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Abstract. In this article, we analyze the first order linear delay differential equation

x′(t) + p(t)x (τ(t)) = 0, t ≥ t0,

where p, τ ∈ C ([t0,∞),R+) and τ(t) ≤ t, limt→∞ τ(t) = ∞. Under the assumption that τ(t) is not necessarily
monotone, we obtain new sufficient criterion for the oscillatory solutions of this equation. We also give an example
illustrating the result.
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1. Introduction

The theory of oscillation is an important research area for applied mathematics. Also, substantial concern has been
dedicated to the oscillatory and nonoscillatory solutions of some classes of differential equations. Particularly, delay
differential equations have attracted a lot of scientists in recent years. Delay differential equations are differential
equations where derivative functions rely on not only present value, but also on the previous value. See, for example
[1–17], and the references cited therein. The reader is referred to monograph [8] for the general information about
oscillation theory.
Consider the linear delay differential equation

x′(t) + p(t)x (τ(t)) = 0, t ≥ t0, (1.1)

where the functions p, τ ∈ C ([t0,∞),R+) and τ(t) is not necessarily monotone such that

τ(t) ≤ t for t ≥ t0, lim
t→∞

τ(t) = ∞.

By a solution of (1.1), we mean continuously differentiable function defined on [τ(T0),∞) for some T0 ≥ t0 such that
(1.1) holds for t ≥ T0. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros. Otherwise, it is called
nonoscillatory.
The first systematic study for the oscillation of all solutions of (1.1) was made by Myshkis in 1950. Later, Koplatadze
and Chanturija [11], Fukagai and Kusano [7], Ladde et al. [14] and Györi and Ladas [8] analyzed this equation and
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obtained some well-known oscillation criteria when the delay argument is nondecreasing.
Let α and β be defined by

α := lim inf
t→∞

t∫
τ(t)

p(s)ds

and

β := lim sup
t→∞

t∫
τ(t)

p(s)ds.

In 1988, Erbe and Zhang [5] established the following condition.
If 0 < α ≤ 1

e and τ(t) is nondecreasing,

β > 1 −
α2

4
,

then all solutions of (1.1) are oscillatory.
Since then, many authors have tried to obtain better results by improving the upper bound for x(τ(t))

x(t) . Also, in 1991,
Chao [3] obtained the following condition

β > 1 −
α2

2(1 − α)
.

In 1992, Yu and Wang [16] and Yu et al. [17] found out the following one.
If 0 < α ≤ 1

e and τ(t) is nondecreasing,

β > 1 −
1 − α −

√
1 − 2α − α2

2
, (1.2)

then all solutions of (1.1) are oscillatory.
In 1990, Elbert and Stavroulakis [4] and in 1991, Kwong [13] established the following criteria by using different
techniques, respectively. When 0 < α ≤ 1

e and τ(t) is nondecreasing

β > 1 −
(
1 −

1
√
λ1

)2

and

β >
ln λ1 + 1

λ1
,

where λ1 is the smaller root of equation λ = eαλ.
In 1994 Koplatadze and Kvinikadze [12] improved (1.2). Moreover, in 1998 Philos and Sficas [15], in 1999, Jaroš
and Stavroulakis [9] and in Kon et al. [10] obtained the following conditions for oscillatory solutions of (1.1) when
0 < α ≤ 1

e and τ(t) is nondecreasing.

β > 1 −
α2

2(1 − α)
−
α2

2
λ1,

β >
ln λ1 + 1

λ1
−

1 − α −
√

1 − 2α − α2

2
, (1.3)

and

β > 2α +
2
λ1
− 1,

where λ1 is the smaller root of equation λ = eαλ.
When the delay argument τ(t) is not necessarily monotone, the result which was presented by Chatzarakis and Péics [2]
includes (1.3).
Thus, in this paper our aim is to essentially develop these results under the assumption that τ(t) is not necessarily
monotone argument.
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2. Main Results

In this section, we study the differential equation (1.1) with nonmonotone delay.
Set

h(t) := sup
s≤t
{τ(s)}, t ≥ 0. (2.1)

Clearly, h(t) is nondecreasing and τ(t) ≤ h(t) for all t ≥ 0.
The following results will be useful to obtain main results.

Lemma 2.1. [6, Lemma 2.1.1]

lim inf
t→∞

t∫
τ(t)

p(s)ds > 0.

Then, we have

lim inf
t→∞

t∫
τ(t)

p(s)ds = lim inf
t→∞

t∫
h(t)

p(s)ds.

Lemma 2.2. [1, Lemma 2] (See, also [13, Lemma 1]) Suppose that α > 0 and (1.1) has an eventually positive solution
x(t). Then, α ≤ 1

e and

lim inf
t→∞

x(h(t))
x(t)

≥ λ1,

where λ1 is the smaller root of equation λ = eαλ.

Lemma 2.3. Let 0 < α ≤ 1
e and x(t) be an eventually positive solution of (1.1). Assume that there exists θ > 0 such

that
h(t)∫
h(u)

p(s)ds ≥ θ

t∫
u

p(s)ds for all h(t) ≤ u ≤ t. (2.2)

Then,

lim sup
t→∞

x(h(t))
x(t)

≤
2

1 − α −
√

(1 − α)2 − 4K
,

where K is given by

K =
eλ1θα − λ1θα − 1

(λ1θ)2

and h(t) is defined by (2.1).

Proof. Let δ : 0 < δ < α be any number of arbitrarily close to α and T > t0 large enough so that h(t) > t0 and also

from Lemma 2.1, we have
t∫

h(t)
p(s)ds > δ for every t ≥ T. Let t ≥ T and T1 ≡ T1(t) > t : h(T1) = t. Since

T1∫
t

p(s)ds > δ,

there exists T1 > t1 ≡ t1(t) > t such that
t1∫
t

p(s)ds = δ. (2.3)

Since h(t) ≥ τ(t) and x(t) is nonincreasing, from (1.1), we have

x′(t) + p(t)x(h(t)) ≤ 0. (2.4)

Integrating (2.4) from t to t1, we obtain

x(t1) − x(t) +

t1∫
t

p(s)x(h(s))ds ≤ 0



N. Kılıç, Turk. J. Math. Comput. Sci., 13(2)(2021), 310–317 313

or

x(t) ≥ x(t1) +

t1∫
t

p(s)x(h(s))ds. (2.5)

Also, integrating (2.4) from h(s) to t for s < t1, we get

x(t) − x(h(s)) +

t∫
h(s)

p(u)x(h(u))du ≤ 0

or

x(h(s)) ≥ x(t) +

t∫
h(s)

p(u)x(h(u))du. (2.6)

Combining (2.5) and (2.6), we have

x(t) ≥ x(t1) +

t1∫
t

p(s)

x(t) +

t∫
h(s)

p(u)x(h(u))du

 ds. (2.7)

Let 0 < λ < λ1. Then, the function

ϕ(t) = x(t)e
λ

t∫
t0

p(s)ds
, t ≥ a.

By Lemma 2.2
x(h(t))

x(t)
> λ

for all sufficiently large t and then

0 = x′(t) + p(t)x(τ(t)) ≥ x′(t) + p(t)x(h(t)) > x′(t) + λp(t)x(t)

and also

ϕ
′

(t) = e
λ

t∫
t0

p(s)ds
(x′(t) + x(t)λp(s)

t
|
t0
) ≤ 0,

which implies ϕ
′

(t) ≤ 0 for all sufficiently large t, that is ϕ(t) is nonincreasing.
Since

ϕ(h(t)) = x(h(t))e
λ

h(t)∫
t0

p(s)ds
⇒ x(h(t)) = ϕ(h(t))e

−λ
h(t)∫
t0

p(s)ds
, (2.8)

by using (2.3) and (2.8) in (2.7), we obtain

x(t) ≥ x(t1) + δx(t) + ϕ(h(t))

t1∫
t

p(s)


t∫

h(s)

p(u)e
−λ

h(u)∫
t0

p(ξ)dξ
du

 ds. (2.9)

Also, we know that

e
−λ

h(u)∫
t0

p(ξ)dξ
= e

−λ
h(t)∫
t0

p(ξ)dξ+λ
h(t)∫
h(u)

p(ξ)dξ
.

By using this fact in (2.9), we have

x(t) ≥ x(t1) + δx(t) + ϕ(h(t))e
−λ

h(t)∫
t0

p(s)ds
t1∫
t

p(s)


t∫

h(s)

p(u)e
λ

h(t)∫
h(u)

p(ξ)dξ
du

 ds

and so

x(t) ≥ x(t1) + δx(t) + x(h(t))

t1∫
t

p(s)


t∫

h(s)

p(u)e
λ

h(t)∫
h(u)

p(ξ)dξ
du

 ds. (2.10)
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From (2.2), we have
t∫

h(s)

p(u)e
λ

h(t)∫
h(u)

p(ξ)dξ
du ≥

t∫
h(s)

p(u)e
λθ

t∫
u

p(ξ)dξ
du

=
1
λθ

[e
λθ

t∫
h(s)

p(ξ)dξ
− 1].

Then, since
t∫

h(t)
p(s)ds > δ and (2.3), we have

t1∫
t

p(s)


t∫

h(s)

p(u)e
λ

h(t)∫
h(u)

p(ξ)dξ
du

 ds ≥
1
λθ

t1∫
t

p(s)[e
λθ

t∫
h(s)

p(ξ)dξ
− 1]ds

=
1
λθ

t1∫
t

p(s)e
λθ

t∫
h(s)

p(ξ)dξ
ds −

1
λθ

t1∫
t

p(s)ds

=
1
λθ

t1∫
t

p(s)e
λθ

t∫
h(s)

p(ξ)dξ
ds −

δ

λθ

=
1
λθ

t1∫
t

p(s)e
λθ

s∫
h(s)

p(ξ)dξ−λθ
s∫
t

p(ξ)dξ
ds −

δ

λθ
.

≥
1
λθ

eλθδ
t1∫
t

p(s)e
−λθ

s∫
t

p(ξ)dξ
ds −

δ

λθ

=
1
λθ

eλθδ
1
λθ

[1 − e
−λθ

t1∫
t

p(ξ)dξ
] −

δ

λθ

=
eλθδ

(λθ)2 [1 − e−λθδ] −
δ

λθ

=
1

(λθ)2 [eλθδ − 1] −
δ

λθ

and from (2.10) we have
x(t) ≥ x(t1) + δx(t) + x(h(t))K∗, (2.11)

where

K∗ =
eλθδ − λθδ − 1

(λθ)2 .

From (2.11), we get
(1 − δ)x(t) ≥ K∗x(h(t))

or
x(t)

x(h(t))
≥

K∗

(1 − δ)
:= d1.

Since h(t1) ≤ t ≤ t1 and x(t) is nonincreasing, x(h(t1)) ≥ x(t) ≥ x(t1), then we have

x(t1) ≥
K∗

(1 − δ)
x(h(t1)) = d1x(h(t1)) ≥ d1x(t). (2.12)

By using (2.12) in (2.11), we get
x(t) ≥ d1x(t) + δx(t) + x(h(t))K∗
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or

x(t)(1 − d1 − δ) ≥ x(h(t))K∗

and
x(t)

x(h(t))
≥

K∗

(1 − d1 − δ)
:= d2.

By following this process, we obtain

x(t)
x(h(t))

≥
K∗

(1 − dn − δ)
:= dn+1, n = 1, 2, ....

1 ≥ dn > dn−1 for n = 2, 3, ..., which means that dn is increasing and it has a limit, lim
t→∞

dn = d. Then, we have

d2 − (1 − δ)d + K∗ = 0

or

d =
1 − δ −

√
(1 − δ)2 − 4K∗

2
.

For sufficiently large t,

x(t)
x(h(t))

≥
1 − δ −

√
(1 − δ)2 − 4K∗

2
and since 0 < δ < α is arbitrarily close to α, by writing λ→ λ1 in the last inequality, we obtain

lim sup
t→∞

x(h(t))
x(t)

≤
2

1 − α −
√

(1 − α)2 − 4K
,

where K = eλ1θα−λ1θα−1
(λ1θ)2 , so the proof is completed. �

Theorem 2.4. Let 0 < α ≤ 1
e and there exists θ > 0 such that

h(t)∫
h(u)

p(s)ds ≥ θ

t∫
u

p(s)ds for all h(t) ≤ u ≤ t.

If

lim sup
t→∞

t∫
h(t)

p(s)ds >
ln λ1 + 1

λ1
−

1 − α −
√

(1 − α)2 − 4K
2

, (2.13)

then all soutions of (1.1) are oscillatory, where λ1 is the smaller root of equation λ = eαλ, K = eλ1θα−λ1θα−1
(λ1θ)2 and h(t) is

defined by (2.1).

Proof. Assume for the sake of contradiction that x(t) is an eventually positive solution of (1.1). If x(t) is an eventually
negative solution of (1.1), the proof of the theorem can be done similarly as below. Then, we know from [9, Theorem
1]

lim sup
t→∞

t∫
h(t)

p(s)ds ≤
ln λ1 + 1

λ1
− lim inf

t→∞

x(t)
x(h(t))

. (2.14)

Also, we know from Lemma 2.3

lim inf
t→∞

x(t)
x(h(t))

≥
1 − α −

√
(1 − α)2 − 4K
2

.

So, using this fact, we observe that (2.14) contradicts to (2.13). Then, the proof is completed. �
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Remark 2.5. If we take θ = 1, then

K =
λ1 − λ1α − 1

λ2
1

and so, (2.13) reduces to

lim sup
t→∞

t∫
h(t)

p(s)ds > 2α +
2
λ1
− 1.

Example 2.6. Consider linear delay differential equation

x′(t) + 0.5x(t − cos2t − 0.7) = 0, t ≥ 0. (2.15)

Since

lim inf
t→∞

t∫
τ(t)

p(s)ds = lim inf
t→∞

0.5(cos2t + 0.7) = 0.35 <
1
e

and

lim sup
t→∞

t∫
h(t)

p(s)ds = lim sup
t→∞

0.5(cos2t + 0.7) = 0.85 < 1,

then well-known oscillation criteria do not hold. Also, from λ = e0.35λ we have λ = 2.04754.
Hence, by using Remark 2.5, we observe that

lim sup
t→∞

t∫
h(t)

p(s)ds = 0.85 > 2α +
2
λ1
− 1 ≈ 0.67678,

then all solutions of (2.15) are oscillatory.
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[9] Jaroš, J., Stavroulakis, I.P., Oscillation tests for delay equations, Rocky Mountain J. Math., 29(1999), 139–145.

[10] Kon, M., Sficas, Y.G., Stavroulakis, I.P., Oscillation criteria for delay equations, Proc. Amer. Math. Soc., 128(2000), 2989–2997.
[11] Koplatadze, R.G., Chanturija, T.A., Oscillating and monotone solutions of first-order differential equations with deviating arguments, (Rus-

sian), Differentsial’nye Uravneniya, 8(1982), 1463-1465.
[12] Koplatadze, R., Kvinikadze, G., On the oscillation of solutions of first order delay diferential inequalities and equations, Georgian Mathemat-

ical Journal, 1(6)(1994), 675–685.
[13] Kwong, M.K., Oscillation of first-order delay equations, J. Math. Anal. Appl., 156(1991), 274–286.
[14] Ladde, G.S., Lakshmikantham, V., Zhang, B.G., Oscillation Theory of Differential Equations with Deviating Arguments, Monographs and

Textbooks in Pure and Applied Mathematics, vol. 110, Marcel Dekker, Inc., New York, 1987.



N. Kılıç, Turk. J. Math. Comput. Sci., 13(2)(2021), 310–317 317

[15] Philos, Ch.G., Sficas, Y.G., An oscillation criterion for first order linear delay differential equations, Canad. Math. Bull. 41(1998), 207-213.
[16] Yu, J.S., Wang, Z.C., Some further results on oscillation of neutral differential equations, Bull. Aust. Math. Soc., 46(1992), 149–157.
[17] Yu, J.S., Wang, Z.C., Zhang, B.G., Qian, X.Z., Oscillations of differential equations with deviating arguments, PanAmerican Math. J., 2(1992),

59–78.


	Oscillation Test for Linear Delay Differential Equation with Nonmonotone Argument. By 

