https://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 70, Number 2, Pages 1099–1112 (2021) DOI:10.31801/cfsuasmas.898637 ISSN 1303-5991 E-ISSN 2618-6470

Research Article; Received: March 17, 2021; Accepted: June 5, 2021

A GENERALIZATION OF PURELY EXTENDING MODULES RELATIVE TO A TORSION THEORY

Semra DOĞRUÖZ and Azime TARHAN Adnan Menderes University, Aydın, TURKEY

ABSTRACT. In this work we introduce a new concept, namely, purely τ_s -extending modules (rings) which is torsion-theoretic analogues of extending modules and then we extend many results from extending modules to this new concept. For instance, we show that for any ring R with unit, $_RR$ is purely τ_s -extending if and only if every cyclic τ -nonsingular R-module is flat. Also, we make a classification for the direct sums of the rings to be purely τ_s -extending.

1. INTRODUCTION

Injective modules have been intensively studied in the 1960s and 1970s in module theory and more generally in algebra. As a generalization of injective modules, extending modules (CS), that is every closed submodule is a direct summand, have been studied widely in last three decades. In general setting, Chatters and Hajarnavis [7], Harmanci and Smith [23], Kamal and Muller [24] and their schools can be mentioned involving studies of extending modules.

Recently, torsion-theoretic analogues of extending modules has been studied on many results and concepts, such primarily studies as, Asgari and Haghany [4], Berktaş, Doğruöz and Tarhan [6], Crivei [11], Çeken and Alkan [12], Doğruöz [13]. Clark [8] defined a module M is *purely extending* if every submodule of M is essential in a pure submodule of M, equivalently every closed submodule of Mis pure in M. A submodule K of a module M is *essential (in* M) if $N \cap K \neq$ 0 for every non-zero submodule K of M. A submodule K of a module M is *closed (in* M) if K has no proper essential extension in M, i.e., whenever Lis a submodule of M such that K is essential in L, then K = L. Al-Bahrani [1] generalized purely extending modules as a purely y-extending module using

©2021 Ankara University Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. Primary 16S90, 16D40; Secondary 16E60.

Keywords. Pure submodule, closed submodule, (non)singular module, extending module, torsion theory.

sdogruoz@adu.edu.tr-Corresponding author; a.tarhan89@hotmail.com

^{© 0000-0002-7928-301}X; 0000-0002-5363-1936.

s-closed submodules which was defined by Goodearl [21] such as a submodule N of a module M is s-closed in M if M/N is nonsingular. So a module M is called *purely y*-extending if every s-closed submodule of M is pure in M. In fact, Al-Bahrani [1] belike misused the terminology of s-closed submodules. They used the term y-closed (purely y-extending) instead of s-closed (purely s-extending) respectively. In this study, we use s-closed submodule and purely s-extending module instead of y-closed submodule and purely y-extending module in the sense of Al-Bahrani [1].

We use the concept 'purity' in the sense of Cohn [10] (as in [8]) which implies definition of Anderson and Fuller [3], that is, a submodule N of an R-module Mis called *pure submodule* in M in case $IN = N \cap IM$ for each finitely generated right ideal I of the ring R (see also [26]). In the present paper we introduce purely τ_s -extending modules and then we extend many results from [1], [8] and [21] to this new concept.

For instance, we show that:

Theorem 1: Let R be a τ -torsion ring and M be an R-module. Let E(M) be an injective hull of M. Then M is a purely τ_s -extending module if and only if $A \cap M$ is pure in M for every direct summand A of E(M) such that the submodule $A \cap M$ is τ_s -closed in M.

Proposition 5: Let R be a ring with identity. Then $_RR$ is purely τ_s -extending if and only if every cyclic τ -nonsingular R-module is flat.

and

Theorem 6: Let R be a commutative domain and every essential ideal of R is τ -dense in R. Then the following properties are equivalent:

- (1): *R* is a semi-hereditary ring.
- (2): $R \oplus R$ is an extending module.
- (3): $R \oplus R$ is a purely extending module.
- (4): $R \oplus R$ is a purely s-extending module.
- (5): $R \oplus R$ is a purely τ_s -extending module.
- (6): for each $n \in \mathbb{N}$, $\bigoplus_n R$ is an extending module.
- (7): for each $n \in \mathbb{N}$, $\bigoplus_n R$ is a purely extending module.
- (8): for each $n \in \mathbb{N}$, $\bigoplus_n R$ is a purely s-extending module.
- (9): for each $n \in \mathbb{N}$, $\bigoplus_n R$ is a purely τ_s -extending module.

which is a torsion-theoretic analogue of [8, Proposition 1.6].

Throughout the work R will be an associative ring with identity and all R-modules will be unitary left R-modules unless otherwise stated. R-Mod will be the category of unitary left R-modules, and all modules and module homomorphisms will belong to R-Mod. By a class \mathcal{X} of R-modules we mean a collection of R-modules containing the zero module and closed under isomorphism, i.e., any module which is isomorphic to some module in \mathcal{X} also belongs to \mathcal{X} . If a submodule N of a module M belongs to \mathcal{X} class, then N is called \mathcal{X} -submodule of M. The class of \mathcal{X} closed under extension by short exact sequence we mean for a short exact sequence

$$0 \longrightarrow C \longrightarrow B \longrightarrow A \longrightarrow 0$$

of *R*-modules *A*, *B*, *C*, if *A* and *C* are bought belong to the class of \mathcal{X} , then *B* is also belongs to \mathcal{X} class.

Let $\tau := (\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory on *R*-*Mod*. The modules in \mathcal{T} are called τ -torsion modules and the modules in \mathcal{F} are called τ -torsion-free modules. Let $M \in R$ -*Mod*. Then the τ -torsion submodule of M, denoted by $\tau(M)$, is defined to be the sum of all τ -torsion submodules of M. Thus $\tau(M)$ is the unique largest τ -torsion submodule of M and $\tau(M/\tau(M)) = 0$ for an R-module M. Also the module M is τ -torsion (resp. τ -torsion-free) if and only if $\tau(M) = M$ (resp. $\tau(M) = 0$). In our study, we mean a ring R is τ -torsion if RR is τ -torsion.

Let M be an R-module. A submodule N of M is called τ -dense in M if M/N is τ -torsion. A submodule N of M is called τ -essential in M denoted by $(N \leq_{\tau_e} M)$ if N is essential in M and M/N is τ -torsion (see [19], originally defined by Tsai in 1965 [29]). Define the set $Z_{\tau}(M) = \{m \in M \mid Ann(m) \leq_{\tau_e} R\}$. Here $Z_{\tau}(M)$ is called the τ -singular submodule of M. Then the module M is called τ -singular if $Z_{\tau}(M) = M$ and τ -nonsingular if $Z_{\tau}(M) = 0$ ([20]). We mean Z(M) the singular submodule of a module M which is consists of singular elements of M, i.e., elements annihilated by essential left ideals. The module M is singular (resp. nonsingular) if Z(M) = M (resp. Z(M) = 0). For the singular and nonsingular notions (see also [21], [22]). If a ring R is τ -torsion, then every left ideal I of R is τ -dense in it, i.e., R/I is τ -torsion in the sense of [19]. Therefore, clearly $Z_{\tau}(M) = Z(M)$ over a τ -torsion ring R.

For elementary, additional and unexplained terminology the reader is referred to [3] or [30] for module and ring theory, [19] and [28] for torsion theory, [15] for extending modules and [26] for homological algebra.

2. Purely τ_s -Extending Modules

Definition 1. Let M be an R-module and N be a submodule of M. We call N is a τ_s -closed submodule of M if the factor module M/N is τ -nonsingular and it is denoted by $N \leq_{\tau_s c} M$.

Definition 2. Let M be an R-module. We call M is a purely τ_s -extending module if every τ_s -closed submodule of M is pure in M.

Lemma 1. Let R be a τ -torsion ring. Then every τ_s -closed submodule of a module M is closed in M.

Proof. Let N be a τ_s -closed submodule of M. Then the factor module M/N is τ -nonsingular i.e., $Z_{\tau}(M/N) = 0$. Since R is τ -torsion, clearly $Z_{\tau}(M/N) = Z(M/N)$. Assume N is not closed in M. Then there exists a submodule K of M such that K contains N as an essential submodule. So the factor module K/N

is singular [21]. Hence Z(K/N) = K/N. On the other hand, Z(K/N) = 0 since Z(K/N) is a submodule of Z(M/N). Hence K/N is nonsingular. But since K/N is singular, it must be zero (i.e K/N = 0). Therefore, N = K and so N is closed submodule of M.

Corollary 1. Let R be a τ -torsion ring. Then every purely extending R-module is purely τ_s -extending.

Proof. Let M be a purely extending module and N be a τ_s -closed submodule of M. Since R is τ -torsion N is closed in M by Lemma 1. From [8, Lemma 1.1] every closed submodule of M is pure in M. So N is pure in M. Therefore M is purely τ_s -extending module.

As in general extending module theory we have some of the fundamental properties of purely τ_s -extending modules as follows:

Lemma 2. Let $M = M_1 \oplus M_2$ be a purely τ_s -extending module. Then M_1 and M_2 are also purely τ_s -extending modules i.e., any direct summand of a purely τ_s -extending module is purely τ_s -extending.

Proof. Let $M = M_1 \oplus M_2$ be a purely τ_s -extending module and let N_1 be a τ_s -closed submodule of M_1 . Then $Z_{\tau}(M_1/N_1) = 0$. For the proof we want to show that N_1 is pure in M_1 . First let us show that N_1 is τ_s -closed in M i.e., (M/N_1) is τ -nonsingular.

Assume M/N_1 is not τ -nonsingular module. Thus $Z_{\tau}(M/N_1) \neq 0$. Then there exists an element $N_1 \neq m + N_1 \in M/N_1$ such that $Ann(m + N_1) \leq_{\tau_e} R$. On the other hand, since $m \in M = M_1 \oplus M_2$, there exist $m_1 \in M_1$ and $m_2 \in M_2$ such that $m = m_1 + m_2$ and this writing unique. Thus

$$Ann(m + N_1) = Ann((m_1 + m_2) + N_1) = Ann(m_1 + N_1 + m_2 + N_1)$$

= Ann(m_1 + N_1) \cap Ann(m_2 + N_1)

(see [3, Proposition 2.16]). In addition, since $Ann(m + N_1) \leq_{\tau_e} R$, we have $Ann(m_1 + N_1) \cap Ann(m_2 + N_1) \leq_{\tau_e} R$. Since $Ann(m_1 + N_1) \cap Ann(m_2 + N_1) \subseteq Ann(m_1 + N_1) \subseteq R$, we have $Ann(m_1 + N_1) \leq_{\tau_e} R$. But this contradicts with $Z_{\tau}(M/N_1) \neq 0$. Hence $Z_{\tau}(M/N_1) = 0$ i.e., N_1 is a τ_s -closed submodule of M. By the hypothesis N_1 is pure in M since M is purely τ_s -extending module. By [17, Proposition 1.2 (2)] N_1 is pure in M_1 . Thus M_1 is purely τ_s -extending module. Similarly it can be shown that M_2 is also purely τ_s -extending module. \Box

Corollary 2. Let $M = \bigoplus_{i \in I} M_i$ be a purely τ_s -extending module where I is a finite index set. Then for every $i \in I$, M_i is purely τ_s -extending.

Proof. It is clear from Lemma 2.

Lemma 3. Let C be an R-module. Then C is a τ -nonsingular module if and only if $Hom_R(A, C) = 0$ for every τ -singular R-module A.

Proof. Let $f: A \longrightarrow C$ be an *R*-module homomorphism where *C* is a τ -nonsingular module and *A* is a τ -singular *R*-module. Then $f(A) = f(Z_{\tau}(A))$. We show $f(Z_{\tau}(A)) \leq Z_{\tau}(C)$. If $x \in f(Z_{\tau}(A))$ then there is an element $a \in Z_{\tau}(A)$ such that x = f(a). So $Ann(a) \leq_{\tau_e} R$. If $r \in Ann(a)$, then rx = rf(a) = f(ra) = 0 i.e., $r \in Ann(x)$. Since $Ann(a) \leq Ann(x) \leq R$, we have $Ann(x) \leq_{\tau_e} R$ i.e., $x \in Z_{\tau}(C)$. By the hypothesis, since $Z_{\tau}(C) = 0$, f = 0 and thus $Hom_R(A, C) = 0$.

For the converse let $Hom_R(A, C) = 0$ for every τ -nonsingular R-module A. Specially $Hom_R(Z_{\tau}(C), C) = 0$. So the inclusion map $Z_{\tau}(C) \longrightarrow C$ is zero. Hence $Z_{\tau}(C) = 0$ and so C is τ -nonsingular module.

Lemma 4. The class of τ -nonsingular modules is closed under extensions by short exact sequences.

Proof. Let C and A be τ -nonsingular modules and consider the following short exact sequence

For every τ -singular *R*-module *M*, using Lemma 3, we have $Hom_R(M, C) = 0$ and $Hom_R(M, A) = 0$. Then the following short exact sequence

$$0 \longrightarrow Hom_R(M, C) \longrightarrow Hom_R(M, B) \longrightarrow Hom_R(M, A) \longrightarrow 0$$

yields $Hom_R(M, B) = 0$. Again by Lemma 3 the *R*-module *B* must be τ -nonsingular.

Next we can show τ_s -closed submodules have transitivity property.

Lemma 5. Let M be an R-module and let K and N be submodules of M such that $K \leq N$. If K is τ_s -closed submodule of N and N is τ_s -closed submodule of M, then K is τ_s -closed submodule of M.

Proof. Since K is τ_s -closed submodule of N and N is τ_s -closed submodule of M, $Z_{\tau}(N/K) = 0$ and $Z_{\tau}(M/N) = 0$. We must show that $Z_{\tau}(M/K) = 0$. Consider the following short exact sequence

$$0 \longrightarrow N/K \longrightarrow M/K \longrightarrow M/N \longrightarrow 0$$

By Lemma 4, the class of τ -nonsingular modules are closed under extensions by short exact sequences. Since N/K and M/N are both τ -nonsingular, M/K is τ -nonsingular. Hence $Z_{\tau}(M/K) = 0$. Thus K is τ_s -closed submodule of M. \Box

Now we have some basic properties as follows.

Lemma 6. Any τ_s -closed submodule of a purely τ_s -extending module is purely τ_s -extending.

Proof. Let M be a purely τ_s -extending module and let N be a τ_s -closed submodule of M. Then M/N is τ -nonsingular. Let K be a τ_s -closed submodule of N. Then by Lemma 5, K is a τ_s -closed submodule of M. Since M is purely τ_s -extending module, K is pure in M. By [17, Proposition 1.2 (2)], K is pure in N. So N is purely τ_s -extending module.

There exist submodules K, L of a module M such that K and L both closed submodules of M but $K \cap L$ is not closed in K, L or M (see [21, Example 1.6]). But we have the following in our case.

Proposition 1. Let M be an R-module and N, K be τ_s -closed submodules of M. Then $N \cap K$ is a τ_s -closed submodule of M.

Proof. Let *M* be an *R*-module and *N*, *K* be *τ*_s-closed submodules of *M*. Then *M*/*K* and *M*/*N* are *τ*-nonsingular, i.e., $Z_{\tau}(M/N) = 0$ and $Z_{\tau}(M/K) = 0$. Assume $Z_{\tau}(M/(N \cap K)) \neq 0$. Then there is a $(N \cap K) \neq \bar{m} \in M/(N \cap K)$ such that $Ann(\bar{m}) \leq_{\tau_e} R$. Now for $\bar{m} = m + (N \cap K)$, $m \notin N \cap K$. On the other hand for $m \in M$, choose the elements $\hat{m} = m + N \in M/N$ and $\tilde{m} = m + K \in M/K$. Then we have $Ann(\bar{m}) \subseteq Ann(\hat{m})$ and $Ann(\bar{m}) \subseteq Ann(\tilde{m})$. Indeed, now let $0 \neq r \in Ann(\bar{m})$. Then $r\bar{m} = 0$ and so $rm + (N \cap K) = N \cap K$. Hence $rm \in N \cap K$. So we have $rm \in N$ and $rm \in K$. Thus rm + N = N and rm + K = K, i.e. $r\hat{m} = 0$ and $r\tilde{m} = 0$. Consequently $r \in Ann(\hat{m})$ and $r \in Ann(\tilde{m})$. Hence $Ann(\bar{m}) \subseteq Ann(\bar{m})$ on the other hand, since $Ann(\bar{m}) \leq_{\tau_e} R$ we have $Ann(\hat{m}) \leq_{\tau_e} R$ and $Ann(\tilde{m}) \leq_{\tau_e} R$. Then by hypothesis $Z_{\tau}(M/N) = 0$ and $Z_{\tau}(M/K) = 0$, we have $m \in N$ and $m \in K$ and so $m \in N \cap K$. Hence $\bar{m} = m + (N \cap K) = N \cap K$. This is a contradiction. Thus $Z_{\tau}(M/(N \cap K)) = 0$. Therefore, $N \cap K$ is a τ_s -closed submodule of *M*.

Corollary 3. Any intersection of τ_s -closed submodules is also τ_s -closed.

Proof. It is an evident result of Proposition 1.

Lemma 7. Let M be an R-module and let K, L be submodules of M such that $K \leq L$. If L is a τ_s -closed submodule of M, then L/K is a τ_s -closed submodule of M/K.

Proof. Let L be a τ_s -closed submodule of M. Then $Z_{\tau}(M/L) = 0$. On the other hand, $(M/K)/(L/K) \cong M/L$ and since τ -nonsingular modules are closed under isomorphisms, $Z_{\tau}((M/K)/(L/K)) = 0$. Hence L/K is τ_s -closed in M/K.

Lemma 8. Let M be an R-module and let K, L be submodules of M such that $K \leq L$. If the submodule L/K is τ_s -closed in M/K, then L is a τ_s -closed submodule of M.

Proof. Since L/K is a τ_s -closed submodule of M/K, $Z_{\tau}((M/K)/(L/K)) = 0$. Since $(M/K)/(L/K) \cong M/L$ and τ -nonsingular modules are closed under isomorphisms, $Z_{\tau}(M/L) = 0$. Hence L is a τ_s -closed submodule of M.

Proposition 2. Let M be a purely τ_s -extending R-module and N be a τ_s -closed submodule of M. Then the factor module M/N is purely τ_s -extending.

Proof. Let M be a purely τ_s -extending R-module and N be a τ_s -closed submodule of M. By the definition of purely τ_s -extending module, N is pure in M. For $N \leq K \leq M$ let K/N be τ_s -closed in M/N. Now $(M/N)/(K/N) \simeq M/K$ and since the τ -nonsingular modules are closed under isomorphisms, $Z_{\tau}(M/K) = 0$. So K is τ_s -closed submodule of M. Since M is purely τ_s -extending, K is pure in M. By [17, Proposition 1.2 (3)] K/N is pure in M/N. Thus M/N is purely τ_s -extending.

Let M be an R-module. For an arbitrary submodule N of M by Zorn's Lemma there is a submodule K of M maximal with respect to N is essential in K. The submodule K is called *closure* of N in M ([27]). See also [14] for torsion theoretic version of closures.

Now we give another generalization of closures relative to a torsion theory as follows:

Definition 3. Let M be an R-module and let N be a submodule of M. The smallest τ_s -closed submodule K of M which is containing N is called τ_s -closure of N in M. The τ_s -closure of N is denoted by $N^{-\tau_s}$.

Lemma 9. Every submodule N of an R-module M has a τ_s -closure in M.

Proof. Let M be an R-module and N be a submodule of M. Now define the set $S = \{K \leq M \mid N \subseteq K \text{ and } K \leq_{\tau_s c} M\}$. Since $Z_{\tau}(M/M) = 0$, M is τ_s -closed in M and so $M \in S$. Then S is non-empty. Let C be a chain in S. Take $C = \bigcap_{K_i \in C} K_i$. By Corollary 3 C is a τ_s -closed submodule of M. Then $C \in S$. By Zorn's Lemma there is a minimal element in S. If we call this element such as H then H is τ_s -closure of N in M. Thus every submodule N of M has a τ_s -closure in M. \Box

Proposition 3. An *R*-module *M* is a purely τ_s -extending if and only if the τ_s -closure of *N* (i.e., $N^{-\tau_s}$) is pure in *M* for every submodule *N* of *M*.

Proof. Let M be a purely τ_s -extending module. Then every τ_s -closed submodule of M is pure in M. By Zorn's Lemma every submodule N of M has a τ_s -closure in M. By the definition of τ_s -closure, the submodule $N^{-\tau_s}$ is τ_s -closed in M and by the hypothesis the submodule $N^{-\tau_s}$ is pure in M.

Conversely, let K be a τ_s -closed submodule in M. By the definition of τ_s -closure, $K^{-\tau_s} = K$. By the hypothesis $K^{-\tau_s}$ i.e. K is a pure submodule in M. Then any τ_s -closed submodule of M is pure in M. Thus M is a purely τ_s -extending module.

Theorem 1. Let R be a τ -torsion ring, let M be an R-module and E(M) be the injective hull of M. Then, M is a purely τ_s -extending module if and only if $A \cap M$ is pure in M for every direct summand A of E(M) such that the submodule $A \cap M$ is τ_s -closed in M.

Proof. Let R be a τ -torsion ring, M be an R-module, E(M) be the injective hull of M and M be a purely τ_s -extending module. Then for every direct summand A of E(M) such that $A \cap M$ is a τ_s -closed submodule of M it is clear that $A \cap M$ is pure in M.

Conversely, let A be a τ_s -closed submodule of M and let B be a complement of A in M. Then $A \oplus B$ is essential in M [21, Proposition 1.3]. Now it is clear that $A \oplus B$ is essential in E(M). Hence $E(A) \oplus E(B) = E(A \oplus B) = E(M)$ [22]. Since $A = A \cap M \leq_e E(A) \cap M$, $(E(A) \cap M)/A$ is singular (see [21]). Moreover, since R is τ -torsion ring $(E(A) \cap M)/A$ is τ -singular. On the other hand since $(E(A) \cap M)/A \leq M/A$ and A is τ_s -closed submodule of M, M/A is τ -nonsingular and thus $(E(A) \cap M)/A$ is τ -nonsingular. Therefore, $(E(A) \cap M)/A = 0$ and so $E(A) \cap M = A$. Since A is τ_s -closed in M, $E(A) \cap M$ is also τ_s -closed in M. Since E(A) is a direct summand of E(M) by the hypothesis $E(A) \cap M$ is a pure submodule of M. Hence A is pure in M. Thus M is a purely τ_s -extending module. \Box

Theorem 2. Let R be a τ -torsion ring, let M be an R-module and let E(M) be the injective hull of M. Assume A + M be a flat module for every direct summand A of E(M) with $A \cap M$ is τ_s -closed submodule of M. Then M is a purely τ_s -extending module.

Proof. Let A be a direct summand of E(M) such that $A \cap M$ is τ_s -closed in M. Consider the following short exact sequences of R-modules

$$0 \longrightarrow A \cap M \xrightarrow{i_1} M \xrightarrow{f_1} M/(A \cap M) \longrightarrow 0$$

and

$$0 \longrightarrow A \xrightarrow{i_2} A + M \xrightarrow{f_2} (A+M)/A \longrightarrow 0$$

where i_1, i_2 are inclusion maps and f_1, f_2 are natural epimorphisms. Since A is a direct summand of E(M), there is a submodule A' of E(M) such that $E(M) = A \oplus A'$. Thus A is also a direct summand of A + M such as $A + M = (A + M) \cap E(M) = (A + M) \cap (A \oplus A') = A \oplus ((A + M) \cap A')$. Here $((A + M) \cap A')$ is flat as a direct summand of a flat module A + M. Since $(A + M)/A \cong ((A + M) \cap A')$, (A + M)/A is flat. On the other hand, the factor module $M/(A \cap M)$ is again flat since $M/(A \cap M) \cong (A + M)/A$. By [17, Theorem 1.7] $A \cap M$ is pure in M. Hence by Theorem 1, M is a purely τ_s -extending module.

3. Purely τ_s -Extending Rings

If the ring R is purely τ_s -extending as an R-module over itself then R is called purely τ_s -extending.

A (von Neumann) regular ring R as an R-module over itself, i.e., $_{R}R$ can be given an example of purely τ_{s} -extending ring since every left ideal is pure in it by [17, Theorem 2.1].

Fieldhouse in [17] generalizing (von Neumann) regular ring and define, for any ring R, an R-module M is called (von Neumann) regular if all its submodules are pure in M.

Therefore, since all (left) R-modules over a (von Neumann) regular ring is regular by [17, Theorem 3.1], thus all R-modules over a (von Neumann) regular ring R is purely τ_s -extending. Also any regular module over any ring R can be given as an example of purely τ_s -extending modules.

3.1. Multiplication Modules. Let R be a commutative ring and M be an R-module. For every submodule N of M if there exists an ideal I of R such that N = IM, then M is called a *multiplication module*. For every submodule N of M let us define

$$(N:M) = \{ r \in R \mid rM \subseteq N \}.$$

Then M is an multiplication R-module if and only if N = (N : M)M ([5]).

Definition 4. [9] Let M be an R-module and N be a submodule of M. If

 $N = Hom(M, N)N = \Sigma\{\varphi(N) \mid \varphi : M \to N\}$

then N is called an *idempotent submodule* of M. If every submodule of M is idempotent, then M is called a *fully idempotent module*.

Theorem 3. [16, Teorem 2.11] Let M be a multiplication R-module and $M = M_1 \oplus M_2$, is a direct sum of fully idempotent submodules M_1 and M_2 . Then M is a fully idempotent module.

Lemma 10. [16, Lemma 2.13] Let M be a fully idempotent R-module, N be a submodule of M and I be an ideal of R. Then $N \cap MI = NI$, i.e., N is pure in M.

Now we can give the following teorem by using fully idempotent submodules:

Theorem 4. Let R be a commutative ring and let $M = M_1 \oplus M_2$ be a multiplication R-module with fully idempotent submodules M_1 , M_2 of M. Then M is a purely τ_s -extending module.

Proof. Let M be a multiplication R-module and N be a τ_s -closed submodule of M. By Teorem 3 M is fully idempotent R-module and by Lemma 10 the τ_s -closed submodule N of M is pure in M. Hence M is purely τ_s -extending.

Now we can give a characterization of a purely τ_s -extending *R*-module with a ring as follows:

Proposition 4. Let R be a commutative ring and let M be a faithful multiplication R-module. If _RR is purely τ_s -extending module then M is also purely τ_s -extending module.

Proof. Let N be a τ_s -closed submodule of M. Since M is multiplication R-module, we can write N = (N : M)M. Claim: (N : M) is τ_s -closed submodule in _RR. Assume (N:M) is not τ_s -closed in R. Then R/(N:M) is not τ -nonsingular that is, $Z_{\tau}(R/(N:M)) \neq 0$. Then there exists at least one non-zero element \bar{r} of R/(N:M) such that Ann(r+(N:M)) is τ -essential in R. So $\bar{r} = r+(N:M)$ $M \neq (N:M)$. Then there is an element $0 \neq m_0 \in M$ such that $rm_0 \notin N$. Now $Ann(r + (N : M)) \subseteq Ann(rm_0 + N)$. If $s \in Ann(r + (N : M))$, then sr + (N:M) = (N:M). Hence we have $sr \in (N:M)$ so it is easy to check that $(sr)M \subseteq N$ (*). Let us show that $s \in Ann(rm_0+N)$. Now $s(rm_0+N) = srm_0+N$ but since $(sr)M \subseteq N$ and by (*) for $m_0 \in M$, $srm_0 \in N$, i.e., $srm_0 + N = N$. So $s \in Ann(rm_0 + N)$. Hence we have $Ann(r + (N : M)) \subseteq Ann(rm_0 + N)$. On the other hand, since N is τ_s -closed in M it is clear that $M/N \tau$ -nonsingular. So $rm_0 + N = N$ but it contradicts with $rm_0 \notin N$. Hence (N : M) must be τ_s -closed in R. Moreover since _RR is purely τ_s -extending, (N:M) is pure in R, i.e., $I(N:M) = IR \cap (N:M)$ for every finitely generated ideal I of R. Thus $I(N:M) = IR \cap (N:M) = I \cap (N:M)$. Therefore, by N = (N:M)M we write $IN = I(N:M)M = (I \cap (N:M))M$. On the other hand, the equality $(I \cap (N:M))M = IM \cap (N:M)M$ holds since R is a commutative ring and M is a faithful multiplication *R*-module by applying [2, Proposition 1.6 (i)]. Now for the finitely generated ideal I of R, we have

 $IN = I(N : M)M = (I \cap (N : M))M = IM \cap (N : M)M = IM \cap N$ ([5]). Therefore, the τ_s -closed submodule N of M is pure in M. Hence M is a purely τ_s -extending module.

Remark 1. [26, Proposition 3.46] Let R be an arbitrary ring. The left R-module R is a flat left R-module.

In the sequel we use the flat ring in the sense of Rotman [26, Proposition 3.46], i.e the ring R is flat if $_{R}R$ is flat.

Proposition 5. Let R be an arbitrary ring. Then ${}_{R}R$ is purely τ_{s} -extending if and only if every cyclic τ -nonsingular R-module is flat.

Proof. Let $_RR$ be a purely τ_s -extending module. Let M = Ra be a cyclic τ -nonsingular R-module which is generated by a. Define the map $f: R \to M$ with f(r) = ra. Clearly f is an epimorphism and $\operatorname{Ker}(f) = Ann(a)$. So $R/\operatorname{Ker}(f) = R/Ann(a) \cong Ra$. Moreover, since Ra is a τ -nonsingular module and the class of τ - nonsingular modules is closed under isomorphisms R/Ann(a) is τ -nonsingular. Hence Ann(a) is τ_s -closed in R. By the hypothesis Ann(a) is pure in R. Since R is flat and Ann(a) is pure in R, R/Ann(a) is flat by [3, Lemma 19.18]. Therefore, Ra is flat.

Conversely, let K be a τ_s -closed ideal of R. Then R/K is τ -nonsingular. By the hypothesis R/K is flat as a left R-module. Thus by [3, Lemma 19.18], K is pure in R. Thus $_RR$ is a purely τ_s -extending.

Theorem 5. Let R be a ring. Then $R \oplus R$ is purely τ_s -extending if and only if every τ -nonsingular 2-generated R-module is flat.

Proof. Let $M = Rm_1 + Rm_2$ be a τ -nonsingular R-module. Define the map $f : R \oplus R \to M$ with $f(r_1, r_2) = r_1m_1 + r_2m_2$. Now it is clear that f is an epimorphism. Hence $(R \oplus R)/\text{Ker}(f) \cong M$. Since $(R \oplus R)/\text{Ker}(f)$ is τ -nonsingular, Ker(f) is a τ_s -closed submodule of $R \oplus R$. By the hypothesis Ker(f) is pure in $R \oplus R$. Since R is flat as an R-module, $R \oplus R$ is flat ([21]). Thus by [17, Proposition 1.3 (3)], we have the R-module M is flat.

For the converse, let C be a τ_s -closed submodule of $R \oplus R$. Then $(R \oplus R)/C$ is τ -nonsingular. On the other hand, since $R \oplus R$ is a 2-generated R-module, $(R \oplus R)/C$ is also a 2-generated τ -nonsingular R-module. By the hypothesis $(R \oplus R)/C$ is flat. Then by [17, Theorem 1.7] we get C is pure in $R \oplus R$. Thus $R \oplus R$ is purely τ_s -extending.

Corollary 4. Let R be a ring and I be a finite index set. Then $\bigoplus_I R$ is purely τ_s -extending if and only if every τ -nonsingular I-generated R-module is flat.

3.2. Semi-hereditary Rings. Let R be a ring with unit element. If every left (right) ideal of R is projective then R is called a left (right) hereditary ring. If every finitely generated left (right) ideal of R is projective then R is called a left (right) semi-hereditary ring ([28]). A module M over a commutative domain R is said to be torsion-free if for $m \in M$ and $r \in R$, $rm = 0 \Rightarrow r = 0$ or m = 0 [25].

Now we can give the following generalized characterization of purely $\tau_s\text{-}\mathrm{extending}$ modules.

Theorem 6. Let R be a commutative domain and every essential ideal of R is τ -dense in R. Then the following properties are equivalent:

- (1): R is a semi-hereditary ring.
- (2): $R \oplus R$ is an extending module.
- (3): $R \oplus R$ is a purely extending module.
- (4): $R \oplus R$ is a purely s-extending module.
- (5): $R \oplus R$ is a purely τ_s -extending module.
- (6): for each $n \in \mathbb{N}$, $\bigoplus_n R$ is an extending module.
- (7): for each $n \in \mathbb{N}$, $\bigoplus_{n=1}^{n} R$ is a purely extending module.
- (8): for each $n \in \mathbb{N}$, $\bigoplus_{n=1}^{n} R$ is a purely s-extending module.
- (9): for each $n \in \mathbb{N}$, $\bigoplus_n R$ is a purely τ_s -extending module.

Proof. The equivalence of (1), (2) and (6) are given in [15, Corollary 12.10].

In addition the equivalence of (1), (2), (3), (6) and (7) are given in [8, Proposition 1.6].

(3) \Leftrightarrow (4). Every *s*-closed submodule of a module *M* is closed in *M*. But converse is true if *M* is nonsingular [21, Proposition 2.4]. Here since *R* is commutative domain, *R* is nonsingular. Therefore, the notion of closed submodule and *s*-closed submodule coincide. Thus the proof is clear by [8, Lemma 1.1] in fact, Lemma 1.1 is originally given by Fuchs [18].

 $(7) \Leftrightarrow (8)$. It can be easily checked be like $(3) \Leftrightarrow (4)$.

 $(5) \Rightarrow (4)$. Let K be a s-closed submodule of $R \oplus R$. Then $(R \oplus R)/K$ is nonsingular. Since any nonsingular module is τ -nonsingular. $(R \oplus R)/K$ is a τ -nonsingular. By the hypothesis K is pure in $R \oplus R$. Hence $R \oplus R$ is a purely s-extending module.

The implication of $(9) \Rightarrow (8)$ is a generalization of $(5) \Rightarrow (4)$.

(1) \Rightarrow (5). Let K be a τ_s -closed submodule of $R \oplus R$. Then $(R \oplus R)/K$ is τ -nonsingular. Claim that $(R \oplus R)/K$ is torsion-free R-module. For this fact, let us assume $\overline{m}.r = \overline{0}$ and $r \neq 0$ for $\overline{m} \in (R \oplus R)/K$ and $r \in R$. Here $0 \neq r \in Ann(\overline{m})$. Thus $Ann(\overline{m}) \neq 0$. Since also R is a commutative domain, then all non-zero ideals of R are essential [25, 7.6]. Thus $Ann(\overline{m})$ is essential ideal in R. By hypothesis of the theorem, $Ann(\overline{m})$ is τ -dense in R. Thus $Ann(\overline{m}) \leq_{\tau_e} R$ and so, $\overline{m} \in Z_{\tau}((R \oplus R)/K)$. In this case, $\overline{m} = 0$ since $(R \oplus R)/K$ is τ -nonsingular. Therefore $(R \oplus R)/K$ is torsion-free. Thus applying [25, Collary 2.31] $(R \oplus R)/K$ is projective since $(R \oplus R)/K$ is 2-generated over the Prüfer domain R. So $(R \oplus R)/K$ is flat by [26, Proposition 3.46]. Thus K is pure in $R \oplus R$ by [17, Proposition 1.3]. Hence $R \oplus R$ is a purely τ_s -extending module

 $(1) \Rightarrow (9)$ is also similar to $(1) \Rightarrow (5)$. This completes the proof.

In fact, the proof can be also completed by the following implications.

 $(4) \Rightarrow (5)$. Let K be a τ_s -closed submodule of $R \oplus R$. Then $(R \oplus R)/K$ is τ -nonsingular, i.e., $Z_{\tau}((R \oplus R)/K) = 0$. By assumption, since R is a ring with essential ideal of R is τ -dense in it, τ -nonsingular and nonsingular modules are coincide. Therefore $(R \oplus R)/K$ is nonsingular and so K is s-closed in $R \oplus R$. By hypothesis, K is pure in $R \oplus R$. Therefore, $R \oplus R$ is purely τ_s -extending module.

 $(8) \Rightarrow (9)$ is also similar to $(4) \Rightarrow (5)$.

Author Contribution Statements The authors contributed equally and they read and approved the final copy of the manuscript.

Declaration of Competing Interests The authors declare that they have no competing interest.

Acknowledgment The authors wish to express deep appreciation to the referee for his/her valuable comments and suggestions which improved the presentation of this work.

References

- Al-Bahrani, B. H., On purely y-extending modules, Iraqi Journal of Science, 54(3) (2013), 672-675.
- [2] El-Bast, Z. Abd, Smith, P. F., Multiplication modules, Comm. In Algebra, 16(4) (1988), 755-779. https://doi.org/10.1080/00927878808823601
- [3] Anderson, F. W., Fuller, K. R., Rings and Categories of Modules. Graduate Texts in Math., No:13, Springer Verlag, New York, 1974. https://doi.org/10.1007/978-1-4612-4418-9
- [4] Asgari, Sh., Haghany, A., T-extending modules and t-Baer modules, Communications in Algebra, 39(5) (2011), 1605-1623. https://doi.org/10.1080/00927871003677519
- [5] Barnard, A., Multiplication modules, Journal of Algebra, 71 (1981), 174-178. https://doi.org/10.1016/0021-8693(81)90112-5
- [6] Berktaş, M. K., Doğruöz, S., Tarhan, A., Pure closed subobjects and pure quotient Goldie dimension, JP Journal of Algebra, Number Theory and Applications, 41(1) (2019), 49-57. https://doi.org/10.17654/NT041010049
- [7] Chatters, A. W., Hajarnavis, C. R., Rings in which every complement right ideal is a direct summand, *Quart. J. Math. Oxford*, 28(1) (1977), 61-80. https://doi.org/10.1093/qmath/28.1.61
- [8] Clark, J., On purely extending modules, The Proceedings of the International Conference in Abelian Groups and Modules, (1999), 353-358. https://doi.org/10.1007/978-3-0348-7591-2-29
- [9] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R., Lifting Modules, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006. https://doi.org/10.1007/3-7643-7573-6
- [10] Cohn, P. M., On the free product of associative rings, Math. Zeitchr. 71 (1959), 380-398. https://doi.org/10.1007/BF01181410
- [11] Crivei, S., Relatively extending modules, Algebr. Represent. Theor., 12(2-5) (2009), 319-332. https://doi.org/10.1007/s10468-009-9155-4
- [12] Çeken, S., Alkan, M., On τ-extending modules, Mediterranean Journal of Mathematics, 9(1) (2012), 129-142. https://doi.org/10.1007/s00009-010-0096-2
- [13] Doğruöz, S., Classes of extending modules associated with a torsion theory, East-West Journal of Mathematics, 8(2) (2006), 163-180.
- [14] Doğruöz, S., Harmancı, A., Smith, P. F., Modules with unique closure relative to a torsion theory I, Canadian Math. Bull., 53(2) (2010), 230-238. https://doi:10.3906/mat-0712-16
- [15] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending Modules, Longman, Harlow, 1994. https://doi.org/10.1201/9780203756331
- [16] Ertaş, N. O., Fully Idempotent and multiplication modules, Palestine Journal of Mathematics, 3 (2014), 432-437.
- [17] Fieldhouse, D. J., Purity and Flatness, Ph.D. Thesis, Department of Mathematics McGill University, Montreal, Canada, July 1967.
- [18] Fuchs, L., Note on generalized continuous modules, preprint, (1995).
- [19] Golan, J. S., Torsion Theories, Longman, New York, 1986.
- [20] Gomez Pardo, J. L., Spectral Gabriel topologies and relative singular functors, Comm. Algebra, 13(1) (1985), 21-57. https://doi.org/10.1080/00927878508823147
- [21] Goodearl, K. R., Ring Theory, Nonsingular Rings and Modules, Marcel Dekker, New York, 1976.
- [22] Goodearl, K. R., Warfield, R. B., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989. https://doi.org/10.1017/CBO9780511841699
- [23] Harmancı, A., Smith, P. F., Finite direct sum of CS-modules, Houston J. Math., 19(4), (1993), 523-532.
- [24] Kamal, M. A., Muller, B. J., Extending modules over commutative domains, Osaka J. Math., 25 (1988), 531-538.

- [25] Lam, T. Y., Lectures on Modules and Rings, Graduate Texts in Mathematics, 189 Springer-Verlag New York, 1999. https://doi.org/10.1007/978-1-4612-0525-8
- [26] Rotman, J. J., An Introduction to Homological Algebra, Academic Press, New York, 1979. https://doi.org/ 10.1007/978-0-387-68324-9
- [27] Smith, P. F., Modules for which every submodule has a unique closure, Ring Theory Conference, World Scientific, New Jersey, (1993), 302-313.
- [28] Strenström, B., Rings of Quotients, Springer-Verlag, 1975.
- [29] Tsai, C. T., Report on Injective Modules, Queen's Paper in Pure and Applied Mathematics, No.6, Kingston, Ontario: Queen's University, 1965.
- [30] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, 1991. https://doi.org/10.1201/9780203755532