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Abstract 

 

Computation of gear dynamic forces accurately and correct modal behaviour estimation 

require highly validated modelling techniques in gear dynamics. In this paper, linear 

modal behaviour of a spur gear pair under prescribed conditions is investigated with 

lumped parameter and finite element methods. The main aim of this study is to compare 

the modal analysis results of the spur gear pair with the lumped parameter and finite 

element methods. For this purpose, a six degrees of freedom dynamic model of a spur 

gear pair is created using the lumped parameter method. In this method, the gears are 

assumed to be rigid disks whereas the gear teeth contacts and bearings are considered 

as flexible, which are modelled with spring elements. Then, a 3D solid model of the spur 

gear pair is created using the finite element method for high fidelity numerical analyses. 

In the finite element method, the gears are modelled with flexible three-dimensional solid 

elements, which is one of the main differences between the two methods. To remove the 

nonlinearity in the gear pair system, the contact is simplified with a rigid bonding of 

nodes in the finite element model. The natural frequencies and mode shapes are 

calculated by linear modal analysis for both methods. The obtained results from the 

individual methods show that flexible gear body modes, which are seen at higher 

frequencies, can only be detected with the finite element method. The tooth modes in 

which the gear bodies acting as a rigid body can be detected successfully with the two 

methods.  

 

Keywords: Gear dynamics, spur gears, finite element method, lumped parameter method, 

modal analysis. 

 

 

 

 

 
*Ali TATAR, ali.tatar@bristol.ac.uk, https://orcid.org/0000-0001-9832-8108  

 Mertol TÜFEKÇİ, tufekcime@itu.edu.tr, https://orcid.org/0000-0002-5530-1471  

https://orcid.org/0000-0001-9832-8108
https://orcid.org/0000-0002-5530-1471


TATAR A., TÜFEKÇİ M. 

 593 

Alın dişlilerin yığılı parametre ve sonlu elemenlar yöntemiyle 

modal davranışının incelenmesi 
 

 

Öz 

 

Dişli dinamiğinde, dişli dinamik kuvvetlerinin kesin olarak hesaplanması ve doğru modal 

davranış tahmini yüksek doğruluklu modelleme yöntemlerini gerektirmektedir. Bu 

çalışmada, bir alın dişli çiftinin doğrusal modal davranışı, belirlenmiş şartlar altında 

yığılı parametre ve sonlu elemanlar yöntemiyle incelenmektedir. Bu çalışmanın ana 

amacı yığılı parametre ve sonlu elemanlar yöntemiyle dişli çiftinin modal analiz 

sonuçlarını karşılaştırmaktır. Bunun için alın dişli çiftinin altı serbestlik dereceli dinamik 

modeli yığılı parametre yöntemiyle oluşturulmuştur. Bu yöntemde, dişli gövdeleri rijit 

kabul edilirken dişli temasları ve yatakları esnek kabul edilmiştir. Sonrasında, alın dişli 

çiftinin üç boyutlu katı modeli yüksek doğruluklu sayısal hesaplamalar için sonlu 

elemanlar yöntemiyle oluşturulmuştur. Sonlu elemanlar yönteminde, dişliler esnek üç 

boyutlu katı elemanlarla modellenmiştir. Bu modelde, dişli çifti temasında doğrusal 

olmama durumunun kaldırılması için temas rijit olarak basitleştirilmiştir. Doğal 

frekanslar ve mod şekilleri her iki yöntemde doğrusal modal analiz ile hesaplanmıştır. 

Her iki yöntemle elde edilen sonuçlar, yüksek frekanslarda görülen esnek dişli gövde 

modlarının sadece sonlu elemanlar yöntemiyle hesaplanabileceğini göstermektedir. 

Gövdenin hareket etmediği diş modları ise her iki yöntemle başarılı bir şekilde tespit 

edilebilmektedir. 

 

Anahtar kelimeler: Dişli dinamiği, alın dişliler, sonlu elemanlar yöntemi, yığılı 

parametre yöntemi, modal analiz. 

 

 

1. Introduction 

 

Gears are commonly used machine elements in rotating systems for power and motion 

transmission, as well as speed and torque conversion. Particularly, spur gears can be seen 

in many industrial applications such as electrical motors, internal combustion engines, 

washing machines and geared pumps because of their advantages of higher efficiency, 

easy manufacturing process and lower production cost [1]. Contacts between the gear 

teeth under operating conditions results in a dynamic problem in gear systems [2, 3]. 

Therefore, dynamic modelling of gear systems is a significant issue to compute gear 

dynamic forces accurately and predict their modal behaviour properly. 

 

In the literature, there are various analytical models using the lumped parameter method 

for the dynamic analysis of spur gear pairs [4–6]. The dynamic models are divided into 

three main groups as purely torsional model, torsional-transverse model and three-

dimensional model [7]. The purely torsional model has one degree of freedom, which is 

initially proposed to investigate torsional vibrations of spur gear pairs [4]. Due to the 

rotating mass imbalances and significant gyroscopic moments at higher operating speeds, 

the vibrational motion also occurs in radial directions (transverse) of gears, known also 

as lateral vibrations [8, 9]. Therefore, the torsional model is expanded to the torsional-

transverse model with the consideration of gear vibrations in transverse directions. The 

so-called torsional-transverse mode has three degrees of freedom (DOF) [10]. On the 

other hand, the torsional-transverse model could not be sufficient for the dynamic analysis 
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of helical gear pairs because of the occurrence of axial forces in them. For this reason, the 

three-dimensional model, which has six degrees of freedom, has recently been developed 

by adding axial and tilting motions to the torsional – transverse model [6, 8, 11]. 

Furthermore, computed vibrational responses from the linear lumped parameter models 

of gear systems were validated with the experimental studies, whereas these studies does 

not include the validation of the modal behaviour of gear pairs [10, 11]. Nonlinear 

vibration behaviour of spur gears is also shown by numerous numerical [12–25] and 

experimental studies [26–28]. Throughout these studies, the main reason for the 

nonlinearity is identified as losing the gear contact within backlash (clearance 

nonlinearity). In addition to the analytical studies, there are some numerical studies in 

which dynamic analyses are carried out with different modelling approaches such as 

dynamic finite element/contact mechanics model [29], finite element/lumped parameter 

model [30], frequency-domain finite element model [31]. Although there are numerous 

linear and nonlinear vibration analyses conducted with the analytical gear dynamic 

models, there are limited studies comparing the analytical methods with the numerical 

methods such as finite element method [32, 33]. From these two studies, Vinayak and 

Singh  [32] numerically computed natural frequencies with multibody dynamics, 

including rigid and flexible gear body modelling, and finite element models; however 

they did not identify the vibration modes systematically. Ambarisha and Parker [33] 

analysed the nonlinear dynamic response of spur planetary gears using two-dimensional 

lumped parameter and finite element models, while they did not conduct a linear modal 

analysis for a spur gear pair using the lumped parameter method. When these studies are 

taken into consideration, modal behaviour comparison of spur gear pairs using lumped 

parameter and finite element methods is still not well understood in the gear dynamics 

field. Therefore, a detailed modal analysis of spur gear pairs with three-dimensional 

lumped parameter and finite element models is needed. 

 

In this study, free vibration of a spur gear pair is investigated with the lumped parameter 

method (LPM), analytically, and with a linearized finite element method (FEM), 

numerically. In the lumped parameter model, the gear teeth contacts and supporting 

elements are assumed to be flexible while gear bodies are assumed to be rigid, whereas 

the finite element model considers gear teeth and disks as flexible bodies. In terms of 

linearization, the contact at the gear teeth is assumed to be rigid bonding. Basically, this 

removes the nonlinearity and simplifies the model significantly. Modal analyses are 

performed for both models, and modal parameters such as natural frequencies and mode 

shapes are investigated in detail. Finally, a comparison of these methods is done, and the 

advantages of each method are discussed.  

 

 

2. Dynamic modelling of a spur gear pair 

 

In this section, dynamic modelling of a spur gear pair with lumped parameter and finite 

element methods is demonstrated.  

 

2.1.  Lumped parameter model 

A spur gear pair consists of a driving gear (pinion) and a driven gear with their supports. 

To create a dynamic model of a spur gear pair, six degrees of freedom linear lumped 

parameter models are generally used [8, 11]. In the lumped parameter dynamic model, 

pinion and driven gear bodies are assumed to be rigid, whereas gear teeth contacts and 

supporting elements are assumed to be flexible. Moreover, time-varying mesh stiffness, 
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clearance nonlinearity due to losing the gear contact within backlash, damping at the gear 

meshes and supports, and gyroscopic effects are neglected. Gear teeth contact (mesh) 

stiffnesses and gear support (bearing) stiffnesses are modelled with linear spring elements 

as shown in Figure 1. Based on the linear spring element modelling approach, gear mesh 

stiffness does not change with respect to the time and position [8, 11]. 

 

In this dynamic model, generalized coordinates for each gear can be written as 

 
𝒒𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝜃𝑥𝑖 , 𝜃𝑦𝑖 , 𝜃𝑧𝑖], (1) 

 

where 𝑖 = 1, 2. The first and second indices represent the pinion and driven gear, 

respectively. Generalized coordinates of this system are then written as 

 
𝒒 = [𝑥1, 𝑦1, 𝑧1, 𝜃𝑥1, 𝜃𝑦1, 𝜃𝑧1, 𝑥2, 𝑦2, 𝑧2, 𝜃𝑥2, 𝜃𝑦2, 𝜃𝑧2]. (2) 

 

Based on the x-y reference plane in Figure 1, 𝑥𝑖 and 𝑦𝑖 represent in-plane translation, 𝑧𝑖 

represent out of plane translation, 𝜃𝑥𝑖 and 𝜃𝑦𝑖 represent out of plane rotation, 𝜃𝑧𝑖 represent 

in-plane rotation. Both pinion and driven gears have six degrees of freedom, which leads 

twelve degrees of freedom in total for the gear pair system. 

 

 
 

Figure 1.  Dynamic model of a spur gear pair. 

 

Support stiffnesses of pinion and driven gears, 𝐊𝑖 are written as 

 

𝐊𝑖 =

[
 
 
 
 
 
 
𝑘𝑥𝑖 0 0 0 0 0
0 𝑘𝑦𝑖 0 0 0 0

0 0 𝑘𝑧𝑖 0 0 0
0 0 0 𝑘𝑄𝑥𝑖

0 0

0 0 0 0 𝑘𝑄𝑦𝑖
0

0 0 0 0 0 𝑘𝑄𝑧𝑖]
 
 
 
 
 
 

 (3) 

 

where the support stiffnesses consist of six degrees of freedom spring elements, which 

can do both translational and rotational motion [8]. Based on this equation, support 

elements have stiffness terms in all directions except the torsional (in-plane rotation) 

direction. Torsional stiffnesses of the supports are defined as zero (𝑘𝑄𝑧𝑖
= 0)  since the 

gears can rotate freely on their bearings during the power transmission without any 



BAUN Fen Bil. Enst. Dergisi, 23(2), 592-607, (2021) 

 596 

resistance. As can be clearly seen in Eq. (3), support stiffness is in diagonal form, as a 

result, there is no coupling term in the stiffness matrix, making the stiffness matrix 

uncoupled. 

 

The equation of motion of the spur gear pair can be easily obtained using the Lagrange`s 

equations. For this purpose, kinetic and potential energies of the system should be 

computed. The kinetic energy of the spur gear pair is written as 

 

𝑇 =
1

2
∑𝑚𝑖(�̇�𝑖

2 + �̇�𝑖
2 + �̇�𝑖

2) + 𝐼𝑑𝑖 (�̇�𝑥𝑖
2
+ �̇�𝑦𝑖

2
) + 𝐼𝑝𝑖�̇�𝑧𝑖

2
2

𝑖=1

 (4) 

 

where 𝑚𝑖, 𝐼𝑑𝑖 and 𝐼𝑝𝑖 are the mass, diametral and polar mass moment of inertia, 

respectively. The strain energies of the support elements for the pinion and driven gear 

are written as 

 

𝑉𝑠 =
1

2
∑𝑘𝑥𝑖𝑥𝑖

2 + 𝑘𝑦𝑖𝑦𝑖
2 + 𝑘𝑧𝑖𝑧𝑖

2 + 𝑘𝑄𝑥𝑖
𝜃𝑥𝑖

2 + 𝑘𝑄𝑦𝑖
𝜃𝑦𝑖

2 + 𝑘𝑄𝑧𝑖
𝜃𝑧𝑖

2

2

𝑖=1

 (5) 

 

The gear mesh strain energy due to the gear teeth deflection is also written as 

 

𝑉𝑚 =
1

2
𝑘𝑚𝛿𝑚

2 (6) 

 

where 𝑘𝑚 represents the mesh stiffness between the pinion and driven gear, 𝛿𝑚 represents 

the relative displacement between the pinion and driven gears. The relative displacement 

is expressed as [8, 11] 

 
𝛿𝑚  = [(𝑥𝑝 − 𝑥𝑔) sin ∅+(𝑦𝑝 − 𝑦𝑔) cos ∅ + (𝑟𝑝𝜃𝑧𝑝 + 𝑟𝑔𝜃𝑧𝑔)] cos 𝛽 
          +[(𝑟𝑝𝜃𝑥𝑝 + 𝑟𝑔𝜃𝑥𝑔) sin ∅ + (𝑟𝑝𝜃𝑦𝑝 + 𝑟𝑔𝜃𝑦𝑔) cos ∅ + (𝑧𝑔 − 𝑧𝑝)] sin 𝛽 

 
(7) 

In Eq. (7), 𝛽 and ∅ represent the gear helix angle and pressure angle, respectively. It should 

be noted that the gear helix angle becomes zero for the spur gears. Following, the total 

potential energy of the system is computed as  

 
𝑉 = 𝑉𝑠 + 𝑉𝑚. (8) 

 

Finally, the equation of motion of the system for the free vibrations can be obtained using 

Lagrange`s equation as 

 
𝑑

𝑑𝑡
(
𝜕(𝑇 − 𝑉)

𝜕�̇�𝑘
) −

𝜕(𝑇 − 𝑉)

𝜕𝑞𝑘
 = 0           (𝑘 = 1,2, … , 𝑛). (9) 

 

Here,  𝑛 represents the total degree of freedom. After solving the Eq. (9) for the free 

vibration of the system. The equation of motion of the system is derived as  

 
𝐌�̈�(𝑡) + 𝐊𝒒(𝑡) = 0. (10) 

 

In Eq. (10), 𝐌 and 𝐊 represent the mass and stiffness matrices of the gear system, 

respectively. Here, 𝒒(𝑡) also represents the generalized coordinates of the gear system. 

The mass and stiffness matrices of the gear system can be seen explicitly in reference [8]. 
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The internal structure of the mass and stiffness matrices are seen in Figure 2, where all 

the elements are zero except the plotted points. 

 

 
 

Figure 2.  Mass and stiffness matrices of a spur gear pair. 

 

For the free-free vibration problem, Eq. (10) can be converted into an eigenvalue problem 

by assuming displacement as harmonic,  𝒒(𝑡) =  {𝜓}𝑒𝑖𝜔𝑡.  

 
([𝑲] − 𝜔𝑟

2[𝑴]){𝜓}𝑟 = {0}             𝑟 = 1, 2, … , 𝑘 (11) 

 

Here, 𝜔𝑟
2 and {𝜓}𝑟 represent eigenvalues and eigenvectors, from which natural 

frequencies and mode shapes can be obtained, respectively. For a non-singular solution 

of the Eq. (11), the determinant below  

 
𝑑𝑒𝑡([𝑲] − 𝜔𝑟

2[𝑴]) = 0 (12) 

 

should be equal to zero. After solving the Eq. (12), 𝜔𝑟
2 and {𝜓}𝑟 are obtained. Modal 

matrix of the system can then be expressed using the eigenvectors as below 

 
𝐔 = [𝜓1, 𝜓2, … . , 𝜓𝑛].  (13) 

 

2.2.  Finite element model 

A three-dimensional solid model of the spur gear pair is created in accordance with DIN 

867 standards by using a CAD (Computer Aided Design) software. The prepared 

geometry of the spur gear pair is then transferred to a CAE (Computer Aided Engineering) 

software for the finite element analysis. The second-order tetrahedral elements are used 

when forming the mesh structure, because its ability to represent such geometries is 

relatively better and of course for better accuracy. The mesh structure of the gear pair 

consists of 7020 quadratic tetrahedral elements with 9774 nodes and 8421 quadratic 

hexahedral elements with 40559 nodes alongside with two spring elements with six 

degrees of freedom (fully compliant in θz direction) per each, which is shown in Figure 

3. The gear teeth have a more complex geometry. To represent the geometry in a more 

accurate way, tetrahedral elements are preferred over the hexahedral ones.  
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The reason of using two different types of elements can be explained with the balance of 

accuracy and computational cost. To avoid any convergence issues around the critical 

regions, such as contact area, fillet area and their neighbourhoods, the mesh is kept finer 

than the rest of the model. For the other parts, simpler geometries appear and therefore 

straightforward meshing could be applied. This leads to the usage of quadratic hexahedral 

elements and relatively coarser mesh structure. This also reduces the computational cost 

of the model. 

 

 

 
 

Figure 3.  Geometry and mesh structure of the spur gear pair. 

 

One of the most basic conditions for modal analysis when using a typical finite element 

software is that the system must be linear. The system in question is not substantially 

linear. The most important factor that disrupts linearity is the contact of gear teeth. In 

order to linearize the system, the contacts in multi-part systems need to be simplified with 

some assumptions. In this study, such a simplification is made by applying a rigid bonding 

condition at the gear teeth contact areas. This is achieved by applying the constraint on 

the nodes located at the contact patch between the driven and pinion gear. Furthermore, 

to represent the bearing and the shaft, six degrees of freedom springs are used, and they 

are connected to the holes at the centres of the gears by applying rigid couplings. The 

rotation of the gears around the z-axis is set as free. All the other degrees of freedom are 

restricted as described in Table 1. The stiffness values of these springs are chosen as the 

same as the analytical lumped parameter method. Similarly, the elastic properties of the 

gear material are taken as the same as in the lumped parameter model. More on the finite 

element model, no load is applied to the gears. It should be taken into consideration that 

the decrease in stiffness due to stresses in load applied gears and thus decrease in natural 

frequencies is to occur. 

 

It is also to be noted that the basic assumptions in the analytical model are different from 

those in the finite element model. Most importantly, the lumped parameter model assumes 

gears as rigid disks, while the finite element model considers them flexible structures. In 
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the lumped parameter model, gear teeth are assumed within the disk mass and their 

compliance is not considered anywhere else except for the contact. In finite element 

analysis, other gear teeth are modelled as flexible bodies as well unified with the flexible 

disk, in their original position and geometry. Therefore, the calculations include the tooth 

modes and the elastic body modes of the disks that the analytical model cannot capture. 

Finally, in the analytical model, the gear teeth in contact are only connected by a 

translational spring. In the finite element analysis, the contact of the gear teeth is 

considered as rigid, therefore the analysis relies on the flexibility of the gear teeth. 

 

 

3.  Numerical analysis 

 

To compare lumped parameter and finite element methods, a case study was prepared 

with certain parameters of the spur gear pair. The modal analyses for both lumped 

parameter and finite element models were performed using the parameters in Table 1. 

The material of the spur gear pair is assumed to be standard steel. The gear mesh stiffness 

value was determined based on the initial finite element analyses. Support stiffness values 

of the gears were selected as reasonable based on the values in the literature [6, 8, 10].  

 

Table 1.  Parameters of the spur gear pair. 

 

Parameter Pinion Gear Driven Gear 

Number of teeth 14 27 

Module [mm] 4 4 

Inner diameter [mm] 15 25 

Thickness [mm] 15 15 

Material density [kg/m3] 7800 7800 

Young’s modulus [GPa] 210 210 

Shear modulus [GPa] 80 80 

Bearing radial stiffness [N/m] 4×108 4×108 

Bearing axial stiffness [N/m] 2 ×108 2 ×108 

Bearing tilting stiffness [N.m/rad] 4 × 106 4 × 106 

Bearing torsional stiffness [N.m/rad] 0 0 

Bearing radial damping [N/(m/s)] 0 0 

Bearing axial damping [N/(m/s)] 0 0 

Bearing tilting damping [N.m/(rad/s)] 0 0 

Bearing torsional damping [N.m/(rad/s)] 0 0 

Helix angle β [degree] 0 0 

Transverse Pressure angle ∅ [deg] 22 22 

Mesh stiffness [N/m] 4.15 × 108 4.15 × 108 

Mesh damping [N/(m/s)] 4.15 × 108 4.15 × 108 

 

After the execution of both methods, the natural frequencies and mode shapes of the test 

cases were calculated. It should be noted that damping of the bearings, gear contacts and 

gear bodies were neglected in the spur gear pair because of not affecting the modal 

behaviour in terms of natural frequency and mode shapes significantly. The presented 

results for both lumped parameter and finite element methods were computed for the 

undamped case. 
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3.1.  Lumped parameter method results 

For the lumped parameter model of the spur gear pair system, natural frequencies and 

mode shapes were computed with the linear modal analysis. Natural frequencies are 

provided with corresponding vibration mode, as seen in Table 2. 

 

Table 2.  Computed natural frequencies with lumped parameter method. 

 

Mode 

# 

LPM 

Natural Frequency [Hz]  
Mode Type 

1 0 Rotational (Rigid Body) 

2 2235 Axial (Gear) 

3 2956 Translational – Rotational 

4 3160 Translational (Gear) 

5 4352 Axial (Pinion) 

6 5081 Translational – Rotational 

7 6154 Translational (Pinion) 

8 11267 Tilting (Gear) 

9 11267 Tilting (Gear) 

10 12489 Translational – Rotational 

11 40687 Tilting (Pinion) 

12 40687 Tilting (Pinion) 

 

The modal matrix (𝐔) which shows eigenvectors of the spur gear pair system for each 

mode is provided in the Eq.14 below. The vibration modes shown in Table 2 were 

identified based on the eigenvectors in the modal matrix. 

 

𝐔 = 

[
 
 
 
 
 
 
 
 
 
 
 

0 0 −0.06 0 0 −0.56 −1.79 0 0 0.46 0 0
0 0 −0.14 0 0 −1.39 0.72 0 0 1.13 0 0
0 0 0 0 1.93 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 127.82 −0.01
0 0 0 0 0 0 0 0 0 0 −0.01 −127.82

−43.38 0 32.88 0 0 46.60 0 0 0 61.35 0 0
0 0 0.34 −0.92 0 −0.11 0 0 0 −0.10 0 0
0 0 0.84 0.37 0 −0.28 0 0 0 −0.24 0 0
0 −0.99 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 35.37 1.44 0 0 0
0 0 0 0 0 0 0 1.44 −35.37 0 0 0

22.49 0 4.57 0 0 6.48 0 0 0 8.53 0 0 ]
 
 
 
 
 
 
 
 
 
 
 

 (14) 

 

From the Table 2 and computed modal matrix, it is clearly seen that vibration modes 

consist of one rotational, two axial, two translational, three translational – rotational and 

four tilting modes. Among these modes, the rigid rotational and translational – rotational 

modes are also referred to as tooth modes and the remaining modes are referred to as 

bearing modes. [34]. There is a total of four tooth modes for the gear-pair, while eight 

bearing modes are available. It is important to point out that only tooth modes are affected 

by the change in gear teeth contact (mesh) stiffness.  

 

3.2.  Finite element method results 

The mode shapes and the respective natural frequencies, calculated with the finite element 

method, are displayed in Table 3. The first thing to be noted about the results of the finite 

element method is the rotational mode. This first mode is supposed to be a rigid body 

motion. However, the simplification of the contact constrains this motion. Therefore, this 
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mode was calculated as a flexible mode as seen in Table 3. The simplification of the 

contact leads to coupling of some modes as the motions are restrained. An example of 

coupled modes is the coupling of pinion gear’s axial mode and driven gear’s tilting mode. 

Furthermore, the flexible disk modes of the driven gear are coupled with pinion gear’s 

tilting modes. This over constraining of the system can be considered as a drawback of a 

3D linearized finite element model. 

 

Table 3.  The natural frequencies and the mode shapes of the spur gear pair calculated 

by the finite element analysis. 

 

1) Rotational – 1011 Hz 2) Axial (Gear) – 2401 Hz 
3) Translational-Rotational 

– 2964 Hz 

 

 

 

 

 

 

4) Translational (Gear) – 

3792 Hz 

5,6) Tilting (Gear) / Axial 

(Pinion) – 4649 Hz 

7) Tilting (Gear) – 4966 

Hz 

 

 

 

 

 

 

8) Translational-Rotational 

– 5098 Hz 

9) Translational (Pinion) – 

11506 Hz 

10) Translational-

Rotational - 12436 Hz 

  

 

 

11) Tilting (Pinion) – 

16326 Hz 

12) Tilting (Pinion) – 

17741 Hz 

 

  

 

 

One of the most significant differences between the lumped parameter model and the 

finite element model is the flexible body assumption of the finite element method. As 
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mentioned earlier, the lumped parameter method models the gears’ main bodies as rigid 

disks which keep the degrees of freedom at a certain number, to be precise 12. Whereas, 

the finite element method assumes the whole structure as flexible bodies. Therefore, the 

degrees of freedom of the finite element model, though it depends on the number of nodes, 

is much greater than 12. This makes the finite element model capable of catching the 

natural frequencies and the mode shapes that cannot be calculated by the lumped 

parameter model. Some of these modes are flexible disk modes. Table 4 displays some 

examples of flexible disk modes.  

 

Table 4.  Some of the flexible disk modes and the respective natural frequencies of the 

gear pair calculated by the finite element analysis. 

 

1) Gear Nodal Diameter                     

4649 Hz 

2) Gear Nodal Diameter                   

4966 Hz 

3) Gear Nodal Diameter                         

5013 Hz 

 

 

 

 

 

 

4) Pinion and Gear Nodal 

Diameter 13703 Hz 

5) Gear Nodal Diameter                     

7020 Hz 

6) Pinion and Gear Nodal 

Diameter   8642 Hz 

 

 

 

 

 

 

7)  Gear Nodal Diameter               

12358 Hz 

8) Gear Nodal Circle                         

24330 Hz 

9) Gear Nodal Circle                          

24856 Hz 

 

 

 

 

 

 

 

In flexible disks, nodal diameters and nodal circles determine the mode shapes. In cases 

with gears, there are essentially two disks connected to each other rigidly which leads to 

coupling of multiple modes of the two gears/disks. As to be seen from mode 1 in Table 

4, the axial mode of the pinion gear, the tilting mode of the driven gear and the first nodal 

diameter mode of the driven gear are coupled. Mode 2 is also a coupled mode of tilting 

and the first nodal diameter of the driven gear. In the case of a thin disk, these two nodal 

diameter modes are supposed to be orthogonal modes and to have the same natural 

frequencies. Similarly, same comments could be made for the second nodal diameter 

modes of the driven gear which are shown in modes 5 and 6. The flexible disk modes also 
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exist for pinion gear, but the natural frequencies are much higher than the respective 

natural frequencies of the driven gear. The reason for this lies in the inertial and stiffness 

properties of the pinion gear, having a smaller geometry than the driven gear. Therefore, 

the pinion gear has less mass and is stiffer than driven gear. Nodal circle nodes of the 

driven gear are given in the last two modes 8 and 9 in Table 4. In fact, the nodal circle 

modes are supposed to be unique because of the axisymmetric structure of the disk. 

However, in this case, the connection between the driven gear and pinion gear removes 

the axial symmetry. Therefore, multiple modes are calculated for nodal circle modes. 

Another thing to note would be about the modes 3, 4 and 7 have similarly three nodal 

radii, which is not a case to be observed with disks with perfect symmetry. This also 

occurs due to the removal of the symmetry by the contact between the gear pair. Similar 

asymmetry in results can also be obtained by asymmetric loading. Being able to capture 

these modes, is a major advantage of applying the finite element method in gear 

modelling.  

 

3.3.  Comparison of LPM and FEM results 

For the modal behaviour investigation of the spur gear pair, modal analysis results 

obtained with the finite element and lumped parameter analyses are compared in Table 5.  

 

Table 5.  Natural frequency comparison of lumped parameter (LPM) and finite element 

method (FEM) 

 

Mode 

# 

LPM 

Natural Frequency 

[Hz]  

FEM 

Natural Frequency 

[Hz] 

Mode Type 

1 0 1011.3 Rotational (Rigid Body) 

2 2235 2401 Axial (Gear) 

3 2956 2964.2 Translational – Rotational 

4 3160 3791.7 Translational (Gear) 

5 4352 4648.8 Axial (Pinion) 

6 5081 5097.9 Translational – Rotational 

7 6154 11506 Translational (Pinion) 

8 11267 4648.8 Tilting (Gear) 

9 11267 4966.1 Tilting (Gear) 

10 12489 12436 Translational – Rotational 

11 40687 16326 Tilting (Pinion) 

12 40687 17741 Tilting (Pinion) 

 

Although there are significant differences between the assumptions of both analyses, 

consistent results are obtained. For instance, natural frequencies and mode shapes are 

obtained using the finite element analysis, which is made by employing the described 

mesh structure and boundary conditions. The gears are represented with flexible solid 

elements. For gear teeth contact, the contacting finite element nodes in both gears are 

rigidly connected. On the other hand, the gears are connected flexibly with translation 

and rotation springs in the lumped parameter model where the gears can rotate freely. It 

should be noted that the gear wheels are assumed to be not loaded in both two modelling 

techniques.   
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4. Discussion 

 

The two methods which are lumped parameter and finite element methods are based on 

different assumptions. When comparing the results of these two methods, it should be 

pointed out that some of the natural frequencies of the respective modes are in good 

agreement. The natural frequencies of the axial and translational mode of the gear, the 

axial mode of the pinion gear, three of the translational – rotational modes are obtained 

with higher accuracy. The natural frequencies of these modes given by both methods are 

very close and consistent. This is because both methods use the same bearing stiffness 

values. The fact that the natures of the structures disk and gear teeth, as well as contact, 

are modelled differently in both methods leads to the calculation of slightly different 

frequencies. 

 

However, the rest of the natural frequencies that are calculated with these two models 

have significant differences. The frequency that corresponds to the rotational mode is zero 

for the lumped parameter model whereas the finite element yields a nonzero frequency 

for the same mode. The reason behind this difference is, as mentioned earlier, essentially 

based on the modelling assumptions of the contact between the driven gear and the pinion 

gear. The rigid connection in the finite element model does not let the driven gear and 

pinion gear rotate freely while the spring on the lumped parameter model does not restrict 

that motion. Similarly, for the difference between the calculated axial modes, the same 

reason can be named. More precisely, in the lumped parameter model, it is assumed that 

the gear teeth can slide freely on each other, whereas in the finite element model, the 

contacting nodes in the gear teeth are connected to each other. Moreover, since the mass 

of the driven gear is larger than the pinion gear and the bending stiffness is small, the 

frequency values of the axial mode are very different.  

 

Another difference to mention is about tilting modes around x and y axes. The tilting 

motion around the x-axis is coupled with other forms of motion in finite element method 

because of the 3D geometry of the gear teeth. Whereas in the lumped parameter method 

there is nothing that constrains the tilting motion of the gears. Therefore, these modes are 

not coupled with any other mode. In the results taken from the finite element method, the 

coupling is observed in tilting modes about y-axis as well. However, the reason behind 

this coupling is the over-restriction of the contact. Unlike the finite element model, the 

lumped parameter model displays uncoupled results for those modes. Thus, there is no 

restriction of this motion. It is seen that the frequencies of the in-plane mode of the gears, 

which express the vibration motion like a rigid disk, are different. This is due to the 

difference in gear teeth contact modelling assumptions as well as the flexible disk 

assumption of the finite element model.  

 

As of the last comments, the finite element generally computes lower natural frequency 

values than the lumped parameter method. This roots from the difference between basic 

structural modelling assumptions. The lumped parameter model considers the disks as 

rigid. The only sources of flexibility in this model are the springs defined as the bearings 

and the spring that define the mesh stiffness. The same springs are used to define the 

bearings in the finite element model too. But additionally, the disks are also flexible in 

that model. This reduces the stiffness of the model. The only exception to this is the pinion 

gear’s translational mode. The reason for the higher frequency in finite element method 

lies in the contact again. The contact restricts the motion in this direction, whereas, in the 

lumped parameter model, there is no restriction.    
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5. Conclusion 

 

The natural frequencies and mode shapes of a spur gear pair under no-load are analysed 

with lumped parameter and finite element methods. In the lumped parameter model, gear 

bodies are assumed to be rigid, and they are grounded by uncoupled flexible bearing 

elements. Here, the gear teeth contacts are also considered as flexible. In the finite element 

model, gear bodies are modelled with 3D solid elements. Gear teeth contacts (meshes) 

are modelled as connected rigidly and bearing stiffnesses are modelled the same way as 

in the analytical method. 

 

Overall, both methods show consistent modal behaviour despite the different assumptions 

on which they are built. The lumped parameter models can estimate the tooth modes 

satisfactorily, which is consistent with the finite element analysis results. On the other 

hand, lumped parameter model cannot compute the flexible gear body modes, which can 

only be detected with the finite element model. The analyses result shows that mode 

shapes predicted by the finite element and lumped parameter methods are mostly 

consistent, whereas some of the natural frequencies calculated by these two methods have 

significant differences. The reason for the differences between some natural frequencies 

lies in the gear contact and body modelling assumptions of the two methods.  

 

Briefly, flexible gear body and gear contact modelling is necessary for an accurate modal 

parameter prediction of a spur gear pair system. Flexible gear body and contact modelling 

should be considered for a reliable gear dynamic analysis. 
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