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1. INTRODUCTION

A number of very interesting problems of queuing, reliability, stock control the-
ory, stochastic finance, mathematical insurance, physics and biology are expressed
by means of renewal - reward processes (e.g., Feller [7], Borovkov [3], Brown and
Solomon [4], Patch [12], Khaniyev [8], Aliyev et. al. [1]). Moreover, many modi-
fications of renewal - reward processes can be used for solutions of some problems
in these fields, as well. These modifications are mostly given with various types of
the barriers (e.g., absorbing, delaying, reflecting and elastic barriers) or a discrete
interference of chance.

However, some interesting problems of physics (e.g., motion of the particle with
high energy in a diluted environment) are expressed by means of the processes with
reflecting barrier. In the literature, there are a number of interesting studies on
stochastic processes with reflecting barriers (e.g., Feller [7], Borovkov [3], Khaniyev
et. al. [9]). In these studies, authors generally have obtained the analytic results.
Unfortunately, these results consist of highly complex mathematical structures.

Recently, for avoiding this difficulty, an asymptotic approach method has been
begun to use. For this reason, in this study, the asymptotic expansions for the
moments of the boundary functionals of the process are obtained. So as to give this
results, we need to make a mathematical definition of renewal - reward process with
a generalized reflecting barrier.
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2. Mathematical Construction of the Process X(t)

Let {(ξn, ηn)} , n = 1, 2, 3, ..., be a sequence of independent and identically dis-
tributed random variables defined on a same probability space (Ω,F , P ), such that
the random variables ξn and ηn are also mutually independent and take only positive
values. Suppose that the distribution functions of ξn and ηn are given and these are
denoted by Φ(t) and F (x), respectively, i.e.,

Φ(t) = P{ξn ≤ t}, F (x) = P{ηn ≤ x}; t ≥ 0 x ≥ 0, n = 1, 2, ...

Here, F (x) is a continuous distribution function such that F (0) = 0.
Define the renewal sequences {Tn} and {Sn} as follows:

T0 = S0 = 0, Tn =
n∑

i=1

ξi, Sn =
n∑

i=1

ηi, n = 1, 2, ...,

and construct sequences of random variables {Nn} and {ζn} , n = 0, 1, 2, ... as
follows:

N0 = 0; ζ0 = z ≥ 0; N1 ≡ N1(λz) = inf {k ≥ 1 : λz − Sk < 0} ;
ζ1 ≡ ζ1(λz) = |λz − SN1 | ;
Nn ≡ Nn (λζn−1) = inf

{
k ≥ Nn−1 + 1 : λζn−1 −

(
Sk − SNn−1

)
< 0
}
;

ζn ≡ ζn (λζn−1) =
∣∣λζn−1 −

(
SNn − SNn−1

)∣∣ , n = 1, 2, 3, ...

Here, λ > 0 is an arbitrary positive constant.
Using {Nn, n = 0, 1, 2, ...}, define the following sequence {τn, n = 0, 1, 2, ...}:

τ0 ≡ 0; τ1 ≡ τ1(λz) =

N1∑
i=1

ξi; τ2 =

N2∑
i=1

ξi; ... ; τn =

Nn∑
i=1

ξi, n = 1, 2, ...

Moreover, let ν(t) = max {n ≥ 1 : Tn ≤ t} , t > 0, .
We can now construct the desired stochastic process X(t), as follows:

X(t) = λζn −
(
Sν(t) − SNn

)
, τn ≤ t < τn+1, n = 0, 1, 2...

The process X(t) can be also rewritten as follows:

X(t) =

∞∑
n=0

{
λζn −

(
Sν(t) − SNn

)}
I[τn;τn+1)(t).

Here IA(t) represents the indicator function of the set A, such that

IA(t) =

{
1, t ∈ A

0, t /∈ A

A trajectory of the process X(t) is given as in Figure 1.
The process X(t) is called renewal - reward process with a generalized reflecting

barrier. In the case that λ = 1, the process X(t) is known as renewal - reward
process with reflecting barrier.

The main aim of this study is to investigate the asymptotic behaviours of some
boundary functionals of the process X(t), when λ → ∞.

2
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Figure 1. A trajectory of the process X(t)

3. Boundary Functionals of X(t)

Three important boundary functionals N1

(
λζ̂λ

)
, τ1

(
λζ̂λ

)
, SN1(λζ̂λ) have been

defined in Section 2, will be investigated in this section. Here, ζ̂λ is a random
variable, the distribution function of which is πλ(z) ≡ limn→∞ P {ζn ≤ z}. By
definition, πλ(z) is the ergodic distribution of the Markov chain {ζn} which are the
reflections of the process X(t). The exact expressions and asymptotic expansions
of them are obtained. Before giving these results, there need to be stated some
propositions. First of all, let us give them.

3.1. Proposition. (Aliyev et. al.[1]) Assume that the condition α4 ≡ E(ξ41) < ∞
is satisfied. Then, the first four moments of the boundary functional τ1(z) can be
expressed by means of the boundary functionals N1(z) as follows:

1) E (τ1(z)) = α1E (N1(z)) ;

2) E
(
τ21 (z)

)
= α2

1E
(
N2

1 (z)
)
+
(
α2 − α2

1

)
E (N1(z)) ;

3) E
(
τ31 (z)

)
= α3

1E
(
N3

1 (z)
)
+ 3α1

(
α2 − α2

1

)
E
(
N2

1 (z)
)

+
(
2α3

1 − 3α2
1α2 + α3

)
E (N1(z)) ;

4) E
(
τ41 (z)

)
= α4

1E
(
N4

1 (z)
)
+ 6α2

1

(
α2 − α2

1

)
E
(
N3

1 (z)
)

+
(
11α4

1 − 18α2
1α2 + 4α1α3 + 3α2

2

)
E
(
N2

1 (z)
)

+
(
α4 + 12α2

1α2 − 4α1α3 − 3α2
2 − 6α4

1

)
E
(
N4

1 (z)
)
;

Here αk ≡ E
(
ξk1
)
, k = 1, 2, 3, 4.

The boundary functional N1(z) is a renewal process. The asymptotic expansions
for the moments of N1(z) exist in the literature [1]. It can be given as follows:

3.2. Proposition. (Aliyev et. al. [1]) Suppose that m2 ≡ E
(
η21
)
< ∞. Then, the

following two-term asymptotic expansions can be written for the first four moments
3
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of the boundary functional N1(z), when z → ∞:

E (Nn
1 (z)) =

(
z

m1

)n

+

[
n2CF − n(n− 1)

2

](
z

m1

)n−1

+ o
(
zn−1

)
.

Here, CF = m2/
(
2m2

1

)
is coefficient of Feller and mk ≡ E

(
ηk1
)
, k = 1, 2, 3, 4.

The first aim of this study is to investigate the boundary functional N1

(
λζ̂λ

)
,

when λ → ∞. Before investigating the boundary functional N1

(
λζ̂λ

)
, let us give

the following lemmas.

3.1. Lemma. g(x) : R+ → R is a measurable and bounded function and limx→∞ g(x) =
0. Then, the following relation can be written:

lim
λ→∞

∫ ∞

0

g(λz)dπλ(z) = 0.

Proof. Since limx→∞ g(x) = 0, for every ε > 0, there exist such a x∗(ε) < ∞ and
for every x ≥ x∗(ε) the following inequality is hold:

(3.1) |g(x)| ≤ ε

2
.

For instance, x∗(ε) can be defined as follows:

(3.2) x∗(ε) ≡ x∗ = sup
{
x > 0 : |g(x)| > ε

2

}
.

Then, for every x ≥ x∗, |g(x)| ≤ ε/2 will be hold. Let δ > 0 be an arbitrary positive
constant, for now. Then,

∫∞
0

g(λz)dπλ(z) can be shown as follows:

(3.3)

∫ ∞

0

g(λz)dπλ(z) =

∫ δ

0

g(λz)dπλ(z) +

∫ ∞

δ

g(λz)dπλ(z)

Now, define λ∗(ε, δ) as follows:

(3.4) λ∗(ε, δ) =
x∗(ε)

δ
.

For every λ ≥ λ∗(ε, δ), it will be λδ ≥ x∗(ε). Therefore, after computing, for each
λ ≥ λ∗(ε, δ), the following inequality is hold:∣∣∣∣∫ ∞

δ

g(λz)dπλ(z)

∣∣∣∣ ≤
∫ ∞

δ

|g(λz)| dπλ(z) ≤
∫ ∞

δ

ε

2
dπλ(z)

=
ε

2

∫ ∞

δ

dπλ(z) ≤
ε

2
(1− πλ(δ)) ≤

ε

2
(3.5)

Moreover, according to conditions of Lemma 3.1, g(x) is a bounded function and
supx∈R |g(x)| ≤ M < ∞. Hence, for each z ≥ 0, |g(λz)| ≤ M is satisfied. Then, the
following inequality can be written:

(3.6)

∣∣∣∣∣
∫ δ

0

g(λz)dπλ(z)

∣∣∣∣∣ ≤
∫ δ

0

|g(λz)| dπλ(z) ≤ Mπλ(δ).

4
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Here, πλ(x) is a continuous distribution and πλ(0) = 0. For this reason, there exist
such a δ > 0, so that

(3.7) πλ(δ) ≤
ε

2M

is satisfied. The greatest δ which is satisfied the Eq.(3.7), denote with δ∗. In other
words, δ∗ ≡ δ∗(ε) can be define as follows:

δ∗ ≡ δ∗(ε) = sup
{
δ > 0 : πλ(δ) ≤

ε

2M

}
> 0.

Since πλ(z) is a non-decreasing monotone function with respect to parameter z, for
every δ ≤ δ∗(ε), it will be πλ(δ) ≤ ε/(2M). In this case, it is followed that

(3.8)

∣∣∣∣∣
∫ δ

0

g(λz)dπλ(z)

∣∣∣∣∣ ≤ Mπλ(z) ≤ M
ε

2M
=

ε

2
.

Thus, substituting Eq.(3.5) and Eq.(3.6) into Eq.(3.3), the following inequality is
obtained:∣∣∣∣∣

∫ δ∗(ε)

0

g(λz)dπλ(z)

∣∣∣∣∣ ≤

∣∣∣∣∣
∫ δ∗(ε)

0

g(λz)dπλ(z)

∣∣∣∣∣+
∣∣∣∣∣
∫ ∞

δ∗(ε)

g(λz)dπλ(z)

∣∣∣∣∣
≤ ε

2
+

ε

2
= ε.

Therefore, it is concluded that

(3.9) lim
λ→∞

∫ ∞

0

g(λz)dπλ(z) = 0.

Thus, Lemma 3.1 is proved. �

3.2. Lemma. Suppose that limx→∞ g(x) = 0 and supx |g(x)| ≤ M < ∞. Moreover,
mn+1 ≡ E

(
ηn+1
1

)
< ∞ is satisfied. Then, the following relation is hold, when

λ → ∞:

(3.10) lim
λ→∞

∫ ∞

0

zng(λz)dπλ(z) = 0, n = 1, 2, ...

Proof. The integral in the relation (3.10) can be rewritten as follows:

(3.11)

∫ ∞

0

zng(λz)dπλ(z) =

∫ δ

0

zng(λz)dπλ(z) +

∫ ∞

δ

zng(λz)dπλ(z).

Here, the constant δ > 0 will be chosen by a special method which is going to be
explained below. The aim is to satisfy λz → ∞, while investigating the asymp-
totic behavior of the integral

∫∞
δ

zng(λz)dπλ(z). For shortness, define the following
notation:

J1n(δ) ≡
∫ δ

0

zng(λz)dπλ(z); J2n(δ) ≡
∫ ∞

δ

zng(λz)dπλ(z).

The first step is to determine the δ. It is going to be determined according to the
following rule for each ε > 0:

(3.12) δ∗(ε) ≡ inf
{
δ > 0 : πλ(δ) ≥

ε

2M

}
.

5
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Since the distribution of ηns is continuous distribution, ζns, which is the continu-
ous function of them, will also be positive-valued and continuous random variables.
Therefore, it should be πλ(0) = 0. Then, δ∗(ε) can be derived from the following
equation, directly:

(3.13) πλ (δ
∗(ε)) =

ε

2M
.

The solution of Eq.(3.13) exist and it is unique. Now, choose δ(ε) such as δ(ε) ≡
min {1, δ∗(ε)} and evaluate J1n (δ(ε)):

|J1n (δ(ε))| ≡

∣∣∣∣∣
∫ δ(ε)

0

zng(λz)dπλ(z)

∣∣∣∣∣ ≤
∫ δ(ε)

0

zn|g(λz)|dπλ(z)

≤ M

∫ δ(ε)

0

zndπλ(z) ≤ M [δ(ε)]
n
πλ (δ(ε)) ≤ Mπλ (δ(ε))

≤ Mπλ (δ
∗(ε)) ≤ Mε

2M
=

ε

2
(3.14)

Briefly, for each ε > 0, |J1n (δ(ε))| ≤ ε/2 is hold. Next, evaluate J2n (δ(ε)):

(3.15) |J2n (δ(ε))| ≤

∣∣∣∣∣
∫ ∞

δ(ε)

zng(λz)dπλ(z)

∣∣∣∣∣ ≤
∫ ∞

δ(ε)

zn|g(λz)|dπλ(z)

According to definition of δ(ε), it is a positive number, i.e., δ(ε) ∈ (0, 1].In this case,
when λ is chosen sufficiently large, then the condition λz → ∞ can be hold and
|g(λz)| ≤ ε/(2A) is true. Here, the positive constant A will be determined later.
According to the conditions of Lemma 3.2, limx→∞ g(x) = 0. Hence, for every ε > 0
and x ≥ x∗, there exist such a number x∗ that can be written |g(x)| ≤ ε/(2A). The
number x∗(ε) can be determined as follows:

(3.16) x∗(ε) ≡ sup
{
x > 0 : |g(x)| ≥ ε

2A

}
.

Then, for each x ≥ x∗(ε), |g(x)| ≤ ε/(2A). In this case, λ should be chosen as
λz ≤ x∗ ≡ x∗(ε). For this, the smallest λ can be defined as follows:

(3.17) λ∗ ≡ λ∗(ε) =
x∗(ε)

δ(ε)
.

For every λ ≥ λ∗, since λz ≥ λδ(ε) ≥ λ∗(ε)δ(ε) ≥ x∗(ε) is hold, g(λz) ≤ ε/(2A). Go
back to Eq.(3.15), for every λ ≥ λ∗, the following relation can be written:

(3.18) |J2n (δ(ε))| ≤
∫ ∞

δ(ε)

zn
ε

2A
dπλ(z) ≤

ε

2A

∫ ∞

δ(ε)

zndπλ(z) ≤
ε

2A
E
(
ζ̂nλ

)
Here, E

(
ζ̂nλ

)
is the nth order moment of the ergodic distribution πλ(z). According

to Rogozin [14], the following convergence is hold, when λ → ∞:

πλ(z) → π0(z) ≡
1

m1

∫ z

0

(1− F (v)) dv

6
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Moreover, since mn+1 < ∞ is satisfied, according to convergence of moments (Feller
[7], p. 251), the following convergence can be given, when λ → ∞:

(3.19) E
(
ζ̂nλ

)
→ mn+1

(n+ 1)m1
.

Then, it can be possible to choose such a λ1 >> 1 which satisfies the following
expression:

(3.20) E
(
ζ̂nλ1

)
≤ 2mn+1

(n+ 1)m1
≡ K < ∞

Now, choose λ = λ∗(ε) which satisfies the following expression:

(3.21) λ∗(ε) ≡ max {λ∗(ε), λ1} .
According to definition of λ∗(ϵ), for every λ ≥ λ∗(ε),

E
(
ζ̂nλ

)
≤ 2mn+1/ [(n+ 1)m1] ≡ K < ∞ and

(3.22) |J2n (δ(ε)) | ≤
ε

2K
E
(
ζ̂nλ

)
≤ ε

2K
K =

ε

2
.

As a result, for every ε > 0, as long as λ ≥ λ∗(ε) is satisfied, |J2n(δ(ε))| ≤ ε/2 is hold.
Taking into account the Eq.(3.14) and Eq.(3.22), for every ε > 0 and λ ≥ λ∗(ε), the
following inequality is satisfied:

(3.23)

∣∣∣∣∫ ∞

0

zng(λz)dπλ(z)

∣∣∣∣ ≤ |J1n (δ (ε))|+ |J2n (δ (ε))| ≤
ε

2
+

ε

2
= ε.

Thus, the following convergence is obtained, when λ → ∞:

(3.24)

∫ ∞

0

zng(λz)dπλ(z) → ∞

Hence, Lemma 3.2 is proved. �

Using these results, it can be given the following theorem which expresses the as-

ymptotic expansions for the first four moments of the boundary functionalN1

(
λζ̂λ

)
.

3.1. Theorem. Assume that the conditions of Proposition 3.2, Lemma 3.1 and
Lemma 3.2 are satisfied. Then, the following asymptotic expansions for the mo-

ments of boundary functional N1

(
λζ̂λ

)
can be given, when λ → ∞:

E
(
Nn

1

(
λζ̂λ

))
=

(
λ

m1

)n

An +

(
λ

m1

)n−1

BnAn−1 + o
(
λn−1

)
.

Here,

An ≡ mn+1

(n+ 1)m1
; Bn ≡ n2CF − n(n− 1)

2
; mn ≡ E (ηn1 ) , n = 1, 2, 3, 4

and CF is the coefficient of Feller, i.e., CF ≡ m2/
(
2m2

1

)
.

Proof. In Theorem 3.1, denote the coefficient of the second term with Bn, n =
1, 2, 3, 4, as follows:

(3.25) Bn ≡ n2CF − n(n− 1)

2
, n = 1, 2, 3, 4.

7
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Then, the following expansion can be rewritten for E (Nn
1 (z)), n = 1, 2, 3, 4:

(3.26) E (Nn
1 (z)) =

(
z

m1

)n

+Bn

(
z

m1

)n−1

+

(
z

m1

)n−1

gn(z).

Here, gn(z) is a bounded function and limz→∞ gn(z) = 0. Integrate the both side of
the Eq.(3.26) with respect to πλ(z), then the following expression is obtained:

E
(
Nn

1

(
λζ̂λ

))
≡

∫ ∞

0

E (Nn
1 (λz)) dπλ(z)

=

∫ ∞

0

(
λz

m1

)n

dπλ(z) +Bn

∫ ∞

0

(
λz

m1

)n−1

dπλ(z)

+

∫ ∞

0

(
λz

m1

)n−1

gn (λz) dπλ(z)

=

(
λz

m1

)n

E
(
ζ̂nλ

)
+Bn

(
λz

m1

)n−1

E
(
ζ̂n−1
λ

)
+

(
λz

m1

)n−1

In(λ)(3.27)

Here, E
(
ζ̂nλ

)
=
∫∞
0

zn−1dπλ(z), n = 1, 2, ... and In(λ) ≡
∫∞
0

zn−1gn(λz)dπλ(z).

From Lemma 3.2, In(λ) → 0 is hold, when λ → ∞. Consequently, In(λ) = o(1).
Taking consideration Eq.(3.19) into the Eq.(3.27), the following expansion can be

derived, when λ → ∞:

(3.28) E
(
Nn

1

(
λζ̂λ

))
=

(
λ

m1

)n

An +

(
λ

m1

)n−1

BnAn−1 + o
(
λn−1

)
Here,

An ≡ mn+1

(n+ 1)m1
; Bn ≡ n2CF − n(n− 1)

2
;

CF ≡ m2

2m2
1

; mn ≡ E(ηn1 ), n = 1, 2, 3, 4.

Thus, Theorem 3.1 is proved. �

Now, investigate the boundary functional τ1

(
λζ̂λ

)
. To obtain the moments of

the boundary functional τ1

(
λζ̂λ

)
, give the following lemma from literature.

3.3. Lemma. (Aliyev et. al. [1]) Suppose that the conditions of Lemma 3.1. Then,
the following asymptotic expansions for the first four moments of the boundary func-
tional τ1(z) can be written, when λ → ∞:

(3.29) E (τn1 (z)) = αn
1

(
z

m1

)n

+
n2

2
αn
1Dn

(
z

m1

)n−1

+ o(zn−1)

Here, Dn = C2
v (η1) +

n−1
n C2

v (ξ1) +
1
n . Cv (η1) and Cv (ξ1) are the variation of

coefficient of η1 and ξ1, respectively, i.e.,

Cv (η1) ≡ ση

m1
; ση ≡ V ar (η1) ; m1 ≡ E (η1) ;

Cv (ξ1) ≡ σξ

α1
; σξ ≡ V ar (ξ1) ; α1 ≡ E (ξ1) �.

8
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3.2. Theorem. Suppose that E
(
ξ21
)
< ∞ and E

(
ηn+1
1

)
< ∞, n = 1, 2, 3, 4. Then,

the asymptotic expansion for the first four moments of τ1

(
λζ̂λ

)
can be written as

follows, when λ → ∞:

(3.30) E
(
τn1

(
λζ̂λ

))
= αn

1Cnλ
n +

n2

2
αn
1Cn−1Dnλ

n−1 + o
(
λn−1

)
, n = 1, 2, 3, 4.

Here, An ≡ mn+1/((n+1)m1), Cn = An/m
n
1 and Dn = C2

v (η1)+((n+1)/n)C2
v (ξ1)+

1/n. Moreover, Cv(η1) and Cv(ξ1) are variation coefficients of η1 and ξ1, respec-
tively.

Proof. By definition,

(3.31) E
(
τ1

(
λζ̂λ

))
≡
∫ ∞

0

E (τ1 (λz)) dπλ(z).

Here, πλ(z) is the ergodic distribution of Markov chain {ζn}. On the other hand,
according to relation in Eq.(3.29), the following representation can be written:

(3.32) E (τn1 (z)) = αn
1

(
z

m1

)n

+
n2

2
αn
1Dn

(
z

m1

)n−1

+

(
z

m1

)n−1

gn(z)

Here, gn(z) is a bounded function, besides limz→∞ gn(z) = 0 and supz∈R |gn(z)| =
Mn < ∞. Taking Eq.(3.32) into account of Eq.(3.31), the following expansion is
derived:

E
(
τn1

(
λζ̂λ

))
= αn

1

λn

mn
1

∫ ∞

0

zndπλ(z) +
n2

2
αn
1Dn

(
λ

m1

)n−1 ∫ ∞

0

zn−1dπλ(z)

+

(
λ

m1

)n−1 ∫ ∞

0

zn−1g(λz)dπλ(z)(3.33)

Taking into account Lemma 3.2 in Eq.(3.33), the asymptotic expansions for the first

four moments of τ1

(
λζ̂λ

)
can be obtained as follows:

E
(
τn1

(
λζ̂λ

))
=

(
α1

m1

)n

λnE
(
ζ̂nλ

)
+

n2

2
αn
1Dn

(
λ

m1

)n−1

E
(
ζ̂n−1
λ

)
+ o

((
λ

m1

)n−1
)
.(3.34)

Here, E
(
ζ̂nλ

)
is the ergodic moments of the Markov chain {ζn}.

Considering Eq.(3.19), the following asymptotic expansion is obtained from Eq.(3.34):

E
(
τn1

(
λζ̂λ

))
= αn

1Cnλ
n +

n2

2
αn
1Cn−1Dnλ

n−1 + o
(
λn−1

)
.

This concludes the proof of Theorem 3.2. �

3.1. Example. η1 has an exponential distribution with the parameter β and ξ1 also
has an exponential distribution with the parameter µ. Then, the followings can be

9
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derived:

E (ξ1) = α1 =
1

µ
; E

(
ξ21
)
=

2

µ2
; σ2

ξ = V ar(ξ1) =
1

µ2
; σξ =

1

µ

E (η1) = m1 =
1

β
; E

(
η21
)
=

2

β2
; σ2

η = V ar(η1) =
1

β2
; ση =

1

β

The coefficient variations of ξ1 and η1 can be gotten as follows:

Cv (ξ1) ≡
σξ

α1
=

1/µ

1/µ
= 1; Cv (η1) ≡

ση

m1
=

1/β

1/β
= 1.

Now, the coefficients An, Cn and Dn can be calculated as follows:

An ≡ mn+1

(n+ 1)m1
=

(n+ 1)!/βn+1

(n+ 1)/β
=

n!

βn
; Cn =

An

mn
1

=
n!/βn

1/βn
= n!;

Dn ≡ C2
v (η1) +

(
n+ 1

n

)
C2

v (ξ1) +
1

n
= 1 +

n− 1

n
+

1

n
= 2.

Therefore, the following result is hold:

E
(
τn1

(
λζ̂λ

))
= αn

1Cnλ
n +

n2

2
αn
1Cn−1Dnλ

n−1 + o
(
λn−1

)
=

n!

µn

{
λn + nλn−1 + o

(
λn−1

)}
.

3.2. Example. Assume that random variable η1 has uniform distribution with pa-
rameters [0, 1] and random variable ξ1 has exponential distribution with parameter
µ. Then, the followings can be given:

E (ξ1) = α1 =
1

µ
; E

(
ξ21
)
=

2

µ2
; σ2

ξ = V ar(ξ1) =
1

µ2
; σξ =

1

µ
;

E (ηn1 ) = mn =

∫ 1

0

xndx =
1

n+ 1
, n = 1, 2, ...;

E (η1) =
1

2
; E

(
η21
)
= m2 =

1

3
; σ2

η = V ar(η1) =
1

12
; ση =

1

2
√
3
.

The coefficient variations of ξ1 and η1 can be obtained as follows:

Cv(ξ1) ≡
σξ

α1
=

1/µ

1/µ
= 1; Cv(η1) ≡

ση

m1
=

1√
3
.

Now, calculate the coefficient of An, Cn and Dn as follows:

An ≡ mn+1

(n+ 1)m1
=

1/(n+ 2)

(n+ 1)/2
=

2

(n+ 1)(n+ 2)
;

Cn ≡ An

mn
1

=
2n+1

(n+ 1)(n+ 2)
;

Dn ≡ C2
v (η1) +

(
n+ 1

n

)
C2

v (ξ1) +
1

n
=

1

3
+

n− 1

n
+

1

n
=

4

3
.

10
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Then, the nth (n = 1, 2, 3, 4) order moment can be written as follows:

E
(
τn1

(
λζ̂λ

))
≡ αn

1Cnλ
n +

n2

2
αn
1Cn−1Dnλ

n−1 + o
(
λn−1

)
=

2n+1

µn

{
λn

(n+ 1)(n+ 2)
+

nλn−1

3(n+ 1)
+ o(λn−1)

}
=

2n+1

(n+ 1)(n+ 2)µn
λn +

n2n+1

3(n+ 1)µn
λn−1 + o

(
λn−1

)
.

Now, investigate the boundary functional SN1(λζ̂λ).

According to the definition, SN1(λζ̂λ) =
∑N1(λζ̂λ)

i=1 ηi. First, investigate asymptotic

behaviour of the boundary functional SN1(λζ̂λ), when z → ∞. For this reason, define

the following Laplace transform:

Ψ(λ, k) ≡
∫ ∞

0

e−λzE
(
e−kSN1(z)

)
dz; λ > 0; k ≥ 0.

Give the following lemma related with the Laplace transform written above.

3.4. Lemma. (Aliyev et. al. [1]) Transform Ψ(λ, k) is expressed by means of the
Laplace-Stiltjes transform of η1 as follows:

Ψ(λ, k) =
φ(k)− φ(λ+ k)

λ(1− φ(λ+ k))

Here, φ(θ) ≡ E (exp (−θη1)) , θ ≥ 0.

It is possible to obtain a lot of useful information from Lemma 3.4. One of them
can be given with the following lemma.

3.5. Lemma. (Aliyev et. al [1]) Assume that the first three moment of η1 is finite.
Then the followings are true:

a)

∫ ∞

0

e−λzE(SN1(z))dz = m1Ũη(λ);

b)

∫ ∞

0

e−λzE(S2
N1(z)

)dz = m2Ũη(λ) + 2m1Ũη(λ)U
∗
η (λ)D

∗
1(λ);

c)

∫ ∞

0

e−λzE(S3
N1(z)

)dz = 6m1Ũη(λ)U
∗2
η (λ)D∗

1(λ) + 3m1Ũη(λ)U
∗
η (λ)D

∗
2(λ)

+ 3m2Ũη(λ)U
∗
η (λ)D

∗
1(λ) +m3Ũη(λ).

Here, mn = E (ηn1 ) , D∗
n(λ) = E(ηn1 e

−λη1), n ≥ 1; and Uη(z) is a renewal function

generated by the random variables {ηn}. Moreover, Ũη(λ) and U∗
η (λ) represents the

Laplace and Laplace Stiltijes transforms of Uη(z), respectively.

The following result can be derived from Lemma 3.5.
11
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3.1 Corollary. Under the conditions of Lemma 3.5, the following explicit expres-
sions for the first three moments of the boundary functional SN1(z) can be given:

1)E(SN1(z)) = m1Uη(z);

2)E(S2
N1(z)

) = m2Uη(z) + 2m1Uη(z) ∗ Uη(z) ∗D1(z);

3)E(S3
N1(z)

) = 6m1U
∗3
η (z) ∗D∗2

1 (z)

+ 3U∗2
η (z) ∗ [m1D2(z) +m2D1(z)] +m3Uη(z).

Here, D1(z) =
∫ z

0
sdF (s); D2(z) =

∫ z

0
s2dF (s) (Khaniyev [8]) 2.

Using Lemma 3.5 and Corollary 3.1, the following lemma can be obtained:

3.6. Lemma. Suppose that E
(
η31
)
< ∞ is satisfied, then the following expansions

for the first three moment of the boundary functional SN1(z), when z → ∞:

(3.35) E
(
SNn

1 (z)

)
= zn + n

m2

2m1
zn−1 + o

(
zn−1

)
, n = 1, 2, 3.

From Lemma 3.6, the following result can be derived by induction.

3.2 Corollary. Under the condition E
(
η21
)
< ∞, the moments of the boundary

functional SN1(z) can be represented as follows:

(3.36) E
(
Sn
N1(z)

)
= zn + n

m2

2m1
zn−1 + zn−1gn(z), n = 1, 2, ...

Here, gn(z) is a bounded function and limz→∞ gn(z) = 0. �
According to definition of ζ̂λ and using the Corollary 3.2, the following theorem

can be given for the moments of the boundary functional SN1(λζ̂λ).

3.3. Theorem. For all n = 1, 2, 3, 4, E(ηn+1
1 ) < ∞ is satisfied. Then, the asymp-

totic expansions for the moments of boundary functional SN1(λζ̂λ)
can be written as

follows, when λ → ∞:

E
(
Sn
N1(λζ̂λ)

)
=

mn+1

(n+ 1)m1
λn +

m2mn

2m2
1

λn−1 + o(λn−1).

Here, mn ≡ E(ηn1 ), n = 1, 2, 3, 4.

Proof. Recall the following definition:

(3.37) E
(
Sn
N1(λζ̂λ)

)
≡
∫ ∞

0

E(Sn
N1(λz)

)dπλ(z)

Here, πλ(z) is the distribution of ζ̂λ. Substituting λz instead of z in the Eq.(3.36),
the following expression can be derived:

E
(
Sn
N1(λζ̂λ)

)
=

∫ ∞

0

(λz)ndπλ(z) + n
m2

2m1

∫ ∞

0

(λz)n−1dπλ(z)

+

∫ ∞

0

(λz)n−1gn(λz)dπλ(z)

= λnE
(
ζ̂nλ

)
+ n

m2

2m1
λn−1E

(
ζ̂n−1
λ

)
+ λn−1

∫ ∞

0

zn−1gn(λz)dπλ(z)(3.38)

12
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According to Lemma 3.1 and Lemma 3.2, for each n = 1, 2, ...,
limλ→∞

∫∞
0

zn−1g(λz)dπλ(z) = 0 is satisfied. Then, Eq.(3.38) can be rewritten as
an asymptotic expansion as follows:

(3.39) E
(
Sn
N1(λζ̂λ)

)
= λnE

(
ζ̂nλ

)
+ n

m2

2m1
λn−1E

(
ζ̂n−1
λ

)
+ o(λn−1)

Considering the relation in Eq.(3.19) into asymptotic expansion Eq. (3.39), for
each n = 1, 2, ..., the following asymptotic expansion is obtained, when λ → ∞:

E
(
SN1(λζ̂λ)

)
=

mn+1

(n+ 1)m1
λn +

m1mn

2m2
1

λn−1 + o(λn−1).

Thus, Theorem 3.3 is proved. �

4. Summary and Conclusion

In this study, a renewal - reward process with a generalized reflecting barrier

is considered and its three important boundary functionals N1

(
λζ̂λ

)
, τ1

(
λζ̂λ

)
,

SN1(λζ̂λ) are investigated. The asymptotic expansions for their first-four moments

are obtained. These formulas are especially expressed by means of some character-
istics of the residual waiting time generated by ηn. Hence, we observed that there
is a connection between the moments of these there boundary functionals and some
numerical characteristics of residual waiting time generated by ηn. This connection
can form a basis for applying some important results related to residual waiting
time (e.g., Feller [7], Smith [15], Rogozin [14], etc.) to solution of various similar
problems.

Although the obtained formulas in this study, are approximated, they are both
simple and sufficiently accurate for many applied problems. Therefore, this asymp-
totic approach can also be applied to stationary characteristics of the process and
it can be obtained simple and approximated formulas which have high accuracy for
them. Moreover, improving this approach, it can be applied to random walks with
a generalized reflecting barrier in the future studies.
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