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ABSTRACT

In this papel the time-distance reiation for heâd waves in “dipping refractor” is calculated as- 
suming that the real seismic media may be expressed by tbc velocity fonction V = ■ Vo (1 + KZ),
depending on depth.-A numerical example is also given.

INTRODUCTION

Horizontal refractor case, with velocity as a fonction of depth, has
been studied by various authors. For the case of dipping refractor.
Laski (1972) has developed an algorithm for an approxinıate solution
of time-distance reiation with the A elocity fnnction taken as V = Vı

L + qz
L f

1

q

where

q = dimensionless constant

L = a constant with the dimension of length

Z = depth below datum.

The greatest difficulty encountered in solving the problem is to 
find the coordinates of the point at which the seismic ray reaches the 
refractor under the critical angle.

In this paper the equation giving the coordinates of the above 
mentioned point has been derived taking the velocity fnnction to be 
V = Vo (1-|-KZ) and thus, the problem is solved.
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Calculation of the coordinates

Notation (Fig-1)

Vo = velocity at the surface

V = velocity at Z

Z = depth

K = constant

Z = AX + B = EquatioD of the line expressing the refractor 
Vı = Velocity of the refracting layer.

so Ol ♦
X

0a
v= Vo(1*1<Z)

M
V2

4

2 Figd)
Eguaiion of the coordinates of the point of incidence at critical angle on the 

positive X direction

Sin (Öı+ç) = Vo (1 + KZ) IVz gives

Sinö, Cosç + CosOj Sin^p = Vo (1 + KZ)/V2 (1)

using X = 1
K S inç o (CosOo — Cos6]) and

■Z = 1
K SinÖo

(Sinöı — Sin0o). Favre (1958),
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It can be written

Sin 01 = (ZK + 1) Sin 0o

Cos 01 = Cos 00 — K X Sin 0o

by combinatioD of (2), (3) and (1)

(2)

(i)

we find [(KZ -}- 1) Cos cp 

— Vod + KZ)/V2 = o

KX Sin<f)) Sin 0o + Sin cp CosGo

(4)

on the otber hand when Oj is eliminated from

1
K SinOo

(Cos 00—Cosöı) and Z =
1

K Sin0o
(SinOı—Sinöo) (5)

and the result is divided by K SinOo, the following equation is reached

+ Z?) K SinSo — 2X Cos0o + 2Z Sin0o = O ^6)

solving 00 from equation (4) and (6) an 
Z can be obtained.

equation dependent on X and

If we mnltiply bcth sides of the equations (4) and (6) by 2X and Sincp 
respectively and summing the two equations we obtain: K Sin 0o Sintp

(X2 + Z2) + 2X Sin0o [(KZ +1) Coscp — KX Sinç — KX Sİn<p]

2X Vo (1 + KZ)
V2 (7)

Solving for SinOg yieîds,

SinOo
2 X d 

y 2 (e+a)
(8)

X =

= O

where 

d = Vo (1 + K Z)

a — 2x [(KZ + 1) Coscp — KX Sincp]

e — K Sincp (X2 Z2) 2 Z Sinç

If the value of SinOo is placed in the equation (4) it results:

ad
V 2 (e a) + Sin ıp Cos 00 —

d
Nı

(10)

(11)

= O (12)
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According to (12)

Cos 00 =
ad

Sin cp V2 (e + a)
d

Sin <p V 2 (13)+

If C08 00 is oxpressed in temi of SinOo (12) becomes

d2
V 2 Sinş

e
(e + a)

2xd
V2 (e 4 a) (14)= VI-

sguaring both sides of (14)

2d2
V 22 Sin2ıp

(2xd)2
V22 (e 4 a)2

and (15)

d2e2 — Sin2ıp [V22 (e ; a)2 — (2xd)2 ]
N 2^ (e + a)2 Sin2tp (16)

is obtained.

In this last equation e, a and d are dependent on X and Z. The
refractor in the X; Z plan e is exnressed as Z = AX + B. When Z is
replaced by AX 4 B in the equation (12) an 
on X is obtained.

equation dependent only

Abscissa of the point at which the ray reaches the refractor under 
critical angle is one of the roots of equation (16). To solve the equation 
(13) it should be arranged with resprct to X.

From (9) it can be written

d2 ~ d2X2 4 dıX 4' d-o

where

d2 = (Vo KA)2

di = 2 Vo2 KA (KB + 1)

do = Vo2 (K3B2 4- 2 KB + 1) (17)

Similarly, using (10) and (11)

a = a\x'

e
e 4 a

= 1 —

= 0

a 1
• 1 X
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where

a 1 
' 2 2 K (A Cos <p Sin <p)

a\ = 2 Cos 9 (BK + 1)

since A = tan 9 ; a'^ = 0 

(18)

a^ A

e = e\ + e\ X + e‘,o

where

e'.1■ 1

e\

e*.

= K Sin ş (1 +

= 2 A Sin 9 (1 + KB)

= B Sin 9 (2 + KB)

(19)O

O

In this stage if the terms d^e^ and (e + a)2 will be arranged with respect 
to the powers of X, eguation (16) should also be wıitten in the powers 
of X.

e^ (e'j + e'j X + e‘„)2 = c^k'* + + 3e2X’ 4- + ®o • ^hen
the sirailar terms are equated:

<^4

«3

= (e’.)'

= 2 Cj' e'j

«2 = (e\)' + e' (20)2 e 1 
o

e, = 2 e,'‘ e’ o

,2«0 (e‘„)^

Because d2e2 is the sixth power of X; d^e^ + (e^dj + e.djv" +
(«4 <İo + x'‘ + (es^o + »adı + e,dj) x-

A (ejd„ A ©odj) X A ©odj . On the other hand, -vvhen a^j = 0 İS taken
into account the following equation ı 
(18), (20)

(a + e)^ = e^x‘‘ + (e^ + 2 a\ e’,)

can be obtained by using equations

x’ + (a^ + e^ + 2 a\e\) x^ +

(e, + 2 a\ e’J «oX _1_

3 + (^^2*^0 + ®1<11 +

Accordingly when a polynominal in power six is written as:

6
S P„X" 

n=o (21)
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coefficients of (21) can be as follows using equations (12)-(20)

P, = 64 d^

Pj = e, dj + Cjdj

With fj = e3o + «jdı + Cjdj; f^ 

P4 = f] — Sin^ ç 64 + 4 Sin^ ç d.

e^do + e^d, + Cjd^

P = f^3 2 Sin^ cp V^, (Cj -|- 2 a'j e'j) + 4 Sin^ tp d, (22)

With gj *^2*^0 + ®ol^2’ Sz + ®2 2 a', e>.

Pz = gı — Sini cp V^.' cr
? 02 + 4 dj Sin^ cp

1 1

Pı = + «0^1 — («1 + a

Po = «oiio — Sin^ cp

1
1 e’o) Sin^ cp

When p values found in equations (22) are replaced in the equation (21) 
the smallest root of (21) will provide the abscissa value of the point of 
incidence. The other roots form the trivial Solutions.

It goes without saying that it is tedius and not practical to solve the 
problem through the eguation (21). But we can try an approximate 
solution, sufficently accurate, which replacefavourably the equation (21). 
Approximate Solution: Under the common conditions the Vo; Vz and
B parameters are more than 1 and Sin<p, K parameters are less than 1
in the polinominal (21). Therefore coefficients Pz; Pı and Po are great 
and otber coefficients are negligible.

Then, putting « = Pz; & = Pı and Y = Po

X ==
— — y/ p2 — 4aY

2(z
is the approKİmate sclution (23)

Calculation of Time: Fig (1)

Replacing the values 9ı = — <p + arcsin Vo (1 + KZ)
Vz

(24)

inand 6g = arcsin
SınG 1

1 + KZ.

>6.

in the eguation t =
'o

1 1

time value t can he calculated easily between 0 and M
(25)
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Computation of the Coordinates on the Negative x Direction:

Coordinates may be calculated from the coefficients P, obtained 
from (22) by keeping Vo; B; K yalues unchanged and putting - cp for cp 
X value found should be multiplied by -1.

Numerical Computation:

The ınput values are:

V„ = 1000 m /, 

= 2000 m /, 

B = 400 m

s

s

Ç == 5“

K = 0.0008333

From (22) the coefficients of the sixth order polynominal:

Pj;= 0,2847.10-’"

Pj = 0,1057014.10-’

P^ = 0,010164

Pj = 1,705931
P2 = — 14482,8

P = — 60649081

P„ = 1156219.10“ 

give as smallest root x = 266,28 m.

From (Z AX - B), Z is found 423,29 m.

Using the formula (24) the value obtained for

Sın (0j ç) is 0,676364

At the point of incidence V„ (1 4- KZ) = 0,676366

Thus, it is proved that Sın {0j4- (p) is equal to

Vg (1 + KZ) /V^ with an error of 0,0001

Approximate solution:
The formula (23) gives:

X = 265,24 m.

Z = 423,20 m.
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As we can see approximation is perfect.

Time Calculation: Can be easly performed by using (25). 

Between (0;0) and (266.28; 423,29) Fig (1) 

^OM = 0,427 Sec.

Using Sin 6*,, Sin 62
1 + KZ and

SO (Cos ö’„ Cos 62) = 359,1 m1

1
K Sın e\

^MOı = 0,474 Sec. is obtained.
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