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REFRACTION IN THE CASE OF VELOCITY INCREASING LINEARLY
WITH DEPTH AND DIPPING REFRACTOR
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ABSTRACT

In this paper the time-distance relation for head waves in “dipping refractor’ is calculated as-
suming that the real seismic media may be expressed by tbe velocity fonetion V == Vo (1 4 K7),
depending on depth. A numerical example is also given.

INTRODUCTION

Horizontal refractor case, with velocity as a fonction of depth, has
been studied by various autbors. For the case of dipping refractor.
Laski (1972) has developed an algorithm for an approximate solution
of time-distance relation with the velocity function taken as V = V;

[L—;‘qz ]%

where

q = dimensionless constant

L = a constant with the dimension of length

Z = depth below datum.

The greatest difficulty encountered in solving the problem is to

find the coordinates of the point at which the seismic ray reaches the
refractor under the critical angle.

In this paper the equation giving the coordinates of the above
mentioned point has been derived taking the velocity function to be
V = V, (1+KZ) and thus, the problem is solved.
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Calculation of the coordinates
Notation (Fig-1)
Vo = velocity at the surface
V = velocity at Z
Z = depth
K = constant

Zr — AX + B — E'quat‘ion of the line vexpréssingk the 'revfr:ic'tér '
V> = Velocity of the refracting layer.

o)

[
>

X

V=Volle1<Z)

z Fig(1)

Equaiion of the coordinates of the point of incidence at critical angle on the

positive x direction

Sin (814¢) = Vo (14+KZ) |V, gives
Sinf, Cosp + Cosf, Sinp = V4, (14+KZ) [V, v N Y

using X = ! {Cosby — CosOy) and
0

K Sing

1

= m (Sinel — Sineo)’, Favre» (1958), |
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It can be written ~
Sin 0, = (ZK =+ 1) Sin 6, (2)
Cos 8; = Cos 8, — K X Sin 0, (3)
by combination of (2), (3) and (1)
we find [(KZ -+ 1) Cos ¢ — KX Sing ] Sin 6, + Sin ¢ Costl,
— V{1 + KZ)/V, =0 ; (4)
on the otber hand when 8 is eliminated. frdm

1 1

X = ——=— (Cos 8p—Cos0) and Z =

K Smo, (Sinf;—Sin6,) (5)

K Sinf,
and the result is divided by K Sinf,, the following equation is reached
(X2 4 Z%) K Sinf, — 2X Cosby + 2Z Sinb, = (6)

solving 0, from equation (4) and (6) an equaticu dependent on X and
Z can be cbtained.

If we multiply bcth sides of the equations (4) aud (6) by 2X and Sing
respectively and summing the two equations we obtain: K Sin 6, Sing

(X2 4 Z2) + 2X Sinb, [(KZ +1) Cosp — KX Sing — KX Sirg]

2X V, (1 4- KZ)

— v, =0 )
Solving for Sinf, yields,

Sinf, = %}:—)—— (8)
where ‘
d="Vo(l + KZ) ©)
a = 2x [(KZ + 1) Cosp — KX Sing] (10)
e = K Sing (X2 + Z2) -+ 2 Z Sing 1)

If the value of Sinf, is placed in the equation (4) it results:

ad . d
'—‘7-2(()——}—-3‘) + Sln ® COS 90 -— Vz

— 0 (12)
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According to (12)

ad 4 d
Sing V, (e + a) Sin ¢ V>

Cos By = —

If Cos 8, is expressed in term of Sinf, (12) becomes

2

d? € . /T 2Xd )
V.:Sing (e +a Y ( Vi(e + a)

squaring both sides of (14)

d2 e 1T _, (2xd)?
V2 Sin2g [e+a ] T TV2 (e + a2

d2e2 — Sin2g [V,2 (e + a)2 — (2xd)2 ]
V22 (e + a)2 Sin2gp

is obtained.

and

(13)

(14)

(15)

(16)

In this last equation e, a and d are dependent on X and Z. The
refractor in the X; Z plane is exvressed as Z = AX -+ B. When Z is
replaced by AX + B in the equation (12) an equation dependent only

on X is obtained.

Abscissa of the point at which the ray reaches the refractor under

critical angle is one of the roots of equation (16). To solve the equation

(13) it should be arranged with respret to X.
From (9) it can be written

d?2 = d.X2 + ;X + d,

where

d: = (V, KA)2

d; =2V,2 KA (KB + 1)

d, = Vo2 (K2B2 +2KB + 1)

Similarly, using (10) and (11)

a=ax +|a x

(17)
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where

a', = 2 K (A Cos ¢ — Sin o)

a', = 2 Cos ¢ (BK + 1) (18)
since A = tan ¢ ;a', = 0

a? = (al,)?

o= e, x b e x + e

where

e', = K Sin ¢ (1 4 A2)

', =2AS8ing (1 -+ KB) (19)
e', = B Sin ¢ (2 + KB)

In this stage if the terms d2e2 and (e + a)2 will be arranged with respect

to the powers of X, equation (16) should also be written in the powers
of X.

el = (e, x2 + e, x + €' )2 = ex*+ ex’ - 3e,x” + ex* | ¢,. When

the similar terms are equated:
—_— 132
e, = (¢')

o 1 .1
e, = 2¢, ¢

€, = (611)2 + 2 el2 e10 (20)
e, =2¢' ¢
e, = (e!))?

Because d2e2 is the sixth power of X; d%e® = e,d,x° 4 (e,d, + e,d,)x’ +
(e,dy + ed, + ed,) x* + (e,d, + ed, + e dy) X 4 (e,d, + e, d, + €,d,)
x* + (e, d, + €,d,) x -+ e,d, . On the other hand, when a’, = 0 is taken
into account the following equation can be obtained by using equations
(18), (20)
(a + e =ex*+ (e, + 2 a',e) x* + (a, 4+ e, + 2 ale') x> +
(e, - 2a' e) x + e,
Accordingly when a polynominal in power six is written as:

3 PX"

n=o0 (21)
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coefficients of (21) can be as follows using equations (12)—(20)
P, =e.d,
P,=ce,d + ed,
With f, = e d, + ed, + e,d,; f, = ed, + e,d, 4 ed,
P,=1f —Sin* ¢ V', ¢, + 4 Sin” ¢ d,
P, = f, — Sin’ ¢ V?, (e, 4+ 2 a' ¢',) + 4 Sin’ ¢ d, ' (22)

With g = e, d, + ed, + ed,; g, = a, + e, + 2 a' e

P, = g, — Sin' ¢ V?, g, - 4 d, Sin* ¢

P, =ed, + ed, — V? (e, + a', ¢’;) Sin’* ¢
P, = e,d;, — V2, ¢, Sin® ¢

When p values found in equations (22) are replaced in the equation (21)
the smallest root of (21) will provide the abscissa value of the point of
incidence. The otker roots form the trivial solutions.

It goes without saying that it is tedius and not practical to sclve the
problem through the equation (21). But we can try an approximate
solution, sufficently accurate, which replace favourably the equation (21).
Approximate Seolution: Under the common conditicns the Vo3 V; and
B parameters are more than 1 and Sing, K parameters are less than 1
in the polinominal (21). Therefore coefficients P»; P, and P, are great
and other coefficients are negligible.

Then, putting o = P =Py andy = P,

5 is the approximate sclution (23)
Calculation of Time: Fig (1)
Replacing the values §; = — ¢ -+ arcsin (w) (24)
2
0
- . Smf; 7. . 1 6 ) 1
and 0, = aresin [m in the equation t = XV, [log (tan > ]6
o
(25)

time value t can be calculated easily between 0 and M
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Computation of the Coordinates on the Negative x Direction:

Coordinates may be calculated from the coefficients P, obtained
from (22) by keeping Vo; B; K values unchanged and putting — ¢ for ¢
X wvalue found should be multiplied by -1.

Numerical Computation:

The mmput values are:

V, = 1000 m [
V, = 2000 m [
B = 400 m

¢ =5

K = 0.0008333

From (22) the coefficients of the sixth order polynominal:
P, = 0,2847.10-1 |

P, = 0,1057014.10-°

P, = 0,010164

P, — 1,705931

P, = — 14482,8

P, = — 6064908

P, = 1156219.10*

give as smallest root x = 266,28 m.

From (Z = AX 4 B), Z is found 423,29 m.

Using the formula (24) the value obtained for

S (0, + o) is 0,676364

At the point of incidence V, (1 + KZ)/V, = 0,676366
Thus, it is proved that S (6,4 ¢) is equal to

V, (1 4 KZ) [V, with an error of 0,0001

Approximate solution:

The formula (23) gives:

X = 265,24 m.

Z = 423,20 m.
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As we can see approximation is perfect.

- Time Calculation: Can be easly performed by using (25).
Between (0;0) and (266.28; 423,29) Fig (1)

toy = 0,427 Sec.

Sin §
: cpl 2
Using Sin 0!, = K7 and
S0, = S (Cos ') — Cos 62) = 359,1 m
! K Sm 0 % %o 0s 62) ’

tyo, = 0,474 Sec. is obtained.
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