REFRACTION IN THE CASE OF VELOCITY INCREASING LINEARLY WITH DEPTH AND DIPPING REFRACTOR

TURAN KAYIRAN

Geological Engineering Depi. University of Ankara, Turkey
ABSTRACT

In this paper the time-distance relation for head waves in "dipping refractor" is calculated assuming that the real seismic media may be expressed by tbe velocity fonction $V=V o(1+K Z)$, depending on depth. A numerical example is also given.

INTRODUCTION

Horizontal refractor case, with velocity as a fonction of depth, has been studied by various authors. For the case of dipping refractor. Laski (1972) has developed an algorithm for an approximate solution of time-distance relation with the velocity function taken as $V=V_{1}$
$\left[\frac{L+q z}{L}\right] \frac{1}{q}$
where
$\mathrm{q}=$ dimensionless constant
$\mathrm{L}=$ a constant with the dimension of length
$Z=$ depth below datum.
The greatest difficulty encountered in solving the problem is to find the coordinates of the point at which the seismic ray reaches the refractor under the critical angle.

In this paper the equation giving the coordinates of the above mentioned point has been derived taking the velocity function to be $\mathrm{V}=\mathrm{V}_{\mathrm{o}}(1+\mathrm{KZ})$ and thus, the problem is solved.

Calculation of the coordinates

Notation (Fig-1)
$\mathrm{V}_{\mathrm{o}}=$ velocity at the surface
$V=$ velocity at Z
$\mathrm{Z}=$ depth
$\mathbf{K}=$ constant
$\mathbf{Z}=\mathbf{A X}+\mathbf{B}=$ Equation of the line expressing the refractor $V_{2}=$ Velocity of the refracting layer.

Fig (1)
Equaiion of the coordinates of the point of incidence at critical angle on the positive x direction
$\operatorname{Sin}\left(\theta_{1}+\varphi\right)=V_{0}(1+K Z) / V_{2}$ gives
$\operatorname{Sin} \theta_{1} \operatorname{Cos} \varphi+\operatorname{Cos} \theta_{1} \operatorname{Sin} \varphi=V_{0}(1+K Z) / V_{2}$
using $X=\frac{1}{K \operatorname{Sin} \varphi_{0}}\left(\operatorname{Cos} \theta_{0}-\operatorname{Cos} \theta_{1}\right)$ and
$Z=\frac{1}{K \operatorname{Sin} \theta_{0}}\left(\operatorname{Sin} \theta_{1}-\operatorname{Sin} \theta_{0}\right)$. Favre (1958)

It can be written
$\operatorname{Sin} \theta_{1}=(\mathrm{ZK}+1) \operatorname{Sin} \theta_{0}$
$\operatorname{Cos} \theta_{1}=\operatorname{Cos} \theta_{o}-K X \operatorname{Sin} \theta_{o}$
by combination of (2), (3) and (1)
we find $[(K Z+1) \operatorname{Cos} \varphi-K X \operatorname{Sin} \varphi] \operatorname{Sin} \theta_{0}+\operatorname{Sin} \varphi \operatorname{Cos} \theta_{0}$
$-V_{0}(1+K Z) / V_{2}=0$
on the otber hand when θ_{1} is eliminated from
$X=\frac{1}{K \operatorname{Sin} \theta_{0}}\left(\operatorname{Cos} \theta_{0}-\operatorname{Cos} \theta_{1}\right)$ and $Z=\frac{1}{K \operatorname{Sin} \theta_{0}}\left(\operatorname{Sin} \theta_{1}-\operatorname{Sin} \theta_{0}\right)(5)$
and the result is divided by $\mathrm{K} \operatorname{Sin} \theta_{0}$, the following equation is reached $\left(X^{2}+Z^{2}\right) K \operatorname{Sin} \theta_{0}-2 X \operatorname{Cos} \theta_{0}+2 Z \operatorname{Sin} \theta_{0}=0$
solving θ_{0} from equation (4) and (6) an equation dependent on X and Z can be obtained.

If we multiply both sides of the equations (4) and (6) by $2 X$ and $\operatorname{Sin} \varphi$ respectively and summing the two equations we obtain: $\mathrm{K} \operatorname{Sin} \theta_{0} \operatorname{Sin} \varphi$ $\left(\mathbf{X}^{2}+\mathbb{Z}^{2}\right)+2 \mathbf{X} \operatorname{Sin} \theta_{0}[(K Z+1) \operatorname{Cos} \varphi-K X \operatorname{Sin} \varphi-K X \operatorname{Sin} \varphi]$
$-\frac{2 X V_{o}(1+K Z)}{V_{2}}=0$
Solving for $\operatorname{Sin} \theta_{o}$ yields,
$\operatorname{Sin} \theta_{0}=\frac{2 \times d}{V_{2}(e+a)}$
where
$d=V_{o}(1+K Z)$
$\mathbf{a}=2 \mathbf{x}[(K Z+1) \operatorname{Cos} \varphi-K X \operatorname{Sin} \varphi]$
$\mathbf{e}=\mathbf{K} \operatorname{Sin} \varphi\left(\mathbf{X}^{2}+\mathbf{Z}^{2}\right)+2 \mathbf{Z} \operatorname{Sin} \varphi$
If the value of $\operatorname{Sin} \theta_{0}$ is placed in the equation (4) it results:
$\frac{a d}{V_{2}(e+a)}+\operatorname{Sin} \varphi \operatorname{Cos} \theta_{0}-\frac{d}{V_{2}}=0$

According to (12)
$\operatorname{Cos} \theta_{0}=-\frac{a d}{\operatorname{Sin} \varphi V_{2}(e+a)}+\frac{d}{\operatorname{Sin} \varphi V_{2}}$
If $\operatorname{Cos} \theta_{0}$ is expressed in term of $\operatorname{Sin} \theta_{0}(12)$ becomes
$\frac{\mathrm{d}^{2}}{\mathrm{~V}_{2} \operatorname{Sin} \rho} \frac{\mathbf{e}}{(\mathrm{e}+\mathrm{a})}=\sqrt{1}-\left(\frac{2 \mathrm{xd}}{\mathrm{V}_{2}(\mathrm{e}+\mathrm{a})}\right)^{2}$
squaring both sides of (14)
$\frac{d^{2}}{V_{2^{2}} \operatorname{Sin}^{2} \varphi}\left[\frac{e}{e+a}\right]^{2}=1-\frac{(2 x d)^{2}}{V_{2^{2}}(e+a)^{2}} \quad$ and
$\frac{d^{2} \mathrm{e}^{2}-\operatorname{Sin}^{2} \varphi\left[\mathrm{~V}_{2}{ }^{2}(\mathrm{e}+\mathrm{a})^{2}-(2 \mathrm{xd})^{2}\right]}{\mathrm{V}_{2}{ }^{2}(\mathrm{e}+\mathrm{a})^{2} \operatorname{Sin}^{2} \varphi}=0$
is obtained.
In this last equation e, a and d are dependent on X and Z. The refractor in the $X ; Z$ plane is expressed as $Z=A X+B$. When Z is replaced by $A X+B$ in the equation (12) an equation dependent only on X is obtained.

Abscissa of the point at which the ray reaches the refractor under critical angle is one of the roots of equation (16). To solve the equation (13) it should be arranged with respret to X.

From (9) it can be written
$\mathbf{d}^{2}=\mathbf{d}_{2} \mathbf{X}^{2}+\mathbf{d}_{1} \mathbf{X}+\mathbf{d}_{0}$
where
$\mathbf{d}_{\mathbf{2}}=\left(\mathrm{V}_{\mathrm{o}} \mathrm{KA}\right)^{2}$
$\mathrm{d}_{1}=2 \mathrm{~V}_{\mathrm{o}^{2}} \mathrm{KA}(\mathrm{KB}+1)$
$d_{0}=V_{o^{2}}\left(K^{2} B^{2}+2 K B+1\right)$
Similarly, using (10) and (11)
$\mathbf{a}=\mathbf{a}_{2}^{1} \mathbf{x}^{2}+\mathbf{a}_{1}{ }_{1} \mathbf{x}$
where
$\mathbf{a}^{1}{ }_{2}=2 \mathrm{~K}(\mathrm{~A} \operatorname{Cos} \varphi-\operatorname{Sin} \varphi)$
$\mathrm{a}^{1}{ }_{\mathrm{I}}=2 \operatorname{Cos} \varphi(\mathrm{BK}+1)$
since $\mathbf{A}=\tan \varphi ; \mathbf{a}^{\mathbf{1}}=0$
$\mathbf{a}^{2}=\left(\mathbf{a}^{1}{ }_{2}\right)^{2}$
$\mathbf{e}=\mathrm{e}_{2}{ }_{2} \mathrm{x}^{2}+\mathrm{e}_{1}{ }_{1} \mathrm{x}+\mathrm{e}^{1}{ }_{0}$
where
$\mathbf{e}_{2}{ }_{2}=\mathbf{K} \operatorname{Sin} \rho\left(1+\mathbf{A}^{2}\right)$
$\mathrm{e}_{\mathrm{o}}{ }_{0}=2 \mathrm{~A} \operatorname{Sin} \varphi(1+\mathrm{KB})$
$\mathbf{e}^{1}{ }_{0}=\mathbf{B} \operatorname{Sin} \varphi(2+K B)$
In this stage if the terms $d^{2} e^{2}$ and $(e+a)^{2}$ will be arranged with respect to the powers of X, equation (16) should also be written in the powers of X .
$\mathrm{e}^{2}=\left(\mathrm{e}_{2} \mathrm{x}^{2}+\mathrm{e}_{1}{ }_{1} \mathrm{x}+\mathrm{e}_{0}^{1}\right)^{2}=\mathrm{e}_{4} \mathrm{x}^{4}+\mathrm{e}_{3} \mathrm{x}^{3}+3 \mathrm{e}_{2} \mathrm{x}^{2}+\mathrm{e}_{1} \mathrm{x}^{2}+\mathrm{e}_{0}$. When the similar terms are equated:
$\mathrm{e}_{4}=\left(\mathrm{e}_{2}^{1}\right)^{2}$
$\mathrm{e}_{3}=2 \mathrm{e}_{2}{ }^{1} \mathrm{e}^{1}{ }_{1}$
$\mathbf{e}_{2}=\left(\mathrm{e}_{1}\right)^{2}+2 \mathrm{e}^{1}{ }_{2} \mathrm{e}_{\mathrm{o}}$
$e_{1}=2 e_{1}{ }^{1} e^{1}{ }_{0}$
$e_{0}=\left(\mathrm{e}^{1}{ }_{0}\right)^{2}$
Because $d^{2} e^{2}$ is the sixth power of $X ; d^{2} e^{2}=e_{4} d_{2} x^{6}+\left(e_{4} d_{1}+e_{3} d_{2}\right) x^{5}+$ $\left(e_{4} d_{0}+e_{3} d_{1}+e_{2} d_{2}\right) x^{4}+\left(e_{3} d_{0}+e_{2} d_{1}+e_{1} d_{2}\right) x^{3}+\left(e_{2} d_{0}+e_{1} d_{1}+e_{0} d_{2}\right)$ $x^{2}+\left(e_{1} d_{0}+e_{0} d_{1}\right) x+e_{0} d_{0}$. On the other hand, when $a^{2}{ }_{2}=0$ is taken into account the following equation can be obtained by using equations (18), (20)
$(a+e)^{2}=e_{4} x^{4}+\left(e_{3}+2 a_{1}^{1} \mathbf{e}_{2}^{1}\right) x^{3}+\left(a_{2}+e_{2}+2 a_{1}{ }_{1} \mathbf{e}_{1}\right) \mathbf{x}^{2}+$ $\left(e_{1}+2 a^{1}{ }_{1} e^{1}{ }_{0}\right) x+c_{0}$
Accordingly when a polynominal in power six is written as:

$$
\begin{equation*}
\sum_{n=0}^{6} P_{n} X^{n} \tag{21}
\end{equation*}
$$

coefficients of (21) can be as follows using equations (12)-(20)
$\mathrm{P}_{6}=\mathrm{e}_{4} \mathrm{~d}_{2}$
$P_{5}=e_{4} d_{1}+e_{3} d_{2}$
With $f_{1}=e_{4} d_{0}+e_{3} d_{1}+e_{2} d_{2} ; f_{2}=e_{3} d_{0}+e_{2} d_{1}+e_{1} d_{2}$
$\mathbf{P}_{4}=\mathrm{f}_{1}-\operatorname{Sin}^{2} \varphi \mathrm{~V}_{2}{ }_{2} \mathbf{e}_{4}+4 \operatorname{Sin}^{2} \varphi \mathrm{~d}_{5}$
$\mathbf{P}_{3}=\mathrm{f}_{2}-\operatorname{Sin}^{2} \varphi \mathrm{~V}^{2},\left(\mathrm{e}_{3}+2 \mathrm{a}_{1}{ }_{1} \mathrm{e}^{1}{ }_{2}\right)+4 \operatorname{Sin}^{2} \varphi \mathrm{~d}_{1}$
With $\mathbf{g}_{1}=\mathbf{e}_{2} \mathbf{d}_{0}+\mathbf{e}_{1} \mathbf{d}_{1}+\mathbf{e}_{0} \mathbf{d}_{2} ; \mathrm{g}_{2}=\mathbf{a}_{2}+\mathbf{e}_{2}+2 \mathbf{a}_{1}{ }_{1} \mathbf{e}^{1}{ }_{1}$
$\mathbf{P}_{2}=\mathrm{g}_{1}-\operatorname{Sin}^{1} \varphi \mathbf{V}^{2}, \mathrm{~g}_{2}+4 \mathrm{~d}_{0} \operatorname{Sin}^{2} \varphi$
$P_{1}=e_{1} d_{0}+e_{0} d_{1}-V_{2}^{2}\left(e_{1}+a_{1}^{1} e^{1}\right) \operatorname{Sin}^{2} \varphi$
$P_{0}=e_{0} d_{0}-V_{2}{ }_{2} e_{0} \operatorname{Sin}^{2} \varphi$
When \underline{p} values found in equations (22) are replaced in the equation (21) the smallest root of (21) will provide the abscissa value of the point of incidence. The other roots form the trivial solutions.

It goes without saying that it is tedius and not practical to solve the problem through the equation (21). But we can try an approximate solution, sufficently accurate, which replace favourably tbe equation (21). Approximate Solution: Under the common conditions the $V_{0} ; V_{2}$ and B parameters are more than 1 and $\operatorname{Sin} \varphi, K$ parameters are less than 1 in the polinominal (21). Therefore coefficients $P_{2} ; P_{1}$ and P_{o} are great and other coefficients are negligible.

Then, putting $\alpha=\mathbf{P}_{2} ; \beta=\mathbf{P}_{1}$ and $\gamma=\mathbf{P}_{\mathbf{o}}$
$X=\frac{-\beta-\sqrt{\beta^{2}-4 \alpha \gamma}}{2 \alpha}$ is the approximate solution
Calculation of Time: Fig (1)
Replacing the values $\theta_{1}=-\varphi+\arcsin \left(\frac{\mathrm{V}_{\mathrm{o}}(1+\mathrm{KZ})}{\overline{\mathrm{V}}_{2}}\right)$
and $\theta_{0}=\arcsin \left[\frac{\operatorname{Sn} \theta_{1}}{1+K Z}\right]$ in the equation $t=\frac{1}{K V_{0}}\left[\log \left(\tan \frac{\theta}{2}\right)\right]_{\theta_{0}}^{\theta_{1}}$
time value t can be calculated easily between 0 and M

Computation of the Coordinates on the Negative x Direction:

Coordinates may be calculated from the coefficients P, obtained from (22) by keeping $V_{0} ; B ; K$ values unchanged and putting - φ for φ X value found should be multiplied by -1 .

Numerical Computation:

The mput values are:
$\mathrm{V}_{0}=1000 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{2}=2000 \mathrm{~m} / \mathrm{s}$
$B=400 \mathrm{~m}$
$\varphi=5^{0}$
$K=0.0008333$
From (22) the coefficients of the sixth order polynominal:
$P_{6}=0,2847.10^{-10}$
$P_{5}=0,1057014.10^{-5}$
$\mathbf{P}_{4}=0,010164$
$\mathrm{P}_{3}=1,705931$
$P_{2}=-14482,8$
$\mathrm{P}_{1}=-6064908$
$P_{0}=1156219.10^{4}$
give as smallest root $x=266,28 \mathrm{~m}$.
From ($Z=A X+B$), Z is found $423,29 \mathrm{~m}$.
Using the formula (24) the value obtained for
$\operatorname{Snn}\left(\theta_{1}+\varphi\right)$ is 0,676364
At the point of incidence $V_{0}(1+K Z) / V_{2}=0,676366$
Thus, it is proved that $\operatorname{Sin}\left(\theta_{1}+\varphi\right)$ is equal to
$V_{0}(1+K Z) / V_{2}$ with an error of 0,0001

Approximate solution:

The formula (23) gives:
$\mathrm{X}=265,24 \mathrm{~m}$.
$Z=423,20 \mathrm{~m}$.

As we can see approximation is perfect.
Time Calculation: Can be easly performed by using (25).
Between ($0 ; 0$) and ($266.28 ; 423,29$) Fig (1)
$\mathrm{t}_{\mathrm{OM}}=0,427 \mathrm{Sec}$.
$\mathrm{U} \operatorname{sing} \operatorname{Sin} \theta_{0}^{1}=\frac{\operatorname{Sin} \theta_{2}}{1+K Z} \quad$ and
$\mathrm{SO}_{1}=\frac{1}{\mathrm{~K} \operatorname{Sin} \theta^{1}}{ }_{0}\left(\operatorname{Cos} \theta_{0}^{1}-\operatorname{Cos} \theta_{2}\right)=359,1 \mathrm{~m}$
$\mathrm{t}_{\mathrm{MO}_{1}}=0,474$ Sec. is obtained.

REFERENCES

EVSEN, H.M., 1967. Outline of a System of Refraction Interpretation for Monotonic Increase of Velocity with Depth. Seismic Refraction Prospecting, Editor A.W. Musgrave SEG, Tulsa, Ohlahoma, 280-284.

LASKI, J.D., 1973. Computation of the Time-Distance Curve for a Dipping Refractor and Velocity Increasing with Depth in the Overburden. Geoph. prosp., v. 21. p. 366-378.

FAVRE, B., 1958. Cours ne Geophysique. Societe des Editions Technip., p. 318-321.

