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Abstract
In this paper, the structures of the linear codes over a family of the rings At =
Z4 [u1, . . . , ut]

/〈
u2i − ui, uiuj − ujui

〉
are given, where i, j = 1, 2, . . . , t, i 6= j, Z4 = {0, 1, 2, 3}. A map

between the elements of the At and the alphabet {A, T,C,G}2
t

is constructed. The DNA codes are
obtained with three different methods, by using the cyclic, skew cyclic codes over a family of the rings At
and θi-set, where θi is a non trivial automorphism on Ai, for i = 1, 2, . . . , t.
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1. Introduction
There are many methods in order to obtain DNA codes. In [1], it was used the cyclic codes over the finite ring

F2[u]/〈u4 − 1〉 in order to obtain DNA codes. The sufficient and necessary conditions of cyclic codes over the finite
ring satisfying the reverse complement constraints was given. By introducing a map, the DNA codes were obtained
from these types codes. In different method, it was used the skew cyclic codes over Z4[u, v]/〈u2−u, v2− v, uv− vu〉
in order to obtain reversible DNA codes, in [2]. Thanks to this, reversibility problem was solved for DNA 4-bases.
This problem arises from the fact that the pairing of nucleotides in two different strands of a DNA sequence is done
in opposite direction and reverse order. For example, take t = 1. Let (α1, α2) ∈ A2

1 be a codeword corresponding to
CTCG, where A1 = Z4 + u1Z4, u

2
1 = u1. The reverse of (α1, α2) is (α2, α1). The vector (α2, α1) corresponding to

CGCT . It is not reverse of CTCG. The reverse of CTCG is GCTC. In order to solve reversibility problem, there is
a different approach. In [3], it was used θ-set, where θ is a non trivial automorphism on F2[u, v]/〈u2, v2− v, uv− vu〉
in order to obtain reversible and reversible complement DNA codes.
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Moreover, there are similar papers in the literature, [4–6]. Motivated from all these works in which were
considered the codes over one ring and were used one method in order to DNA codes, we decide to consider the
codes over a family of rings and use three methods in order to obtain DNA codes.

In this paper, we use the cyclic, skew cyclic codes over a family of the rings At = Z4[u1, . . . , ut]/〈u2i − ui, uiuj −
ujui〉, where i, j = 1, 2, . . . , t, i 6= j and Z4 = {0, 1, 2, 3} and θi-set, where θi is a non trivial automorphism on Ai, for
i = 1, 2, . . . , t in order to obtain DNA codes. Section 2 includes some knowledge about a family of the rings At. A
map φi is defined from Ai to A2

i−1, for i = 1, 2, . . . , t. A map ξi is defined from Ai to {A, T,C,G}2i , for i = 1, 2, . . . , t.
A Gray map is defined on Ai, for i = 1, . . . , t. In the section 3 and 4, the structures of linear and cyclic codes over At
are given, respectively. In the section 5.1 and 5.2 the sufficient and necessary conditions of cyclic codes over At
satisfying the reverse and reverse complement constraints are given, respectively. The DNA codes are obtained
with first method. In the section 6, by defining a non trivial automorphism on Ai for i = 1, . . . , t, the skew cyclic
codes over a family of the finite rings are introduced. By using the skew cyclic codes over At, the DNA codes are
obtained with second method. In the section 7, by using the θi-set, where θi is a non trivial automorphism on Ai,
for i = 1, 2, . . . , t, the DNA codes are obtained with third method.

2. Preliminaries

A family of the finite rings At = Z4[u1, . . . , ut]/〈u2i − ui, uiuj − ujui〉, where i, j = 1, 2, . . . , t, i 6= j contains the
commutative the finite rings with characteristic 4 and cardinality 42

t

. The finite rings of the family are written as
recursively

Ar = Ar−1 + urAr−1

where r = 1, 2, . . . , t and A1 = Z4 + u1Z4, u
2
1 = u1, where A0 = Z4 = {0, 1, 2, 3}.

We define a map as follows for every ai = xi−1 + uiyi−1 ∈ Ai,

φi : Ai −→ A2
i−1

ai 7−→ φi (ai) = (xi−1, xi−1 + yi−1)

where i = 1, 2, . . . , t and

φ1 : A1 −→ A2
0

a1 = x0 + u1y0 7−→ φ1 (a1) = (x0, x0 + y0)

where A0 = Z4.

The map φi can be extended to Ani naturally, for i = 1, . . . , t.

Let SD4 = {A, T,C,G} represent the DNA alphabet. The Watson Crick Complement is given Ac = T, T c =
A,Gc = C,Cc = G. We use the same notation for the set SD16 = {AA, TT, . . . , CG} which was presented in [7].
It is extended the notation to the elements of SD16

such that AAc = TT,AT c = TA, . . . , GGc = CC. By using the
matching the elements of A0 and SD4

= {A, T,C,G} which is given as ξ0(0) = A, ξ0(1) = T, ξ0(3) = C, ξ0(2) = G
and by using the map φ1 from A1 = Z4 + u1Z4 to Z2

4 , we defined a ξ1 correspondence between the elements of the
finite ring A1 = Z4 + u1Z4 and DNA double pairs by a1 = x0 + u1y0 7→ (ξ0(x0), ξ0(x0 + y0)) in [7],
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Elements a1 DNA double pairs ξ1(a1)
0 AA
1 TT
2 GG
3 CC
u1 AT

1 + u1 TG
u1 + 2 GC
u1 + 3 CA

2u1 AG
1 + 2u1 TC
2 + 2u1 GA
3 + 2u1 CT

3u1 AC
1 + 3u1 TA
2 + 3u1 GT
3 + 3u1 CG

Table 1. Identifying codons with the elements of the ring A1.

By using the map φ2 and ξ1, we established ξ2 correspondence between the elements of A2 and DNA 4-bases by
a2 = x1 + u1y1 7→ (ξ1(x1), ξ1(x1 + y1)) as follows in [2],

Elements a2 DNA 4-bases ξ2(a2)
0 AAAA
1 TTTT
2 GGGG
3 CCCC
u1 ATAT
u2 AATT
...

...

Table 2. Identifying codons with the elements of the ring A2.

By using the map φi and ξi−1, we can establish ξi correspondence between the element of Ai and DNA 2i-bases for
i = 1, .., t as follows.

ξi : Ai −→ A2
i−1 −→ {A, T,C,G}2

i

ai = xi−1 + uiyi−1 7−→ φi (ai) = (xi−1, xi−1 + yi−1) 7−→ γi (φi (ai)) = (ξi−1(xi−1), ξi−1(xi−1 + yi−1))

where ξi = γiφi and the map γi is defined from A2
i−1 to DNA 2i-bases as follows,

γi(si−1, ti−1) = (ξi−1(si−1), ξi−1(ti−1))

where si−1, ti−1 ∈ Ai−1, for i = 1, ..., t.
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We established ξi correspondence between the elements of Ai and DNA 2i-bases as follows

Elements ai DNA 2i-bases ξi(ai)
0 AA . . . A︸ ︷︷ ︸

2i times
1 TT . . . T︸ ︷︷ ︸

2i times
2 GG . . .G︸ ︷︷ ︸

2i times
3 CC . . . C︸ ︷︷ ︸

2i times
u1 ATAT . . . AT︸ ︷︷ ︸

2i times
...

...

Table 3. Identifying codons with the elements of the ring Ai.

for i = 1, . . . , t.
We can also express an element of At as follows uniquely.

Let B ⊆ {1, 2, . . . , t} and uB =
∏
i∈B

ui. In particular u∅ = 1. Each element of At is of the form
∑
B∈Pt

αBuB , where

αB ∈ Z4, Pt is the power set of the set {1, 2, . . . , t}. For A,B ⊆ {1, 2, . . . , t}, we have that uAuB = uA∪B which gives

that
∑
B∈Pt

αBuB .
∑
C∈Pt

βCuC =
∑
D∈Pt

( ∑
B∪C=D

αBβC

)
uD. Moreover,

eu∅ = 1 + (−1)|B|
∑
B∈Pt

uB

and the number of eu∅ is
(
t
0

)
.

eui
= ui + (−1)|B|+1

∑
i∈B∈Pt,
|B|≥2

uB

for i = 1, 2, . . . , t and the number of eui
is
(
t
1

)
.

euiuj = uiuj
i<j

+ (−1)|B|+2
∑

i,j∈B∈Pt,
|B|≥3

uB

for i, j = 1, 2, . . . , t and the number of euiuj
is
(
t
2

)
.

euiujus = uiujus
i<j<s

+ (−1)|B|+3
∑

i,j,s∈B∈Pt,
|B|≥4

uB

for i, j, s = 1, 2, . . . , t and the number of euiujus
is
(
t
3

)
...

eu1u2...ut = u1u2 . . . ut

and the number of eu1u2...ut
is
(
t
t

)
.

Then we have
∑
B∈Pt

euB
= 1, (euB

)2 = euB
and euB

euA
= 0 if A 6= B for any A,B ⊆ {1, 2, . . . , t}. Hence

At =
⊕
B∈Pt

AteuB
∼=
⊕
B∈Pt

Z4euB
. So every element z of At can be uniquely expressed as z =

∑
B∈Pt

auB
euB

, where

auB
∈ Z4.
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Example 2.1. Let t be 3. Then A3 = Z4 + u1Z4 + u2Z4 + u3Z4 + u1u2Z4 + u1u3Z4 + u2u3Z4 + u1u2u3Z4. Consider
the elements of A3 below

eu∅ = e1 = 1− u1 − u2 − u3 + u1u2 + u1u3 + u2u3 − u1u2u3

eu1 = u1 − u1u2 − u1u3 + u1u2u3

eu2 = u2 − u1u2 − u2u3 + u1u2u3

eu3 = u3 − u1u3 − u2u3 + u1u2u3

eu1u2
= u1u2 − u1u2u3

eu1u3
= u1u3 − u1u2u3

eu2u3
= u2u3 − u1u2u3

eu1u2u3
= u1u2u3

We can also define Gray map as follows,

Ψt : At −→ Z2t

4

z =
∑
B∈Pt

auB
euB

7−→ Ψt(z) = γ

where γ =


∑
B=∅

auB
,
∑

B⊆{1}
auB

, . . . ,
∑

B⊆{t}
auB

,
∑

B⊆{1,2}
auB

,
∑

B⊆{1,3}
auB

, . . . ,∑
B⊆{i,j},
i<j

auB
,

∑
B⊆{1,2,3}

auB
, . . . ,

∑
B⊆{i,j,s},
i<j<s

auB
, . . . ,

∑
B⊆{1,2,...,t}

auB

 and auB
∈ Z4, for i, j, s, . . . ∈

{1, 2, . . . , t}.
The map Ψt can be extended from Ant , naturally.

Example 2.2. Let t = 3. Then

Ψ3 : A3 −→ Z8
4

z =
∑
B∈P3

auB
euB

7−→ Ψ3(z) = γ

where γ = (a1, a1 + au1 , a1 + au2 , a1 + au3 , a1 + au1 + au2 + au1u2 , a1 + au1 + au3 + au1u3 , a1 + au2 + au3 + au2u3 , a1 +
au1 + au2 + au3 + au1u2 + au2u3 + au1u3 + au1u2u3).

The Lee weight on Z4, denoted wL, is defined as wL(p) = 0 if p = 0, wL(p) = 1 if p = 1 or p = 3, wL(p) = 2 if
p = 2. For any x =

∑
B∈Pt

auB
euB
∈ At, the Gray weight of x is defined as

wG(x) = wL(Ψt(x)) =

2t∑
i=1

wL(xi)

where Ψt(x) = (x1, . . . , x2t) and xi ∈ Z4 for i = 1, 2, . . . , 2t. The Gray weight of a vector a = (a1, . . . , an) ∈ Ant is
defined to be a rational sum of the Gray weight of its components. Moreover, for any c,d ∈ Ant , the Gray distance
between c and d is defined as dG(c,d) = wG(c− d).

Theorem 2.1. The map Ψi is a linear and distance preserving map, for i = 1, . . . , t.
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3. Linear codes over At

A non empty subset C ⊆ Ant is called linear code over At if C is a submodule of At.
Let x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) be two vectors in Ant . The Euclidean inner product of x

and y is defined by

〈x,y〉 =

n−1∑
j=0

xjyj

where the operations are performed in the ring At.
Dual of the code C ⊆ Ant is the code

C⊥ = {x ∈ Ant : 〈x,y〉 = 0,∀y ∈ C}.

Clearly, C⊥ is also linear.
Denote r = (r(0), . . . , r(n−1)) ∈ Ant , where r(i) =

∑
B∈Pt

aiuB
euB

for i = 0, 1, 2, . . . , n− 1. Then r can be uniquely

expressed as r =
∑
B∈Pt

auB
euB

, where auB
= (a0uB

, a1uB
, . . . , an−1uB

), each B ∈ Pt.

Let
R1 ⊕ . . .⊕R2t = {r1 + . . .+ r2t |ri ∈ Ri, i = 1, . . . , 2t},

R1 ⊕ . . .⊕R2t = {(r1, . . . , r2t)|ri ∈ Ri, i = 1, . . . , 2t}.

Define the codes CuB
as follows

Cu∅ = C1 = {au∅ ∈ Z
n
4 |∃auB ,B 6=∅ ∈ Z

n
4 ,
∑
B∈Pt

auB
euB
∈ C}

Cu1
= {au1

∈ Zn4 |∃auB ,B 6={1} ∈ Z
n
4 ,
∑
B∈Pt

auB
euB
∈ C}

Cu2 = {au2 ∈ Zn4 |∃auB ,B 6={2} ∈ Z
n
4 ,
∑
B∈Pt

auB
euB
∈ C}

...

Cut
= {aut

∈ Zn4 |∃auB ,B 6={t} ∈ Z
n
4 ,
∑
B∈Pt

auB
euB
∈ C}

Cu1u2
= {au1u2

∈ Zn4 |∃auB ,B 6={1,2} ∈ Z
n
4 ,
∑
B∈Pt

auB
euB
∈ C}

...

Cu1u2...ut
= {au1u2...ut

∈ Zn4 |∃auB ,B 6={1,...,t} ∈ Z
n
4 ,
∑
B∈Pt

auB
euB
∈ C}.

The number of CuB
is 2t. Clearly CuB

is a linear code of length n over Z4. C can be uniquely decomposed into

C =
⊕
B∈Pt

CuB
euB

and hence we have |C| =
∏

B∈Pt

|CuB
|.

The following theorems can be proved as in [8].

Theorem 3.1. Let C =
⊕
B∈Pt

CuB
euB

be a linear code of length n over At. Then the dual C⊥ =
⊕
B∈Pt

CuB

⊥euB
is also a

linear code of length n over At.
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Theorem 3.2. If C is a (n,M, dG) linear code over Ai, then Ψi(C) is a (2in,M, dL) linear code over Z4 for i = 1, . . . , t,
where dG = dL.

Theorem 3.3. Let C be a linear code of length n over Ai. Then Ψi(C) =
⊗
B∈Pi

CuB
, for i = 1, . . . , t.

4. Cyclic codes over At

In [9], the structures of cyclic codes of length n over Z4 were determined as follows. By using this, we will obtain
the structures of cyclic codes over Ai for i = 1, . . . , t.

Theorem 4.1. [9] Let C be a cyclic code of length n over Rn = Z4[x]/〈xn − 1〉.
1. If n is odd, thenRn is a principal ideal ring and C = 〈g(x), 2a(x)〉 = 〈g(x) + 2a(x)〉, where g(x) and a(x) are polynomials
with a(x)|g(x)|xn − 1 ( mod 4) .
2. If n is not odd, then

i. If g(x) = a(x), then C = 〈g(x) + 2a(x)〉, where g(x)|xn − 1 ( mod 2), g(x) + 2a(x)|xn − 1 ( mod 4),

ii. C = 〈g(x) + 2p(x), 2a(x)〉, where g(x), a(x) and p(x) are polynomials with g(x)|xn − 1 ( mod 2) and

a(x)|p(x) (xn − 1/g(x)) ( mod 2), deg a(x) > deg p(x).

Theorem 4.2. Let C =
⊕
B∈Pt

CuB
euB

be a linear code over At. Then C is a cyclic code over At if and only if CuB
are cyclic

codes over Z4 for all B ∈ Pt. Moreover, if C is a cyclic code over At, then

C = 〈f1(x)e1, fu1
(x)eu1

, . . . , fut
(x)eut

, fu1u2
(x)eu1u2

, . . . , fu1u2...ut
(x)eu1u2...ut

〉

where fuB
(x) are generator polynomials of CuB

, for all B ∈ Pt, respectively.

Proof. This can be proven similarly to [7].

5. The reversible codes and reversible complement codes

In [7], the sufficient and necessary conditions of cyclic codes overA1 satisfying the reverse constraint and reverse
complement constraint were given. In this section, the sufficient and necessary conditions of cyclic codes over Ai
satisfying the reverse constraint and reverse complement constraint are given for i = 2, . . . , t.

Definition 5.1. A cyclic code C of length n over At is said to be reversible if xr = (xn−1, . . . , x0) ∈ C, for all
x = (x0, . . . , xn−1) ∈ C.

Definition 5.2. For each polynomial c(x) = c0 + c1x+ . . .+ cmx
m with cm 6= 0, the reciprocal polynomial of c(x) is

defined to be the polynomial c∗(x) = xmc(x−1). The polynomial c(x) and c∗(x) always have the same degree. The
polynomial c(x) is called reciprocal if and only if c(x) = c∗(x).

Lemma 5.1. Let f(x) and g(x) be polynomials in At[x]. Suppose that degf(x)-deg g(x) = m, then

(f(x).g(x))∗ = f∗(x)g∗(x)

and
(f(x) + g(x))∗ = f∗(x) + xmg∗(x).

5.1 The reversible codes
In [9], the author studied the reversible codes over Z4 as follows, by using this, the sufficient and necessary

conditions of cyclic codes over Ai satisfying the reverse constraint are given for i = 2, . . . , t.

Lemma 5.2. [9] Let C = 〈g(x), 2a(x)〉 = 〈g(x) + 2a(x)〉 be a cyclic code of odd length n over Z4. Then C is reversible if
and only if both g(x) and a(x) are self reciprocal.

Theorem 5.1. [9] Let C = 〈g(x) + 2p(x)〉 be a cyclic code of even length n over Z4. Then C is reversible if and only if

i. g(x) is self reciprocal,
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ii. a(x)|
(
xip∗(x) + p(x)

)
, where i =deg g(x)- deg p(x).

Theorem 5.2. [9] LetC = 〈g(x) + 2p(x), 2a(x)〉with g(x)|xn−1 ( mod 2), a(x)|g(x) ( mod 2), a(x)|p(x)| (xn − 1/g(x)) ( mod 2)
and deg a(x) > deg p(x) be a cyclic code of even length n over Z4. Then C is reversible if and only if

i. g(x) and a(x) are self reciprocal,

ii. a(x)|(xip∗(x) + p(x)), where i =deg g(x)-deg p(x).

Theorem 5.3. Let C =
⊕
B∈Pt

CuB
euB

be a cyclic code of length n over At. Then C is reversible if and only if CuB
are

reversible, where CuB
are cyclic codes over Z4, for all B ∈ Pt.

Proof. This can be proven similarly to [7].

5.2 The reversible complement codes
In this section, the sufficient and necessary conditions of cyclic codes over Ai satisfying the reverse complement

constraint are given for i = 2, . . . , t and DNA codes are obtained by using cyclic DNA codes over At.

Definition 5.3. A cyclic code C of length n over At is said to be complement if xc = (xc0, . . . , x
c
n−1) ∈ C, for all

x = (x0, . . . , xn−1) ∈ C.
A cyclic code C of length n over At is said to be reversible complement if xrc = (xcn−1, . . . , x

c
0) ∈ C, for all

x = (x0, . . . , xn−1) ∈ C.
A cyclic code C of length n over At that has reversible complement property is said to be cyclic DNA code.

Lemma 5.3. The following conditions hold,

i. For any element ai ∈ Ai, aci = (xi−1 + uiyi−1)c = xci−1 + 3uiyi−1, where xi−1, yi−1 ∈ Ai−1, i = 1, 2, . . . , t.

ii. For all a ∈ At, we have a+ ac = 1.

iii. For all a, b ∈ At, we have (a+ b)c = ac + bc + 3.

Proof. i., ii. According the tables, the computations are easy.
iii. Let a, b ∈ At. From ii., (a+ b)c = 1− (a+ b) = (1− a) + (1− b)− 1 = ac + bc + 3.

Theorem 5.4. Let C =
⊕
B∈Pt

CuB
euB

be a cyclic code of length n over At. Then C is reversible complement if and only if C

is reversible and (0c, . . . , 0c) ∈ C, where CuB
are cyclic codes over Z4, for all B ∈ Pt.

Proof. This can be proven similarly to [7].

Corollary 5.1. Let C be a cyclic DNA code of length n over At and minimum Hamming distance d. Then ξt(C) is a DNA
code of length 2tn over the alphabet {A,C,G, T} with minimum Hamming distance at least d.

6. Skew cyclic codes over At

For i = 2, the reversibility problem was solved in [2]. In this section, by using the skew cyclic codes over Ai, the
reversibility problem for DNA 2i-mers is solved for i = 1, 3, . . . , t.

Definition 6.1. Let B be a finite ring and θ be a non trivial automorphism over B. A subset C of Bn is called a skew
cyclic code of length n if C satisfies the following conditions,

i. C is a submodule of Bn

ii. If c = (c0, . . . , cn−1) ∈ C, then σθ(c) = (θ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C,

where σθ is the skew cyclic shift operator.
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By defining a non trivial automorphism on At as follows, we can define the skew cyclic codes over At.

θi : Ai −→ Ai

xi−1 + uiyi−1 7−→ θi−1(xi−1 + yi−1)− uiθi−1(yi−1)

and

θ1 : A1 −→ A1

x0 + u1y0 7−→ (x0 + y0)− u1y0

where i = 2, 3, . . . , t. The order of θi is 2, where i = 1, 2, . . . , t.

The rings

Ai[x, θi] = {bi0 + bi1x+ . . .+ bin−1x
n−1 : bij ∈ Ai, n ∈ N, i = 1, . . . , t, j = 0, . . . , n− 1}

are called skew polynomial rings with the usual polynomial addition and the multiplication as follows

(%xs)(ηxv) = %θsi (η)xs+v

where i = 1, . . . , t. They are non commutative rings.
The set Aθi,n = Ai[x, θi]/ 〈xn − 1〉 = {fi(x) + 〈xn − 1〉 : fi(x) ∈ Ai[x, θi]} is a left Ai[x, θi]-module with the

multiplication from left as follows,

ri(x)(fi(x) + 〈xn − 1〉) = ri(x)fi(x) + 〈xn − 1〉

where for any ri(x) ∈ Ai[x, θi], for i = 1, . . . , t.
A code Ci over Ai of length n is a skew cyclic code if and only if Ci is a left Ai[x, θi]-submodule of Aθi,n, where

i = 1, . . . , t. Let fi(x) be a polynomial in Ci of minimal degree. If the leading cofficient of fi(x) is a unit in Ai, then
Ci = 〈fi(x)〉 , where fi(x) is a right divisor of xn − 1.

We can express the matching the elements A1 and SD16
= {AA, TT, . . . , GG} by means of the automorphism θ1

as follows.
Each element α1 = x0 + u1y0 ∈ A1 and θ1(α1) are mapped to DNA 2-bases which are reverse of each other. Let

ξ1 be a correspondence the elements of the finite ring A1 and DNA 2-bases. For example

ξ1(u1) = AT, while ξ1 (θ1(u1)) = TA

By using a map ξi = γi ◦ φi, where the map γi is defined from A2
i−1 to DNA 2i-bases as foolows

γi(si−1, ti−1) = (ξi−1(si−1), ξi−1(ti−1))

where si−1, ti−1 ∈ Ai−1, for i = 1, . . . , t, we can explain a relationship between skew cyclic codes and DNA codes.
Actually, ξi(ri) and ξi (θi(ri)) are DNA reverse of each other, where ri = ai−1 + uibi−1, ai−1, bi−1 ∈ Ai−1 for
i = 1, . . . , t.

For ri = ai−1 + uibi−1 ∈ Ai, we have

ξi(ri) = γi (φi(ai−1 + uibi−1)) = γi (ai−1, ai−1 + bi−1)

= (ξi−1(ai−1), ξi−1(ai−1 + bi−1))

On the other hand,

ξi (θi(ri)) = ξi (θi−1(ai−1 + bi−1)− uiθi−1(bi−1))

= γi (φi (θi−1(ai−1 + bi−1)− uiθi−1(bi−1)))

= γi (θi−1(ai−1 + bi−1), θi−1(ai−1))

= (ξi−1 (θi−1(ai−1 + bi−1)) , ξi−1 (θi−1(ai−1)))

where i = 1, . . . , t.
This map can be extended as follows. For any si = (si0, . . . , s

i
n−1) ∈ Ani ,(

ξi
(
si0
)
, ξi
(
si1
)
, . . . , ξi

(
sin−1

))r
=
(
ξi
(
θi
(
sin−1

))
, . . . , ξi

(
θi
(
si1
))
, ξi
(
θi
(
si0
)))

where i = 1, 2, . . . , t.
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Example 6.1. If r2 = 1 + u1 + u2 (2 + 3u1) ∈ A2, then we have

ξ2 (r2) = γ2 (φ2 (r3)) = γ2 (1 + u1, 3)

= (ξ1 (1 + u1), ξ1 (3))) = (TG,CC)

On the other hand,

ξ2 (θ2(r2)) = ξ2 (θ1(3)− u2θ1(2 + 3u1))

= γ2(θ1(3), θ1(1 + u1))

= (ξ1(θ1(3)), ξ1(θ1(1 + u1)))

= (CC,GT )

Definition 6.2. Let Ci be a code of length n over Ai, for i = 1, . . . , t. If ξi(c)r ∈ ξi(Ci) for all c ∈ Ci, then Ci or
equivalently ξi(Ci) is called a reversible DNA code, for i = 1, . . . , t.

The skew cyclic code of odd length over Ai with respect to θi is a cyclic code, as the order of θi is 2 for i = 1, . . . , t.
So we will take the length n to be even.

Definition 6.3. Let gi(x) = bi0 + bi1x+ bi2x
2 + . . .+ bisx

s be a polynomial of degree s over Ai, for i = 1, . . . , t. gi(x) is
called a palindromic polynomial if bij = bis−j for all j ∈ {0, 1, . . . , s}. gi(x) is called a θi-palindromic polynomial if
bij = θi(b

i
s−j) for all j ∈ {0, 1, . . . , s}, for i = 1, . . . , t.

Theorem 6.1. Let Ci = 〈fi (x)〉 be a skew cyclic code of length n over Ai, for i = 1, 3, . . . , t, where fi(x) is a right divisor of
xn − 1 and deg(fi(x)) is odd. If fi(x) is a θi-palindromic polynomial then ξi(Ci) is a reversible DNA code.

Proof. Let fi(x) be a θi-palindromic polynomial and fi(x) = ai0 + ai1x+ . . .+ ai2s−1x
2s−1. So aij = θi(a

i
2s−1−j), for all

j = 0, 1, . . . , s−1, i = 1, 3, . . . , t. Let hi(x) = hi0 +hi1x+ . . .+hi2k−1x
2k−1. Let bij be the coefficient of xj in hi(x)fi(x).

For any κ < n/2, the coefficient of xκ in hi(x)fi(x) is

biκ =

κ∑
j=0

hijθ
j
i (a

i
κ−j)

and the coefficient of x(n−1)−κ is bi(n−1)−κ =
κ∑
j=0

hi2k−1−jθ
2k−1−j
i (ai2s−1−(κ−j)), for i = 1, 3, . . . , t.

The polynomial hi(x)fi(x) =
2k−1∑
p=0

hipx
pfi(x) corresponds a vector b = (bi0, b

i
1, . . . , b

i
n−1) ∈ Ci, for i = 1, 3, . . . , t.

The vector ξi (b) r =
((
ξi
(
bi0
)
, ξi
(
bi1
)
, . . . , ξi

(
bin−1

)))r is equal to the vector ξi (z), where the vector z corresponds

the polynomial
2k−1∑
p=0

θi(h
i
p)x

2k−1−pfi(x),for i = 1, 3, . . . , t. So ξi(Ci) is a reversible DNA code.

Theorem 6.2. Let Ci = 〈fi (x)〉 be a skew cyclic code of length n over Ai, for i = 1, 3, . . . , t, where fi(x) is a right divisor of
xn − 1 and deg(fi(x)) is even. If fi(x) is a palindromic polynomial then ξi(Ci) is a reversible DNA code.

Proof. Let fi(x) be a palindromic polynomial with even degree. fi(x) = ai0 + ai1x+ . . .+ ai2sx
2s and aip = ai2s−p, for

all p = 0, 1, . . . , s, for i = 1, 3, . . . , t. Let hi(x) = hi0 + hi1x+ . . .+ hi2kx
2k. Let bip be the coefficient of xp in hi(x)fi(x).

For any κ < n/2, the coefficient of xκ in hi(x)fi(x) is

biκ =

κ∑
j=0

hijθ
j
i (a

i
κ−j)

and the coefficient of x(n−1)−κ is bi(n−1)−κ =
κ∑
j=0

hi(2k)−jθ
(2k)−j
i (ai2s−(κ−j)), for i = 1, 3, . . . , t.

The polynomial hi(x)fi(x) =
2k∑
p=0

hipx
pfi(x) corresponds a vector b = (bi0, b

i
1, . . . , b

i
n−1) ∈ Ci, for i = 1, 3, . . . , t.

The vector ξi (b) r =
((
ξi
(
bi0
)
, ξi
(
bi1
)
, . . . , ξi

(
bin−1

)))r is equal to the vector ξi (z), where the vector z corresponds

the polynomial
2k∑
p=0

θi(h
i
p)x

2k−pfi(x). So ξi(Ci) is a reversible DNA code.
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7. θi−set
In this section, we will obtain DNA codes by using θi−set, where θi is a non trivial automorphism on Ai for

i = 1, ..., t.

Definition 7.1. Let f0,1, . . . , f0,2i be polynomials dividing xn − 1 over Z4 and let fi−1,1, fi−1,2 be polynomials with
deg fi−1,1 = di−1,1,deg fi−1,2 = di−1,2 and both are over Ai−1 for i = 1, 2, . . . , t. Let

fi = uifi−1,1 + (1 + ui)fi−1,2 ∈ Ai[x]

and

fi−1,1 = ui−1fi−2,1 + (1 + ui−1)fi−2,2

fi−1,2 = ui−1fi−2,3 + (1 + ui−1)fi−2,4

fi−2,1 = ui−2fi−3,1 + (1 + ui−2)fi−3,2

fi−2,2 = ui−2fi−3,3 + (1 + ui−2)fi−3,4

fi−2,3 = ui−2fi−3,5 + (1 + ui−2)fi−3,6

fi−2,4 = ui−2fi−3,7 + (1 + ui−2)fi−3,8

...
f1,1 = u1f0,1 + (1 + u1)f0,2

f1,2 = u1f0,3 + (1 + u1)f0,4

...

f1,2i−1 = u1f0,2i−1 + (1 + u1)f0,2i

Let mi = min{n− di−1,1, n− di−1,2}. The set L(fi) is called a θi-set and is defined as

L(fi) = {E0, E1, . . . , Emi−1, F0, F1, . . . , Fmi−1}

where Ej = xjfi, Fj = xjθi(hi), 0 ≤ j ≤ mi − 1, i = 1, 2, . . . , t.
If deg f0,2s ≥ deg f0,2s−1,

hi,1,s = u1x
deg f0,2s−deg f0,2s−1f0,2s−1 + (1 + u1) f0,2s

otherwise
hi,1,s = u1f0,2s−1 + (1 + u1)xdeg f0,2s−1−deg f0,2sf0,2s

where s = 1, 2, . . . , 2i−1 and
If deg hi,1,2t ≥ deg hi,1,2t−1,

hi,2,t = u2x
deg fii,1,2t−deg fi,1,2t−1hi,1,2t−1 + (1 + u2)hi,1,2t

otherwise
hi,2,t = u2hi,1,2t−1 + (1 + u2)xdeg fi,1,2t−1−deg fii,1,2thi,1,2t

where t = 1, 2, . . . , 2i−2 and
...

If deg hi,i−2,2v ≥ deg hi,i−2,2v−1,

hi,i−1,v = ui−1x
deg hi,i−2,2v−deg hi,i−2,2v−1hi,i−2,2v−1 + (1 + ui−1)hi,i−2,2v

otherwise
hi,i−1,v = ui−1hi,i−2,2v−1 + (1 + ui−1)xdeg hi,i−2,2v−1−deg hi,i−2,2vhi,i−2,2v

where v = 1, 2 and
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If deg hi,i−1,2 ≥ deg hi,i−1,1,

hi = uix
deg hi,i−1,2−deg hi,i−1,1hi,i−1,1 + (1 + ui)hi,i−1,2

otherwise
hi = uihi,i−1,1 + (1 + ui)x

deg hi,i−1,1−deg hi,i−1,2hi,i−1,2.

L(fi) generates a linear code Ci over Ai, where i = 1, 2, . . . , t. It will be denoted by Ci = 〈fi〉θi or Ci = 〈L(fi)〉.
It means that it is Ai-submodule generated by the set L(fi), where i = 1, 2, . . . , t. Let fi = ai0 + ai1x+ . . .+ aipx

p ∈
Ai[x], θi(hi) = bi0 + bi1x+ . . .+ bisx

s, where i = 1, 2, . . . , t. The Ai-submodule can be considered to be generated by
the rows of the following matrix

L(fi) =



E0

F0

E1

F1

E2

F2

...


=


ai0 ai1 ai2 · · · aip 0 · · · · · · · · · 0
bi0 bi1 · · · · · · bip bip+1 · · · bis 0 · · · 0
0 ai0 ai1 ai2 · · · aip 0 0 · · · 0
0 bi0 bi1 · · · · · · · · · · · · · · · bis · · · 0
... · · · · · · · · ·

... · · · · · · · · · · · ·
...



Theorem 7.1. Let f0,1, . . . , f0,2i be self reciprocal polynomials dividing xn − 1 over Z4. Then Ci = 〈L(fi)〉 is a linear code
over Ai and ξi(Ci) is a reversible DNA code, where the map ξi is from Ci to S2in

D4
, for i = 1, 2, . . . , t.

Proof. It is proved as in the proof of the Theorem 4.3 in [3].

Corollary 7.1. Let f0,1, . . . , f0,2i be self reciprocal polynomials dividing xn − 1 over Z4 and Ci = 〈L(fi)〉 be a cyclic code
over Ai for i = 1, . . . , t. If x

n−1
x−1 ∈ Ci, then ξi(Ci) is a reversible complement DNA code.

Example 7.1.

f0,1(x) = 2 (x+ 1)

f0,2(x) = x4 − x3 + x2 − x+ 1

where all of them divide x10 − 1 over Z4. Hence,

f1 = u1f0,1 + (1 + u1) f0,2

over A1. That is
f2 = (1 + u1)x4 − (1 + u1)x3 + (1 + u1)x2 − (1− u1)x+ 1 + 3u1.

We get h1 = u1x
3h1,0,1+(1+u1)h1,0,2 = (1 + 3u1)x4−(1− u1)x3+(1 + u1)x2−(1 + u1)x+1+u1. So, θ1 (h1) =

u1x
4−u1x3+(2 + 3u1)x2−(2 + 3u1)x+2+3u1. Sincem1 = 6, we consider the generator matrix ofC



E0

F0

E1

F1

...
E5

F5


, where

E0 = f1, E1 = xf1, E2 = x2f1, E3 = x3f1, E4 = x4f1, E5 = x5f1, F0 = θ1 (h1) , F1 = xθ1 (h1) , F2 = x2θ1 (h1) , F3 =
x3θ1 (h1) , F4 = x4θ1 (h1) , F5 = x5θ1 (h1). If we take α0 = 0, α1 = 1, α2 = u1, α3 = 0, α4 = 0, α5 = 0, β0 = 1, β1 =
0, β2 = 1, β3 = 0, β4 = 0, β5 = 3, then α0E0+α1E1+α2E2+α3E3+α4E4+α5E5+β0F0+β1F1+β2F2+β3F3+β4F4+
β4F4 = 3u1x

9 +u1x
8 +(2+u1)x7 +(2 + 2u1)x6 +(3 + 3u1)x5 +(1 + u1)x4 +(3+u1)x3 +(3+3u1)x2 +3x+2+3u1.

It corresponds to the codeword

d1 = (2 + 3u1, 3, 3 + 3u1, 3 + u1, 1 + u1, 3 + 3u1, 2 + 2u1, 2 + u1, u1, 3u1)

Hence, ξ1(d1) = GTCCCGCATGCGGAGCATAC. Moreover, θ1 (α0)F5 + θ1 (α1)F4 + θ1 (α2)F3 + θ1 (α3)F2 +
θ1 (α4)F1 + θ1 (α5)F0 + θ1 (β0)E5 + θ1 (β1)E4 + θ1 (β2)E3 + θ1 (β3)E2 + θ1 (β4)E1 + θ1 (β5)E0 = (1 + u1)x9 +
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3x8 + (2 + u1)x7 + 3u1x
6 + (2 + 3u1)x5 + (2 + u1)x4 + 2u1x

3 + (3 + 3u1)x2 + (1 + 3u1)x+ 3 + u1 corresponds to
the codeword

d2 = (3 + u1, 1 + 3u1, 3 + 3u1, 2u1, 2 + u1, 2 + 3u1, 3u1, 2 + u1, 3, 1 + u1)

Hence, ξ1(d2) = CATACGAGGCGTACGCCCTG. So, (ξ1(d2))
r

= ξ1(d1).

Example 7.2.

f0,1(x) = x+ 1

f0,2(x) = x2 + x+ 1

f0,3(x) = x6 + x3 + 1

f0,4(x) = x+ 1

where all of them divide x9 − 1 over Z4. Hence,

f2 = u2 (u1f0,1 + (1 + u1) f0,2) + (1 + u2)

over A2. That is

f2 = u1 (1 + u2)x6 + u1 (1 + u2)x3 + u2 (1 + u1)x2 + (1 + u1 + 2u2 + 3u1u2)x+ 1 + 2u1 + 2u2.

Since h2,1,1 = u1xf0,1 + (1 + u1)f0,2 and h2,1,2 = u1f0,3 + x5(1 + u1)f0,4, we get h2 = u2x
4h2,1,1 + (1 +

u2)h2,1,2 = (1 + 2u1 + 2u2)x6 + (1 + u1 + 2u2 + 3u1u2)x5 + (1 +u1)u2x
4 + (1 +u2)u1x

3 +u1(1 +u2). So, θ2 (h2) =
(1 + 2u1 + 2u2)x6+(3 + 3u2 + 3u1u2)x5+(2 + 3u1 + 2u2 + u1u2)x4+(2 + 2u1 + 3u2 + u1u2)x3+(2 + 2u1 + 3u2 + u1u2).

Since m2 = 3, we consider the generator matrix of C


E0

F0

E1

F1

E2

F2

 , where E0 = f2, E1 = xf2, E2 = x2f2, F0 =

θ2 (h2) , F1 = xθ2 (h2) , F2 = x2θ2 (h2). If we take α0 = 0, α1 = 0, α2 = 3, β0 = 0, β1 = 2, β2 = 0, then
α0E0 + α1E1 + α2E2 + β0F0 + β1F1 + β2F2 = 3u1(1 + u2)x8 + 2x7 + (2 + 2u2 + 2u1u2)x6 + (u1 + u1u2)x5 +
(u2 + u1u2)x4 + (3 + 3u1 + 2u2 + u1u2)x3 + (3 + 2u1 + 2u2)x2 + (2u2 + 2u1u2)x. It corresponds to the codeword

d1 =

(
0, 2u2 + 2u1u2, 3 + 2u1 + 2u2, 3 + 3u1 + 2u2 + u1u2,
u2 + u1u2, u1 + u1u2, 2 + 2u2 + 2u1u2, 2, 3u1 + 3u1u2

)
Hence, ξ2(d1) = AAAAAAGACTTCCGTTAATGATAGGGAGGGGGACAG. Moreover, θ2 (α0)F2 +θ2 (α1)F1 +
θ2 (α2)F0 +θ2 (β0)E2 +θ2 (β1)E1 +θ2 (β2)E0 = 2u1(1+u2)x7 +(3 + 2u1 + 2u2)x6 +(1+u2 +u1u2)x5 +(2+3u1 +
2u2 + u1u2)x4 + (2 + 2u1 + 3u2 + u1u2)x3 + (2 + 2u1 + 2u1u2)x2 + 2x+ 2 + 2u1 + u2 + 3u1u2 corresponds to the
codeword

d2 =

(
2 + 2u1 + u2 + 3u1u2, 2, 2 + 2u1 + 2u1u2, 2 + 2u1 + 3u2 + u1u2,

2 + 3u1 + 2u2 + u1u2, 1 + u2 + u1u2, 3 + 2u1 + 2u2, 2u1 + 2u1u2, 0

)
Hence, ξ2(d2) = GACAGGGGGAGGGATAGTAATTGCCTTCAGAAAAAA. So, (ξ2(d2))

r
= ξ2(d1).

8. Conclusion
The DNA codes are obtained with three different methods by using cyclic, skew cyclic codes and θi-set over

a family of the rings At. A one to one correspondence between At and {A, T,C,G}2t is constructed by using a
map.The sufficient and necessary conditions of cyclic codes over At satisfying the reverse and reverse complement
constraints are given, respectively. By defining a non trivial automorphism θi on At, the skew cyclic codes are
introduced. By using the skew cyclic codes over At and the θi-set, the DNA codes are obtained. In a future work, it
can be identified the new ring family and its associated Gray map reversible and reversible complement codes to
search for optimal DNA codes that meet all or some of the constraints.
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