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ABSTRACT: In this paper, a series of analysis with finite element method was carried out with varying hole 
shapes of perforation as well as plate dimensions. Eight different models about holes that number of edges at the 
hole is four to infinite namely circular holes was presented. Than the analyze results of these models with different 
boundary conditions as fixed supported and simply supported at four edges were compared. In this study it has 
shown that when the number of edges for a hole is infinite, in other words when the perforation of the plate is 
circular, mid-point deflection is decreasing according to the other perforation styles. And also analyze results of 
eight different models of perforated plates are given in tables and comparative graphs. 
 
Keywords: Ansys, Noncircular hole, 600 staggered perforated, Square thin plate, Mid-point deflection, Equivalent 
(von Mises) stress. 
 
1. INTRODUCTION 

 
The square thin plates made of steel are structural elements that are largely used in civil and 
mechanical engineering. In some cases they are also used as perforated plates by composing 
holes on the plates. The perforated plates have some advantages over non-perforated plates. 
These elements have many different usage areas in the automotive and air industries as vehicles 
and aircrafts manufacturing, and also furniture manufacturing, construction industry, distilling, 
food refining, mining and plenty of more uses. 
 
Perforated steel plates have technical advantages over expanded metal, welded wire, woven 
wires, which can be used as an alternative to these perforated elements. The functional capacity 
of perforated plates compared to these other materials is distinguished when considering 
filtration, ventilation, radiation protections, sound absorption, and others. One of the advantage 
of perforated plates is its variability in allowing a variation of combinations of open areas in a 
single sheet. 
 
There are many studies about analysis of perforated plates in literature. In the studies generally 
experimental and numerical methods have been used. Numerical methods that are using finite 
element method is the most preferred one among the solutions [1-5]. Perforated plates with in-
plane loading are also interested with some researchers [6], [7]. 
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Bailey and Hicks is developed a theoretical method for determining the elastic behaviour of 
end-loaded plates completely perforated with closely spaced circular holes forming a square or 
diagonal pattern [8]. 
 
For perforated plates which have many holes, the shape of the holes will affect the value and 
location of the maximum stresses. In this subject Jafari and Jafari investigated the stress 
distribution around holes with different shapes in an infinite composite plate under uniform heat 
flux. In their study, the effect of various parameters on stress distributions around a different 
hole in an infinite composite plate was separately investigated [9]. 
 
Pascu et.al, describe the method of calculating the forces which appear at the bending of 
perforated plates with holes of different shapes and placed in different patterns in their study 
[10]. 
 
Konieczny et.al., presents an analysis of an isotropic circular axisymmetric perforated plate 
loaded with concentrated force applied in the geometric center of the plate using finite element 
software ANSYS [11], [12]. 
 
Kalita and Halder, investigated the deflection and stresses for isotropic and orthotropic plates 
with central circular and square cutout under transverse loading by using finite element package 
ANSYS [13]. 
 
Atanasiu and Sorohan, studied the stress distribution in a circular plate of Plexiglas with a 
diameter of 300 mm and thickness of 10 mm, perforated by 96 circular holes of diameter 12 
mm, arranged in a grid of squares of 24 mm by using the finite element analysis (FEA) and 
experimentally. Load is acting through a central concentrated load and distributed load and 
considered as simply supported on its exterior margin. And also they studied a non-perforated 
plate of the same supports, the same material and the same load condition to make a 
comparisons between the behaviour of the two types of plates [14]. 
 
Andh et. Al., investigated the stress analysis of finite plate with special shaped cut out for stress 
distribution and Stress Concentration Factors (SCF) by using the finite element method and 
photoelasticity. And also an experimental investigation is taken to study for the stress analysis 
of plates with special shaped cut outs [4]. 
 
Rayhan performed a finite element analysis on the buckling behavior of a simply supported 
quasi-isotropic symmetric composite panel with central circular cutouts, reinforced with 
stiffeners on both sides of the cutouts under uniaxial, biaxial and combined loading conditions 
by using popular commercial software code Ansys [19]. 
 
Jafari et al., investigated the optimal values of effective parameters on the stress distribution 
around a circular/elliptical/quasi-square cutout in the perforated orthotropic plate under in-
plane loadings. They use the PSO algorithm in their study to determine the optimal design 
variables to increase the strength of the perforated plates. And also finite element method 
(FEM) was employed to examine the results of the present analytical solution [20]. 
 
Lorenzini et. al., studied the influence of the type and shape of the hole in the behavior of 
buckling perforated steel plates numerically [15]. 
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Helbig et. al., investigated the influence of the shape, size and type of the opening in the 
buckling behavior of a thin steel plate by developing some computational models using ANSYS 
software [16]. 
 
There are not much works about various shaped holes for perforations in perforated plates, 
justifying the present research. However, here only the perforated thin square plate bending 
behavior is studied, for investigating about various hole type effect that were not much 
performed previously. The present work employs the computational modeling for the study of 
fixed supported and simply supported thin steel perforated square plates subjected to the 
uniformly distributed load and its self-weight. 
 
2. METHODS 

 
The Plates are solid bodies bounded by two parallel planes and the thickness of the plate which 
is the separation between these two parallel planes is small compared with the lateral 
dimensions (Figure 3). They are solid bodies but it is often not necessary to model plates using 
three-dimensional elasticity theory. Stress and strain analysis of three dimensional plates under 
plane stress or plane strain can be treated as two dimensional problems [17]. 
 
Compatibility equations and boundary conditions must be provided together in the solution of 
equilibrium equations of two dimensional problems. By neglecting the components of body 
force per unit volume, the equation of equilibrium for forces in the x- direction and y-direction 
is follows respectively: 
 

xyx 0
x y


 

 
 (1) 

y xy 0
y x

 
 

 
 (2) 

The compatibility equation in terms of stress components is as follows: 
 

2 2

x y2 2
( ) 0

x y

  
       

 (3) 

Substituting the stress components in equation 1, 2 and 3 by displacements u and v is as follows: 
 

2 2 2

2 2

u (1 ) u (1 ) v
0

2 2 x yx y

         
          

 (4) 

2 2 2

2 2

v (1 ) v (1 ) u
0

2 2 x yy x

         
          

 (5) 

In this equations ν is the Poisson’s ratio of the material. By reducing the problem to a single 
function ϕ(x,y) which can take place of the two displacement functions u and v and satisfies the 
equations 4 and 5, solution can be defined as serial solutions. This displacement function ϕ(x,y) 
can be defined as follows: 
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2

u
x y

 

 

 (6) 

   
2 2

2 2
v 1 2 / 1

y x

       
               

 (7) 

In this way, a series of solutions are obtained for equilibrium equations. The exact solution of 
the problem is also the solution that provides the compatibility equations. Thus, if the body 
force of the plate is neglected, the solution of a two-dimensional problem is reduced to finding 
the solution that provides the boundary condition of equation (8). 
 

4 4 4

4 2 2 4
2 0

x x y y

      
       

 (8) 

By using a combination of the kinematic, constitutive, force resultant, and equilibrium 
equations, the classical plate equation of Kirschoff can be derived as in equation (9). 
 

4 4 4

4 2 2 4

w w w q
2

x x y y D

   
       

 (9) 

In this equation w is the small transverse (out-of-plane) displacement of a thin plate, q is the 
distributed load acting transversely on the plate as shown in figure 3 and D is the flexual rigidity 
of the plate defined as in equation [10]. 
 

 
3

2

E h
D

12 1


 
    (10) 

E is the Young's modulus, h is the thickness of the plate and υ is the Poisson's ratio of the plate 
material. 
 

 
Figure 1. Geometry of SHELL181 finite element in ANSYS [18]. 

 
The ANSYS finite element software is also used in the modeling of plates. For this purpose, 
firstly, the material properties and the geometric properties of the element are defined and then 
plate is divided into finite elements. SHELL 181 element which is a 4-Node Structural Shell is 
selected from ANSYS library. 
 
“Shell181” is a 4-node structural finite element in the program element library as shown in 
Figure 1. The element has six degrees of freedom at each node: translations in the nodal x, y 
and z directions and rotations about the nodal x, y and z-axes. 
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Firstly, the geometry of the problem is defined in the program and a model is created. Then 
material properties and elements are defined. For the calculations the definition of static 
analysis is made. Fixed supported and simply supported boundary conditions of the perforated 
square plates are defined separately. A load of uniformly distributed q=1 kN/m2 load to the 
plate surface and its own weight is applied at the –Z direction. After these processes were 
completed, static analysis was performed and the results of deformation were obtained from the 
program. 
 
Stress output for SHELL181 element is as follows: 
σx is normal stress due to X axis (SX) 
σy is normal stress due to Y axis (SY) 
σxy is shear stress (SXY) 
 
3. NUMERICAL EXAMPLES 

 
Three different dimensioned square thin perforated plates have analyzed. One dimension of 
square plate is taken as 300 mm, 450 mm and 600 mm. In all of these three sets of plate 
examples, thickness to length ratio was taken constant as 1/150 in all examples to provide thin 
plate assumptions. So that thickness of the plates are 2 mm, 3 mm and 4 mm respectively (Table 
2). 
 
The plate models are assumed made of steel material. The material parameters of the steel plates 
are shown in Table 1. 
 

Table 1. Material properties  
Property Value 

Young's modulus, E (GPa) 200 

Poisson's ratio, υ 0.3 

Mass density, ρ (kg/m3) 7850 

 
Every set of plates has the same open area percentage in itself as shown in Table 3 but different 

hole shapes. Area of a one hole is defined as 21
cot

4
A n k

n

   
 

 . In this equation n is the 

number of edges and k is the length of a one edge in the polygon. 
 

Table 2. Parameters of perforated square plates  
Length 
a (mm) 

Thickness 
h (mm) 

Number of 
holes 

Open area percentage 
(%) 

300 2 264 33.18 
450 3 634 35.41 
600 4 1166 36.63 

 
For each set of plate example, eight different models and a non-perforated plate have been 
arranged as shown in Table 3. In the models number of edges increases from four to infinite. 
When the number of edges are four, there are square holes at the perforated plate. When the 
number of edges are infinite, there are circular holes at the perforated plate (Figure 2). 
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Figure 2. Perforated plate models. 

 
Coordinates, loads and perforation schema for investigated plate models is shown in Figure 3. 
As shown in figure loads are applied at the –Z direction and magnitude of uniformly distributed 
load is q=1 kN/m2. Perforated square plate’s own weight is also considered. 
 
This study investigates which the hole geometry has the minimum displacements and stresses. 
For this purpose 600 staggered pattern distribution which is one of the most popular shape in 
the perforated metal industry has been used. 
 

 
Figure 3. Coordinates, loads and perforation schema for plate models. 

 
Stress and displacement analysis of perforated square plates are investigated. Midpoint 
deflections and critical stresses are calculated. Two different boundary conditions as simply 
supported and fixed supported are considered. Hole information for perforated plates is shown 
in Table 3. Since the number of holes is constant in all models, the percentage of open hole 
areas in the plates are also constant. 
 

Table 3. Information for perforated plate models. 

Model no Model name 
Number of edges 

on hole 
Length of edge 
on hole (mm) 

1 Square 4 10.634723 

2 Pentagon 5 8.107775 

3 Hexagon 6 6.597817 

4 Heptagon 7 5.578776 
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5 Octagon 8 4.839755 

6 Nonagon 9 4.277282 

7 Decagon 10 3.833930 

8 Circle ∞ 0.000000 

9 Non-perforated - - 

 
4. RESULTS AND DISCUSSION 
 
The bending behavior of various perforated plates were numerically simulated by means of the 
ANSYS software, which is based on the finite element method. Three sets of perforated square 
plates and eight different models for each set together with non-perforated plate are 
investigated. 
 

Table 4. Mid-point deflections of perforated square plates (mm). 

 Fixed Supported  Simply Supported 

a(mm) 
edges 

300 450 600 
 

300 450 600 

4 -0.10652 -0.18747 -0.28346  -0.37807 -0.64420 -0.96540 

5 -0.10240 -0.17872 -0.26827  -0.36466 -0.61354 -0.90736 

6 -0.10127 -0.17645 -0.26437  -0.36083 -0.60614 -0.89488 

7 -0.09985 -0.17335 -0.25930  -0.35587 -0.59588 -0.87818 

8 -0.09941 -0.17248 -0.25767  -0.35429 -0.59276 -0.87257 

9 -0.09915 -0.17187 -0.25669  -0.35340 -0.59089 -0.86950 

10 -0.09899 -0.17153 -0.25611  -0.35285 -0.58972 -0.86755 

∞ -0.09856 -0.17064 -0.25468  -0.35130 -0.58676 -0.86284 

0 -0.08079 -0.12927 -0.18314  -0.26054 -0.41701 -0.59085 

 
 
Mid-point deflections of all sets and models of perforated square plates are shown in Table 4. 
Calculations indicate that the maximum deflection of the perforated square plate under 
distributed load acting perpendicular to the plate surface is at the mid-point of it. From the table 
one can see that mid-point deflections of perforated plates are greater than non-perforated ones. 
And also when the number of edges increases mid-point deflections are decreases. The 
difference of mid-point deflections between the models are decreases when the number of hole 
edge increases and this ratio is the biggest between non-perforated and perforated ones. This 
behavior is similar for fixed supported and simply supported boundary conditions but the 
difference between non-perforated plates is much bigger for simply supported models. 
 

As an example mid-point deflections of perforated square plates for a=300 mm and h=2 mm 
is shown in the Figure 4. 
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Figure 4. Mid-point deflections of perforated square plates for a=300 mm. 

 
The values in the figure are for perforated square plates with fixed supported and simply 
supported at four edges. And the mid-point deflections for perforated square plates with eight 
different shaped hole models are also shown at the figure. 
 

 
Figure 5. Mid-point deflections of perforated plates for square and circular models. 

 
Mid-point deflections of perforated square plates which have square holes and circular holes 
are depicted in Figure 5. In the figure square plates have 300 mm length in one edge and have 
fixed supported boundary conditions at the four edges. 
 

Table 5. Critical stresses of the plates subjected to a uniformly distributed load (MPa). 
 Fixed Supported  Simply Supported 

Model no SY SX SXY Von-Mises  SY SX SXY Von-Mises 

1 10.5749 12.3315 4.0274 12.1918  13.1865 15.0102 8.7468 19.1774 

2 12.4436 12.1358 3.8199 11.9058  16.8273 15.9662 8.4672 17.7789 

3 12.6162 10.5776 3.6768 11.9822  18.2594 14.0572 8.1429 17.0617 

4 10.6838 9.9117 3.3514 10.3062  14.8732 14.9453 7.5134 15.4733 

5 9.5229 9.7359 3.5400 10.0716  13.0527 13.4008 7.1670 14.9605 

6 10.3149 10.1714 3.5512 9.9939  14.5713 13.5096 7.0957 14.4206 

7 9.6228 9.5203 3.3497 9.7380  13.0294 13.5271 7.0863 14.3009 

8 8.7277 8.2747 2.9016 8.6012  12.3388 11.3666 7.0542 12.4904 
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As an example, maximum stresses of square plates with eight different shaped hole models for 
a=300 mm and h=2 mm is given in the Table 5. The values in the table are for perforated square 
plates with fixed supported and simply supported at four edges. 
 

 
Figure 6. Absolute maximum SY stresses. 

 
Absolute maximum SY stress values for three different sizes of square perforated plates are 
shown in the Figure 6. The values in the figure are for perforated square plates with fixed 
supported and simply supported at four edges. 
 

Figure 7. Absolute maximum SX stresses. 
 
Absolute maximum SX stress values for three different sizes of square perforated plates are 
shown in the Figure 7. The values in the figure are for perforated square plates with fixed 
supported and simply supported at four edges. 
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Figure 8. Absolute maximum SXY stresses. 

 
Absolute maximum SXY stress values for three different sizes of square perforated plates are 
shown in the Figure 8. The values in the figure are for perforated square plates with fixed 
supported and simply supported at four edges. 
 

Figure 9. Absolute maximum equivalent Von-Misses stresses. 
 
Absolute maximum equivalent Von-Misses stress values for three different sizes of square 
perforated plates are shown in the Figure 9. The values in the figure are for perforated square 
plates with fixed supported and simply supported at four edges. 
 
5. CONCLUSIONS 
 
Bending of perforated square thin plates made of steel with three different thickness 2mm, 3mm 
and 4mm are investigated under self-weight and 1kN/m2 uniformly distributed loads. 
Thickness to length ratio is constant as 1/150. The results that were obtained with numerical 
calculations by using ANSYS software have been compared. Every perforated plate example 
has the same open area percentage in itself but different hole shapes. For perforated plate 
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examples eight different models that has different number of hole edges from four to infinite 
have been arranged and also a non-perforated plate example examined to understand the effect 
of perforation. The aim of the study is investigating the hole geometry which makes the 
minimum displacements and stresses on perforated plate. For examined problems the most 
commonly used pattern distribution 600 staggered has been used. 
 
It is important to highlight that the present work has shown that when the number of edges is 
infinite, in other words when the perforation of the plate is circular, it has more advantage than 
the other perforation styles. This investigation is made with defining several geometrical 
configurations and the total material volume of the perforated plate sets for all models were 
keeping constant. And also, a performance comparison among the defined hole geometries of 
perforated plate has been carried out. 
 
Therefore, based on the obtained results, the importance of the geometrical evaluation in 
structural engineering, as well as the effectiveness of the constructional design method 
application in the mechanics of material problems, is evident. 
 
The bending analysis about the effect of number of hole edges over the geometric 
configurations of the perforated square plates, as well as the graphical representation of the 
stress distribution for all plate models, can be found in this study. 
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