 4. $C\left(A Q_{4}\right)$ with coloring, $\chi_{a}\left(C\left(A Q_{n}\right)\right)=6$.
Theorem 5.2. For double alternate quadrilateral snake $D\left(A Q_{n}\right)$, the achromatic number, $\chi_{a}\left(C\left(D\left(A Q_{n}\right)\right)\right)=\frac{5 n}{2}$, where n is even and $n \geq 4$.

Proof. Let P_{n} be the path with n vertices $u_{1}, u_{2}, \ldots, u_{n}$ and $D\left(A Q_{n}\right)$ be the double alternate quadrilateral snake. Now we obtain the central graph as described in theorem 3.1, therefore $V\left(C\left(D\left(A Q_{n}\right)\right)\right)=\left\{u_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i}, w_{i}:\left(1 \leq i \leq \frac{n}{2}\right)\right\} \cup\left\{x_{i}, y_{i}:\left(1 \leq i \leq \frac{n}{2}\right)\right\} \quad\left\{e_{i}:(1 \leq i \leq\right.$ $n-1)\} \cup\left\{e_{i}^{\prime}, e_{i}^{\prime \prime}:\left(1 \leq i \leq \frac{n}{2}\right)\right\} \cup\left\{l_{i}^{\prime}, l_{1}^{\prime \prime}:\left(1 \leq i \leq \frac{n}{2}\right)\right\} \cup\left\{m_{i}^{\prime}, m_{1}^{\prime \prime}:\left(1 \leq i \leq \frac{n}{2}\right)\right\}$. Now coloring the vertices of $C\left(D\left(A Q_{n}\right)\right)$ as follows: define $c: V\left(C\left(D\left(A Q_{n}\right)\right)\right) \rightarrow\left\{1,2,3, \ldots, \frac{5 n}{2}\right\}$ for $n \geq 4$ by $c\left(u_{1}\right)=1, c\left(u_{n}\right)=n, c\left(v_{i}\right)=2 i-1, c\left(w_{i}\right)=2 i, c\left(x_{i}\right)=n+2 i-1, c\left(y_{i}\right)=n+2 i$ for $\left(1 \leq i \leq \frac{n}{2}\right), c\left(e_{i}\right)=2 n+1(i=1,3,5, \ldots), c\left(e_{i}\right)=i\left(i=2,4,6, \ldots, \frac{n}{2}-1\right), c\left(e_{i}^{\prime}\right)=c\left(e_{i}^{\prime \prime}\right)=$ $2 n+1$ for $\left(1 \leq i \leq \frac{n}{2}\right), c\left(u_{i}\right)=2 n+1+\frac{i}{2}(i=2,4,6, \ldots, n-2)$ and $c\left(u_{i}\right)=2 n+1+\frac{i-1}{2}(i=3,5$, $7, \ldots, n-1)$ and at last $c\left(l_{i}^{\prime \prime}\right)=c\left(v_{i}\right), c\left(l_{i}^{\prime}\right)=c\left(w_{i}\right), c\left(m_{i}^{\prime \prime}\right)=c\left(x_{i}\right), c\left(m_{i}^{\prime}\right)=c\left(y_{i}\right)$ for $\left(1 \leq i \leq \frac{n}{2}\right)$. Figure 5 shows the coloring of $C\left(D\left(A Q_{4}\right)\right)$. To prove c is achromatic and maximum, follow theorem 3.1.

Figure 5. $C\left(D\left(A Q_{4}\right)\right)$ with coloring, $\chi_{a}\left(C\left(D\left(A Q_{4}\right)\right)\right)=10$
Theorem 5.3. For triple alternate quadrilateral snake $T\left(A Q_{n}\right)$, the achromatic number, $\chi_{a}\left(C\left(T\left(A Q_{n}\right)\right)\right)=\frac{7 n}{2}$, where n is even and $n \geq 4$.

Proof. Let P_{n} be the path with n vertices $u_{1}, u_{2}, \ldots, u_{n}$ and $T\left(A Q_{n}\right)$ be the triple alternate quadrilateral snake. Now we obtain the central graph as described in theorem 3.1, therefore $V\left(C\left(T\left(A Q_{n}\right)\right)\right)=\left\{u_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i}, w_{i}, x_{i}, y_{i}, p_{i}, q_{i}:\left(1 \leq i \leq \frac{n}{2}\right)\right\} \quad\left\{e_{i}:(1 \leq i \leq n-1)\right\} \cup$ $\left\{e_{i}^{\prime}, e_{i}^{\prime \prime}, e_{i}^{\prime \prime \prime}:\left(1 \leq i \leq \frac{n}{2}\right)\right\} \cup\left\{l_{i}, l_{i}^{\prime}, l_{1}^{\prime \prime}:\left(1 \leq i \leq \frac{n}{2}\right)\right\} \cup\left\{m_{i}^{\prime}, m_{1}^{\prime \prime}, m_{1}^{\prime \prime \prime}:\left(1 \leq i \leq \frac{n}{2}\right)\right\}$. Now coloring the vertices of $C\left(T\left(A Q_{n}\right)\right)$ as follows; define $c: V\left(C\left(T\left(A Q_{n}\right)\right)\right) \rightarrow\left\{1,2,3, \ldots, \frac{7 n}{2}\right\}$ for $n \geq 4$ by $c\left(u_{1}\right)=1, c\left(u_{n}\right)=n, c\left(v_{i}\right)=2 i-1, c\left(w_{i}\right)=2 i, c\left(x_{i}\right)=n+2 i-1, c\left(y_{i}\right)=n+2 i, c\left(p_{i}\right)=$ $2 n+2 i-1, c\left(q_{i}\right)=2 n+2 i$ for $\left(1 \leq i \leq \frac{n}{2}\right), c\left(e_{i}\right)=3 n+1(i=1,3,5, \ldots), c\left(e_{i}\right)=i(i=$ $\left.2,4,6, \ldots, \frac{n}{2}-1\right), c\left(e_{i}^{\prime}\right)=c\left(e_{i}^{\prime \prime}\right)=c\left(e_{i}^{\prime \prime \prime}\right)=3 n+1$ for $\left(1 \leq i \leq \frac{n}{2}\right), c\left(u_{i}\right)=3 n+1+\frac{i-1}{2} \quad(i=$ $2,4,6, \ldots, n-2)$ and $c\left(u_{i}\right)=3 n+1+\frac{i-1}{2}(i=3,5,7, \ldots, n-1)$ and at last $c\left(l_{i}^{\prime \prime}\right)=c\left(v_{i}\right), c\left(l_{i}^{\prime}\right)=$ $c\left(w_{i}\right), c\left(m_{i}^{\prime \prime}\right)=c\left(x_{i}\right), c\left(m_{i}^{\prime}\right)=c\left(y_{i}\right), c\left(m_{i}\right)=c\left(p_{i}\right), c\left(l_{i}\right)=c\left(q_{i}\right)$ for $\left(1 \leq i \leq \frac{n}{2}\right)$. To prove c is achromatic and maximum, follow theorem 3.1. Figure 6 shows the coloring of $C\left(T\left(A Q_{4}\right)\right)$.

Figure 6. $C\left(T\left(A Q_{4}\right)\right)$ with coloring, $\chi_{a}\left(C\left(T\left(A Q_{n}\right)\right)\right)=14$.

6. Achromatic Number of k-Alternate Quadrilateral Snake

Theorem 6.1. For k - quadrilateral snake $k Q_{n}$, the achromatic number, $\chi_{a} C\left(\left(k A Q_{n}\right)\right)=\frac{n(4 k-1)}{2}$, where n is even and $n \geq 4$.

Proof. By continuing in the same manner as discussed in theorems 5.1, 5.2 and 5.3, it is easy to conclude that the achromatic number of the central graph of k-alternate quadrilateral snake is $\frac{n(4 k-1)}{2}$.

7. Conclusion

We obtain the achromatic number of the central graph of k-quadrilateral and k-alternate quadrilateral snakes that is $\chi_{a} C\left(\left(k Q_{n}\right)\right)=2 k(n-1)+1$ and $\chi_{a} C\left(\left(k A Q_{n}\right)\right)=\frac{n(4 k-1)}{2}$. For motivation and future scope, we can examine the different type of colorings for these quadrilateral snakes.

Acknowledgement

Authors are very thankful to the anonymous referees for their valuable suggestions that improved in this paper.

References

[1].Aparna, K. M., Correya, H. \& Manjusha (2018). Achromatic Number of Some Graphs, International Journal of Pure and Applied Mathematics, 18(20), 941-949.
[2].Agasthi, P. \& Parvathi, N. (2018). Some Labeling of Quadrilateral Snake, International Journal of Pure and Applied Mathematics, 119(12), 2975-2992.
[3].Bondy, J. A. \& U.S.R. Murty (1976). Graph theory with Applications, London: MacMillan,
[4].Chandel, R. S., Mansuri, A. \& Mehta, R. (2014). Study on Achromatic Coloring of Triple Star Graph Families, JP Journal of Mathematical Sciences, 10(1 \& 2), 7-16.
[5]. Gallian, J. A. (2019). A Dynamic survey of graph labeling, The electronic Journal of Combinatorics.
[6].Gopi, R. (2016). Odd sum labeling of alternative quadrilateral snake, Int. J. EnginSci., Adv. Comput. and Bio-Tech., 7(3), 73-77.
[7].Harary, F. (2001). Graph Theory, Narosa Publishing House.
[8].Harary, F. \& Hedetniemi, S.T. (1970). The achromatic number of a graph, Journal of Combinatorial Theory, (8), 154-161.
[9].Hell, P. \& Miller, D. J. (1976). Graph with given Achromatic number, Discrete Mathematics, (16), 195-207.
[10]. Ponraj R. \& Narayanan, S. S. (2014). Difference Cordiality of Some Snake Graphs, J. Appl. Math. \& Informatics, 32(3-4), 377-387.
[11]. Ponraj R. \& Narayanan, S. S. (2013). Difference Cordiality of Some Snake Graphs obtained from double alternate snake graphs, Global J. Math. Sciences: Theory and Practical, (5), 167-175.
[12]. Sandhya, S. S., Merly, E. R. \& Shiny, B. (2015). Subdivision of super geometric mean labeling for quadrilateral snake graphs, Internat. J. Math. Trends Tech., 24(1), 1-16.
[13]. Sandhya, S. S., Merly, E. R. \& Shiny, B. (2015). Super geometric mean labeling on doublequadrilateral snake graphs, Asian Pacific J. Res., 1(XXI) 128-135.
[14]. Thilagavthi, K. Thilagavathy, K.P. \& Roopesh, N. (2009). The achromatic colouring of graphs, Discrete Mathematics, (33), 153-156.
[15]. Vivin, J. V., Venkatachalam, M. \& Akbar, M.M.A. (2009). A note on achromatic coloring of star graph families, Filomat, (23), 251-255.

