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Abstract

In this article, we purpose to obtain several approximation properties of Szász-Mirakjan-
Kantorovich operators with shape parameter λ ∈ [−1,1]. We compute some preliminaries
results such as moments and central moments for these operators. Next, we derive the
Korovkin type convergence theorem, estimate the degree of convergence with respect to
the moduli of continuity, for the functions belong to Lipschitz-type class and Peetre’s
K-functional, respectively. Further, we investigate Voronovskaya type asymptotic theorem
and give the comparison of the convergence of these newly defined operators to the certain
functions with some graphics.

1. Introduction

In [1, 2], Szász and Mirakjan defined and introduced the following polynomials

Sm(µ;y) =
∞

∑
j=0

µ

(
j

m

)
sm, j(y), (1.1)

where y≥ 0, m ∈ N, µ ∈C[0,∞) and Szász-Mirakjan basis functions sm, j(y) are given as below:

sm, j(y) = e−my (my) j

j!
.

A Kantorovich variant of (1.1) operators is presented by Ditzian and Totik [3] as follows:

Km(µ;y) = m
∞

∑
j=0

sm, j(y)

j+1
m∫
j

m

µ (t)dt, y≥ 0. (1.2)

Various approximation features of (1.1) and (1.2) operators have been introduced by many authors. More details on these
directions, we refer the readers to [4]-[12].
Very recently, Qi et al. [13] defined a new generalization of λ−Szász-Mirakjan operators with shape parameter λ ∈ [−1,1], as
below:

Sm,λ (µ;y) =
∞

∑
j=0

µ

(
j

m

)
s̃m, j(λ ;y),
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where Szász-Mirakjan bases functions s̃m, j(λ ;y) with shape parameter λ ∈ [−1,1] :

s̃m,0(λ ;y) = sm,0(y)−
λ

m+1
sm+1,1(y);

s̃m,i(λ ;y) = sm,i(y)+λ

(
m−2i+1

m2−1
sm+1,i(y) −

m−2i−1
m2−1

sm+1,i+1(y)
)
, (i = 1,2, ...,∞, y ∈ [0,∞)). (1.3)

They studied several theorems such as Korovkin approximation, local approximation, Lipschitz type convergence, Voronovskaja
and Grüss-Voronovskaja type for these new form operators. In the literature, recently several researchers have obtained some
approximation results for various linear positive operators with shape parameter λ ∈ [−1,1], one can refer to [14]-[23].
Now, motivated by all above mentioned works, we propose the Kantorovich kind of λ−Szász-Mirakjan operators as follows:

Rm,λ (µ;y) = m
∞

∑
j=0

s̃m, j(λ ;y)

j+1
m∫
j

m

µ (t)dt, y ∈ [0,∞), (1.4)

where s̃m, j(λ ;y) ( j = 0,1, ..∞) given in (1.3) and λ ∈ [−1,1].
The structure of this work is organized as follows: In section 2, we compute some moments and central moments. In section
3, we establish Korovkin type approximation theorem and discuss the order of convergence in terms of the usual moduli of
continuity, for the function belongs to Lipschitz-type class and Peetre’s K-functional, respectively. In section 4, we derive a
Voronovskaya type asymptotic theorem. In the final section, we show the comparison of the convergence of operators (1.4) to
the certain functions for the different values of m and λ . We also compare the convergence of operators (1.2) and (1.4) to the
certain function to see the behaviour of λ parameter.

2. Preliminaries

Lemma 2.1. [13]. For the λ−Szász-Mirakjan operators Sm,λ (µ;y) following expressions are satisfied:

Sm,λ (1;y) = 1;

Sm,λ (t;y) = y+

[
1− e−(m+1)y−2y

m(m−1)

]
λ ;

Sm,λ (t
2;y) = y2 +

y
m
+

[
2y+ e−(m+1)y−1−4(m+1)y2

m2(m−1)

]
λ ;

Sm,λ (t
3;y) = y3 +

3y2

m
+

y
m2 +

[
1− e−(m+1)y−2y+3(m−3)(m+1)y2−6(m+1)y3

m3(m−1)

]
λ ;

Sm,λ (t
4;y) = y4 +

6y3

m
+

7y2

m2 +
y

m3 +

[
e−(m+1)y−1+2my+2(3m−11)(m+1)y2 +4(m−8)(m+1)2y3−8(m+1)3y4

m4(m−1)

]
λ .

Lemma 2.2. Let the operators Rm,λ be defined by (1.4). Then, we have

Rm,λ (1;y) = 1; (2.1)

Rm,λ (t;y) = y+
1

2m
+

[
1− e−(m+1)y−2y

m(m−1)

]
λ ; (2.2)

Rm,λ (t
2;y) = y2 +

2y
m

+
1

3m2 +

[
−4(m+1)y2

m2(m−1)

]
λ ; (2.3)

Rm,λ (t
3;y) = y3 +

9y2

2m
+

7y
2m2 +

1
4m3 +

[
3(m−5)(m+1)y2− y−6(m+1)y3 + 1

2 −
1
2 e−(m+1)y

m3(m−1)

]
λ ; (2.4)

Rm,λ (t
4;y) = y4 +

8y3

m
+

15y2

m2 +
6y
m3 +

1
5m4 +

[
2(m−1)y+12(m−4)(m+1)y2 +4(m−11)(m+1)2y3−8(m+1)3y4

m4(m−1)

]
λ .(2.5)
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Proof. Taking Özger et al. [24] in to account and using (1.4), it is easy to see
∞

∑
j=0

s̃m, j(λ ;y) = 1, hence we get (2.1).

Now, with the help of Lemma 2.1, we will compute expressions (2.2) and (2.3).

Rm,λ (t;y) = m
∞

∑
j=0

s̃m, j(λ ;y)

j+1
m∫
j

m

tdt =
∞

∑
j=0

s̃m, j(λ ;y)
2 j+1

2m

=
∞

∑
j=0

s̃m, j(λ ;y)
j

m
+

1
2m

∞

∑
j=0

s̃m, j(λ ;y)

= Sm,λ (t;y)+
1

2m
= y+

1
2m

+

[
1− e−(m+1)y−2y

m(m−1)

]
λ ,

Rm,λ (t
2;y) = m

∞

∑
j=0

s̃m, j(λ ;y)

j+1
m∫
j

m

t2dt =
∞

∑
j=0

s̃m, j(λ ;y)
3 j2 +3 j+1

3m2

=
∞

∑
j=0

s̃m, j(λ ;y)
j2

m2 +
1
m

∞

∑
j=0

s̃m, j(λ ;y)
j

m
+

1
3m2

∞

∑
j=0

s̃m, j(λ ;y)

= Sm,λ (t
2;y)+

1
m

Sm,λ (t;y)+
1

3m2 = y2 +
2y
m

+
1

3m2 +

[
−4(m+1)y2

m2(m−1)

]
λ .

Analogously, taking into consideration Lemma 2.1, hence we can arrive expressions (2.4) and (2.5) by simple computation,
thus we omitted details.

Corollary 2.3. Let y ∈ [0,∞), m > 1 and λ ∈ [−1,1]. As a consequence of Lemma 2.2, we obtain the following relations:

(i) Rm,λ (t− y;y) =
1

2m
+

[
1− e−(m+1)y−2y

m(m−1)

]
λ

≤ m+1+2e−(m+1)y +4y
2m(m−1)

:= βm(y);

(ii) Rm,λ ((t− y)2;y) =
y
m
+

1
3m2 +

[
2(e−(m+1)y−1)y

m(m−1)
− 4y2

m2(m−1)

]
λ

≤ y
m
+

1
3m2 +

2(e−(m+1)y +1)y
m(m−1)

+
4y2

m2(m−1)
:= γm(y);

(iii) Rm,λ ((t− y)4;y) =
3y2

m2 +
5y
m3 +

1
5m4 +

(
2(me−(m+1)y−1)y

m4(m−1)
+

4(3m2−8m−12)y2

m4(m−1)

−4(3m3 +3m2−6m−11)+4m3e−(m+1)y)y3

m4(m−1)
− 8y4

m4(m−1)

)
λ .

Lemma 2.4. Let y ∈ [0,∞) and λ ∈ [−1,1]. Then, the following expressions holds true:

(i) lim
m→∞

mRm,λ (t− y;y) =
1
2

;

(ii) lim
m→∞

mRm,λ ((t− y)2;y) = y;

(iii) lim
m→∞

m2Rm,λ ((t− y)4;y) = 3y2.

3. Direct theorems of Rm,λ

In the next theorem, we introduce a Korovkin type approximation theorem. As it is known, the space C[0,∞) denotes the all
continuous and bounded functions on [0,∞) and it is equipped with the sup-norm for a function µ as follows:

‖µ‖[0,∞) = sup
y∈[0,∞)

|µ(y)| .
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Theorem 3.1. Let µ ∈C[0,∞), then Rm,λ (µ;y) converge uniformly to µ on [0,∞).

Proof. According to the Bohman-Korovkin theorem [25], it is sufficient to verify

lim
m→∞

sup
y∈[0,∞)

∣∣Rm,λ (t
s;y)− ys∣∣= 0, for s = 0,1,2.

Using (2.1), for s = 0, it can be seen that above expression is clear.
For s = 1, in view of (2.2), we have

lim
m→∞

sup
y∈[0,∞)

∣∣Rm,λ (t;y)− y
∣∣ = lim

m→∞
sup

y∈[0,∞)

∣∣∣∣∣ 1
2m

+

(
1− e−(m+1)y

m(m−1)
− 2y

m(m−1)

)
λ

∣∣∣∣∣
≤ lim

m→∞
sup

y∈[0,∞)

(
m+1+2e−(m+1)y +4y

2m(m−1)

)
= 0.

Similarly, by (2.3), one has

lim
m→∞

sup
y∈[0,∞)

∣∣Rm,λ (t
2;y)− y2∣∣ = lim

m→∞
sup

y∈[0,∞)

∣∣∣∣2y
m

+
1

3m2 +

(
−4(m+1)
m2(m−1)

y2
)

λ

∣∣∣∣
≤ lim

m→∞
sup

y∈[0,∞)

(
2y
m

+
1

3m2 +
4(m+1)

m2(m−1)
y2
)
= 0.

Hence, we get the required sequel.

Further, we discuss the order of convergence in connection with the usual moduli of continuity, for the function belong to
Lipschitz type continuous and Peetre’s K-functional. The Peetre’s K-functional is defined by

K2(µ,η) = inf
ν∈C2[0,∞)

{
‖µ−ν‖+η

∥∥ν
′′∥∥} ,

where η > 0 and C2[0,∞) = {ν ∈C[0,∞) : ν ′,ν ′′ ∈C[0,∞)} .
Taking into account [26], there exist an absolute constant C > 0 such that

K2(µ;η)≤Cω2(µ;
√

η), η > 0, (3.1)

where

ω2(µ;η) = sup
0<α≤η

sup
y∈[0,∞)

|µ(y+2α)−2µ(y+α)+µ(y)| ,

is the second order modulus of smoothness of the function µ ∈C[0,∞). Further, by

ω(µ;η) := sup
0<α≤η

sup
y∈[0,∞)

|µ(y+α)−µ(y)| ,

we denote the usual moduli of continuity of µ ∈C[0,∞). Since η > 0, ω(µ;η) has some useful properties see details: [27].
Also, we give an element of Lipschitz continuous function with LipL(ζ ), where L > 0 and 0 < ζ ≤ 1. If the expression below:

|µ(t)−µ(y)| ≤ L |t− y|ζ , (t,y ∈ R),

holds, then one can say a function µ is belong to LipL(ζ ).

Theorem 3.2. Let µ ∈C[0,∞), y ∈ [0,∞) and λ ∈ [−1,1]. Then, we have following inequality verify∣∣Rm,λ (µ;y)−µ(y)
∣∣≤ 2ω(µ;

√
γm(y)),

where γm(y) given as in Corollary 2.3.

Proof. Using the well-known property of moduli of continuity |µ(t)−µ(y)| ≤
(

1+ |t−y|
δ

)
ω(µ;δ ) and after operating

Rm,λ (.;y), it becomes ∣∣Rm,λ (µ;y)−µ(y)
∣∣≤ (1+

1
δ

Rm,λ (|t− y| ;y)
)

ω(µ;δ ).

Utilizing the Cauchy-Bunyakovsky-Schwarz inequality and from Corollary 2.3, we get∣∣Rm,λ (µ;y)−µ(y)
∣∣ ≤ (

1+
1
δ

√
Rm,λ ((t− y)2;y)

)
ω(µ;δ )

≤
(

1+
1
δ

√
γm(y)

)
ω(µ;δ ).

Taking δ =
√

γm(y), hence we obtain the proof of Theorem 3.2.
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Theorem 3.3. Let µ ∈ LipL(ζ ), y ∈ [0,∞) and λ ∈ [−1,1]. Then, we obtain∣∣Rm,λ (µ;y)−µ(y)
∣∣≤ L(γm(y))

ζ

2 .

Proof. By the linearity and monotonicity of the operators (1.4), it follows

∣∣Rm,λ (µ;y)−µ(y)
∣∣≤ Rm,λ (|µ(t)−µ(y)| ;y)≤

∞

m∑
j=0

s̃m, j(λ ;y)

j+1
m∫
j

m

|µ (t)−µ(y)|dt ≤ Lm
∞

∑
j=0

s̃m, j(λ ;y)

j+1
m∫
j

m

|t− y|ζ dt.

Utilizing the Hölder’s inequality with p1 =
2
ζ

and p2 =
2

2−ζ
and in view of Corollary 2.3 and Lemma 2.2, we arrive

∣∣Rm,λ (µ;y)−µ(y)
∣∣ ≤ L

m
∞

∑
j=0

s̃m, j(λ ;y)

j+1
m∫
j

m

(t− y)2 dt


ζ

2 {
∞

∑
j=0

s̃m, j(λ ;y)

} 2−ζ

2

= L
{

Rm,λ ((t− y)2;y)
} ζ

2
{

Rm,λ (1;y)
} 2−ζ

2 ≤ L(γm(y))
ζ

2 .

Thus, we get the proof of this theorem.

Theorem 3.4. For all µ ∈C[0,∞), y ∈ [0,∞) and λ ∈ [−1,1], the following inequality holds:∣∣Rm,λ (µ;y)−µ(y)
∣∣≤Cω2(µ;

1
2

√
γm(y)+(βm(y))2 +ω(µ;βm(y)),

where C > 0 is a constant, βm(y), γm(y) defined as in Corollary 2.3.

Proof. Let µ ∈C[0,∞). We denote αm,λ (y) := y+ 1
2m +

[
1−2y−e−(m+1)y

m(m−1)

]
λ , it is obvious that αm,λ (y) ∈ [0,∞) for sufficently

large m. We define the following auxiliary operators:

R̂m,λ (µ;y) = Rm,λ (µ;y)−µ(αm,λ (y))+µ(y). (3.2)

In view of (2.1) and (2.2), it follows that

R̂m,λ (t− y;y) = 0.

By Taylor’s formula, one has

ξ (t) = ξ (y)+(t− y)ξ ′(y)+
t∫
y

(t−u)ξ ′′(u)du, (ξ ∈C2[0,∞)). (3.3)

After operating R̂m,λ (.;y) to (3.3), yields

R̂m,λ (ξ ;y)−ξ (y) = R̂m,λ ((t− y)ξ ′(y);y)+ R̂m,λ (

t∫
y

(t−u)ξ ′′(u)du;y)

= ξ
′(y)R̂m,λ (t− y;y)+Rm,λ (

t∫
y

(t−u)ξ ′′(u)du;y)−
αm,λ (y)∫

y

(αm,λ (y)−u)ξ ′′(u)du

= Rm,λ (

t∫
y

(t−u)ξ ′′(u)du;y)−
αm,λ (y)∫

y

(αm,λ (y)−u)ξ ′′(u)du.

Taking Lemma 2.2 and (3.2) into the account, we get

∣∣∣R̂m,λ (ξ ;y)−ξ (y)
∣∣∣ ≤

∣∣∣∣∣∣Rm,λ (

t∫
y

(t−u)ξ ′′(u)du;y)

∣∣∣∣∣∣+
∣∣∣∣∣∣∣
αm,λ (y)∫

y

(αm,λ (y)−u)ξ ′′(u)du

∣∣∣∣∣∣∣
≤ Rm,λ (

∣∣∣∣∣∣
t∫
y

(t−u)

∣∣∣∣∣∣ ∣∣ξ ′′(u)∣∣ |du|;y)+

αm,λ (y)∫
y

∣∣αm,λ (y)−u
∣∣ ∣∣ξ ′′(u)∣∣ |du|

≤
∥∥ξ
′′∥∥{Rm,λ ((t− y)2;y)+

(
αm,λ (y)− y

)2
}
≤
{

γm(y)+(βm(y))2}∥∥ξ
′′∥∥ .
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Also from (2.1), (2.2) and (3.2), it deduce the following∣∣∣R̂m,λ (µ;y)
∣∣∣≤ ∣∣Rm,λ (µ;y)

∣∣+2‖µ‖ ≤ ‖µ‖Rm,λ (1;y)+2‖µ‖ ≤ 3‖µ‖ . (3.4)

On the other hand, by (3.3) and (3.4) imply∣∣Rm,λ (µ;y)−µ(y)
∣∣ ≤ ∣∣∣R̂m,λ (µ−ξ ;y)− (µ−ξ )(y)

∣∣∣+ ∣∣∣R̂m,λ (ξ ;y)−ξ (y)
∣∣∣+ ∣∣µ(y)−µ(αm,λ (y))

∣∣
≤ 4‖µ−ξ‖+

{
γm(y)+(βm(y))2}∥∥ξ

′′∥∥+ω (µ;βm(y)) .

On account of this, if we take the infimum on the right hand side over all ξ ∈C2[0,∞) and by (3.1), we arrive

∣∣Rm,λ (µ;y)−µ(y)
∣∣ ≤ 4K2(µ;

{
γm(y)+(βm(y))2

}
4

)+ω(µ;βm,λ (y))

≤ Cω2(µ;
1
2

√
γm(y)+(βm(y))2)+ω(µ;βm(y)).

Hence, we obtain the proof of this theorem.

Theorem 3.5. If µ ∈C1[0,∞) := {µ : µ ′ is continuous and bounded on [0,∞) } , then for all y ∈ [0,∞) and λ ∈ [−1,1], we
arrive ∣∣Rm,λ (µ;y)−µ(y)

∣∣≤ βm(y)
∣∣µ ′(y)∣∣+2

√
γm(y)ω(µ ′;

√
γm(y)),

where βm(y), γm(y) defined as in Corollary 2.3.

Proof. Let µ ∈C1[0,∞). For any y, t ∈ [0,∞), we get

µ(t)−µ(y) = µ
′(y)(t− y)+

t∫
y

(µ ′(u)−µ
′(y))du.

After operating Rm,λ (.;y) to the both sides of above expression, it gives

Rm,λ (µ(t)−µ(y);y) = µ
′(y)Rm,λ (t− y;y)+Rm,λ (

t∫
y

(µ ′(u)−µ
′(y))du;y).

Taking into consideration the following well-known property

|µ(u)−µ(y)| ≤
(

1+
|u− y|

δ

)
ω(µ;δ ), δ > 0,

then ∣∣∣∣∣∣
t∫
y

∣∣µ ′(u)−µ
′(y)
∣∣du

∣∣∣∣∣∣≤
(
(t− y)2

δ
+ |t− y|

)
ω(µ ′;δ ).

Hence,

∣∣Rm,λ (µ;y)−µ(y)
∣∣≤ ∣∣Rm,λ (t− y;y)

∣∣ ∣∣µ ′(y)∣∣+[Rm,λ ((t− y)2;y)
δ

+Rm,λ (|t− y| ;y)

]
ω(µ ′;δ ).

Applying Cauchy-Bunyakovsky-Schwarz inequality on the right hand side of foregoing inequality and taking into consideration
Corollary 2.3, we find

∣∣Rm,λ (µ;y)−µ(y)
∣∣ ≤ ∣∣Rm,λ (t− y;y)

∣∣ ∣∣µ ′(y)∣∣+ω(µ ′;δ )


√

Rm,λ ((t− y)2;y)

δ
+1

√Rm,λ ((t− y)2;y)

≤ βm(y)
∣∣µ ′(y)∣∣+ω(µ ′;δ )

[√
γm(y)
δ

+1

]√
γm(y).

By taking δ =
√

γm(y), the required result is obtained.
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4. Voronovskaya type asymptotic theorem

Theorem 4.1. Let µ ∈C[0,∞) such that µ ′,µ ′′ ∈C[0,∞) and λ ∈ [−1,1], then we have for any y ∈ [0,∞) that

lim
m→∞

m
[
Rm,λ (µ;y)−µ(y)

]
=

µ ′(y)+ yµ ′′(y)
2

.

Proof. Suppose that y ∈ [0,∞) and µ ′,µ ′′ ∈C[0,∞). From Taylor’s formula, one has

µ(t) = µ(y)+(t− y)µ ′(y)+
1
2
(t− y)2

µ
′′(y)+(t− y)2

φ(t;y). (4.1)

In (4.1), φ(t;y) is a Peano of the remainder term and by the fact that φ(.;y) ∈C[0,∞), we have lim
t→y

φ(t;y) = 0.

After operating Rm,λ (.;y) to (4.1), hence

Rm,λ (µ;y)−µ(y) = Rm,λ ((t− y);y)µ ′(y)+
1
2

Rm,λ ((t− y)2;y)µ ′′(y)+Rm,λ ((t− y)2
φ(t;y);y).

If we take the limit of the both sides of above relation as m→ ∞, then

lim
m→∞

m(Rm,λ (µ;y)−µ(y) = lim
m→∞

m
(

Rm,λ ((t− y);y)µ ′(y)+
1
2

Rm,λ ((t− y)2;y)µ ′′(y)+Rm,λ ((t− y)2
φ(t;y);y)

)
. (4.2)

Utilizing the Cauchy-Bunyakovsky-Schwarz inequality to the last term on the right hand side of the above expression, it
becomes

lim
m→∞

mRm,λ ((t− y)2
φ(t;y);y)≤

√
lim

m→∞
Rm,λ (φ 2(t;y);y)

√
lim

m→∞
m2Rm,λ ((t− y)4;y).

It is observed that as φ(t;y) ∈C[0,∞), thus by Theorem 3.1, lim
t→y

φ(t;y) = 0. It follows that

lim
m→∞

Rm,λ (φ
2(t;y);y) = φ

2(y;y) = 0. (4.3)

If we combine (4.2)-(4.3) and in view of Lemma 2.4 (iii), we arrive

lim
m→∞

mRm,λ ((t− y)2
φ(t;y);y) = 0.

Thus, we obtain the desired sequel as follows:

lim
m→∞

m
[
Rm,λ (µ;y)−µ(y)

]
=

µ ′(y)+ yµ ′′(y)
2

.

5. Graphical analysis

In this section, we give some graphics to see the convergence of operators (1.4) to the certain functions. Also, we compare the
convergence of our newly defined operators (1.4) with the operators (1.2) with the different values of m and λ .
In Figure 5.1, for λ = 0.5 and m = 10,40,70 respectively, we demonstrate the convergence of operators (1.4) to µ(y) = ey. In
Figure 5.2, for λ = 0.9 and m = 10,40,70 respectively, we show the convergence of operators (1.4) to µ(y) = cos(πy). In
Figure 5.3, we denote with LKMS:= λ -Szász-Mirakjan-Kantorovich operators defined by (1.4) and KMS:= Szász-Mirakjan-
Kantorovich operators defined by (1.2). We compare the convergence of operators (1.4) with (1.2) for λ = 0.5, m = 10 to
µ(y) = ey. We can conclude from Figure 5.1 and Figure 5.2 that, as the values of m increases than the convergence of operators
(1.4) to the functions becomes better. Moreover, in Figure 5.3 it can be seen that for λ = 0.5 and m = 10 operators (1.4) have
better approximation than operators (1.2).
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Figure 5.1: The convergence of Rm,λ (µ;y) to µ(y) = ey for λ = 0.5 and m = 10,40,70.
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Figure 5.2: The convergence of Rm,λ (µ;y) to µ(y) = cos(πy) for λ = 0.9 and m = 10,40,70.
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Figure 5.3: The convergence of Rm,λ (µ;y) and Km(µ;y) to µ(y) = ey for λ = 0.5 and m = 10.

6. Conclusion

In the present paper, we introduced Szász-Mirakjan-Kantorovich operators based on shape parameter λ ∈ [−1,1]. The
importance of parameter λ , give us more flexibility in modeling. We derived a Korovkin type convergence theorem, estimated
the degree of convergence in terms of the moduli of continuity, for the functions belong to Lipschitz class and Peetre’s
K-functional, respectively. We also discussed Voronovskaya type asymptotic theorem. Moreover, we gave the comparison of
the convergence of our newly constructed operators (1.4) to the certain functions with some graphics and also we compared
the convergence of (1.4) between (1.2). As future works, we will consider the Stancu, Durrmeyer and Baskakov type
λ -Szász-Mirakjan operators.
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