Mathematical Sciences and Applications E-NOTES

On the Codes over a Family of Rings and Their Applications to DNA Codes

Abdullah Dertli* and Yasemin Çengellenmiş

Abstract

In this paper, the structures of the linear codes over a family of the rings $A_{t}=$ $Z_{4}\left[u_{1}, \ldots, u_{t}\right] /\left\langle u_{i}^{2}-u_{i}, u_{i} u_{j}-u_{j} u_{i}\right\rangle$ are given, where $i, j=1,2, \ldots, t, i \neq j, Z_{4}=\{0,1,2,3\}$. A map between the elements of the A_{t} and the alphabet $\{A, T, C, G\}^{2^{t}}$ is constructed. The DNA codes are obtained with three different methods, by using the cyclic, skew cyclic codes over a family of the rings A_{t} and θ_{i}-set, where θ_{i} is a non trivial automorphism on A_{i}, for $i=1,2, \ldots, t$.

Keywords: DNA codes; cyclic codes; skew cyclic codes; reversibility.
AMS Subject Classification (2020): 94B05; 94B15; 94B60.
*Corresponding author

1. Introduction

There are many methods in order to obtain DNA codes. In [1], it was used the cyclic codes over the finite ring $F_{2}[u] /\left\langle u^{4}-1\right\rangle$ in order to obtain DNA codes. The sufficient and necessary conditions of cyclic codes over the finite ring satisfying the reverse complement constraints was given. By introducing a map, the DNA codes were obtained from these types codes. In different method, it was used the skew cyclic codes over $Z_{4}[u, v] /\left\langle u^{2}-u, v^{2}-v, u v-v u\right\rangle$ in order to obtain reversible DNA codes, in [2]. Thanks to this, reversibility problem was solved for DNA 4-bases. This problem arises from the fact that the pairing of nucleotides in two different strands of a DNA sequence is done in opposite direction and reverse order. For example, take $t=1$. Let $\left(\alpha_{1}, \alpha_{2}\right) \in A_{1}^{2}$ be a codeword corresponding to $C T C G$, where $A_{1}=Z_{4}+u_{1} Z_{4}, u_{1}^{2}=u_{1}$. The reverse of $\left(\alpha_{1}, \alpha_{2}\right)$ is $\left(\alpha_{2}, \alpha_{1}\right)$. The vector $\left(\alpha_{2}, \alpha_{1}\right)$ corresponding to $C G C T$. It is not reverse of $C T C G$. The reverse of $C T C G$ is $G C T C$. In order to solve reversibility problem, there is a different approach. In [3], it was used θ-set, where θ is a non trivial automorphism on $F_{2}[u, v] /\left\langle u^{2}, v^{2}-v, u v-v u\right\rangle$ in order to obtain reversible and reversible complement DNA codes.

Received: 26-03-2021, Accepted : 11-04-2022

(Cite as "A. Dertli, Y. Çengellenmiş, On the Codes over a Family of Rings and Their Applications to DNA Codes, Math. Sci. Appl. E-Notes, 11(3) (2023), 164-177")

Moreover, there are similar papers in the literature, [4-6]. Motivated from all these works in which were considered the codes over one ring and were used one method in order to DNA codes, we decide to consider the codes over a family of rings and use three methods in order to obtain DNA codes.

In this paper, we use the cyclic, skew cyclic codes over a family of the rings $A_{t}=Z_{4}\left[u_{1}, \ldots, u_{t}\right] /\left\langle u_{i}^{2}-u_{i}, u_{i} u_{j}-\right.$ $\left.u_{j} u_{i}\right\rangle$, where $i, j=1,2, \ldots, t, i \neq j$ and $Z_{4}=\{0,1,2,3\}$ and θ_{i}-set, where θ_{i} is a non trivial automorphism on A_{i}, for $i=1,2, \ldots, t$ in order to obtain DNA codes. Section 2 includes some knowledge about a family of the rings A_{t}. A $\operatorname{map} \phi_{i}$ is defined from A_{i} to A_{i-1}^{2}, for $i=1,2, \ldots, t$. A map ξ_{i} is defined from A_{i} to $\{A, T, C, G\}^{2^{i}}$, for $i=1,2, \ldots, t$. A Gray map is defined on A_{i}, for $i=1, \ldots, t$. In the section 3 and 4 , the structures of linear and cyclic codes over A_{t} are given, respectively. In the section 5.1 and 5.2 the sufficient and necessary conditions of cyclic codes over A_{t} satisfying the reverse and reverse complement constraints are given, respectively. The DNA codes are obtained with first method. In the section 6 , by defining a non trivial automorphism on A_{i} for $i=1, \ldots, t$, the skew cyclic codes over a family of the finite rings are introduced. By using the skew cyclic codes over A_{t}, the DNA codes are obtained with second method. In the section 7 , by using the θ_{i}-set, where θ_{i} is a non trivial automorphism on A_{i}, for $i=1,2, \ldots, t$, the DNA codes are obtained with third method.

2. Preliminaries

A family of the finite rings $A_{t}=Z_{4}\left[u_{1}, \ldots, u_{t}\right] /\left\langle u_{i}^{2}-u_{i}, u_{i} u_{j}-u_{j} u_{i}\right\rangle$, where $i, j=1,2, \ldots, t, i \neq j$ contains the commutative the finite rings with characteristic 4 and cardinality $4^{2^{t}}$. The finite rings of the family are written as recursively

$$
A_{r}=A_{r-1}+u_{r} A_{r-1}
$$

where $r=1,2, \ldots, t$ and $A_{1}=Z_{4}+u_{1} Z_{4}, u_{1}^{2}=u_{1}$, where $A_{0}=Z_{4}=\{0,1,2,3\}$.
We define a map as follows for every $a_{i}=x_{i-1}+u_{i} y_{i-1} \in A_{i}$,

$$
\begin{array}{rll}
\phi_{i} & : & A_{i} \longrightarrow A_{i-1}^{2} \\
a_{i} & \longmapsto & \phi_{i}\left(a_{i}\right)=\left(x_{i-1}, x_{i-1}+y_{i-1}\right)
\end{array}
$$

where $i=1,2, \ldots, t$ and

$$
\begin{aligned}
\phi_{1} & : A_{1} \longrightarrow A_{0}^{2} \\
a_{1} & =x_{0}+u_{1} y_{0} \longmapsto \phi_{1}\left(a_{1}\right)=\left(x_{0}, x_{0}+y_{0}\right)
\end{aligned}
$$

where $A_{0}=Z_{4}$.

The map ϕ_{i} can be extended to A_{i}^{n} naturally, for $i=1, \ldots, t$.
Let $S_{D_{4}}=\{A, T, C, G\}$ represent the DNA alphabet. The Watson Crick Complement is given $A^{c}=T, T^{c}=$ $A, G^{c}=C, C^{c}=G$. We use the same notation for the set $S_{D_{16}}=\{A A, T T, \ldots, C G\}$ which was presented in [7]. It is extended the notation to the elements of $S_{D_{16}}$ such that $A A^{c}=T T, A T^{c}=T A, \ldots, G G^{c}=C C$. By using the matching the elements of A_{0} and $S_{D_{4}}=\{A, T, C, G\}$ which is given as $\xi_{0}(0)=A, \xi_{0}(1)=T, \xi_{0}(3)=C, \xi_{0}(2)=G$ and by using the map ϕ_{1} from $A_{1}=Z_{4}+u_{1} Z_{4}$ to Z_{4}^{2}, we defined a ξ_{1} correspondence between the elements of the finite ring $A_{1}=Z_{4}+u_{1} Z_{4}$ and DNA double pairs by $a_{1}=x_{0}+u_{1} y_{0} \mapsto\left(\xi_{0}\left(x_{0}\right), \xi_{0}\left(x_{0}+y_{0}\right)\right)$ in [7],

Elements a_{1}	DNA double pairs $\xi_{1}\left(a_{1}\right)$
0	$A A$
1	$T T$
2	$G G$
3	$C C$
u_{1}	$A T$
$1+u_{1}$	$T G$
$u_{1}+2$	$G C$
$u_{1}+3$	$C A$
$2 u_{1}$	$A G$
$1+2 u_{1}$	$T C$
$2+2 u_{1}$	$G A$
$3+2 u_{1}$	$C T$
$3 u_{1}$	$A C$
$1+3 u_{1}$	$T A$
$2+3 u_{1}$	$G T$
$3+3 u_{1}$	$C G$

Table 1. Identifying codons with the elements of the ring A_{1}.
By using the map ϕ_{2} and ξ_{1}, we established ξ_{2} correspondence between the elements of A_{2} and DNA 4-bases by $a_{2}=x_{1}+u_{1} y_{1} \mapsto\left(\xi_{1}\left(x_{1}\right), \xi_{1}\left(x_{1}+y_{1}\right)\right)$ as follows in [2],

Elements a_{2}	DNA 4-bases $\xi_{2}\left(a_{2}\right)$
0	$A A A A$
1	$T T T T$
2	$G G G G$
3	$C C C C$
u_{1}	$A T A T$
u_{2}	$A A T T$
\vdots	\vdots

Table 2. Identifying codons with the elements of the ring A_{2}.
By using the map ϕ_{i} and ξ_{i-1}, we can establish ξ_{i} correspondence between the element of A_{i} and DNA 2^{i}-bases for $i=1, . ., t$ as follows.

$$
\begin{gathered}
\xi_{i}: A_{i} \longrightarrow A_{i-1}^{2} \longrightarrow\{A, T, C, G\}^{2^{i}} \\
a_{i}=x_{i-1}+u_{i} y_{i-1} \longmapsto \phi_{i}\left(a_{i}\right)=\left(x_{i-1}, x_{i-1}+y_{i-1}\right) \longmapsto \gamma_{i}\left(\phi_{i}\left(a_{i}\right)\right)=\left(\xi_{i-1}\left(x_{i-1}\right), \xi_{i-1}\left(x_{i-1}+y_{i-1}\right)\right)
\end{gathered}
$$

where $\xi_{i}=\gamma_{i} \phi_{i}$ and the map γ_{i} is defined from A_{i-1}^{2} to DNA 2^{i}-bases as follows,

$$
\gamma_{i}\left(s_{i-1}, t_{i-1}\right)=\left(\xi_{i-1}\left(s_{i-1}\right), \xi_{i-1}\left(t_{i-1}\right)\right)
$$

where $s_{i-1}, t_{i-1} \in A_{i-1}$, for $i=1, \ldots, t$.

We established ξ_{i} correspondence between the elements of A_{i} and DNA 2^{i}-bases as follows

Elements a_{i}	DNA 2^{i}-bases $\xi_{i}\left(a_{i}\right)$
0	$\underbrace{A A \ldots A}_{2^{2} \text { times }}$
1	$\underbrace{T T \ldots T}_{2^{2} \text { times }}$
2	$\underbrace{G G \ldots G}_{2^{2} \text { times }}$
3	$\underbrace{C C \ldots C}_{2^{2} \text { times }}$
u_{1}	\vdots
\vdots	

Table 3. Identifying codons with the elements of the ring A_{i}.
for $i=1, \ldots, t$.
We can also express an element of A_{t} as follows uniquely.
Let $B \subseteq\{1,2, \ldots, t\}$ and $u_{B}=\prod_{i \in B} u_{i}$. In particular $u_{\emptyset}=1$. Each element of A_{t} is of the form $\sum_{B \in P_{t}} \alpha_{B} u_{B}$, where $\alpha_{B} \in Z_{4}, P_{t}$ is the power set of the set $\{1,2, \ldots, t\}$. For $A, B \subseteq\{1,2, \ldots, t\}$, we have that $u_{A} u_{B}=u_{A \cup B}$ which gives that $\sum_{B \in P_{t}} \alpha_{B} u_{B} . \sum_{C \in P_{t}} \beta_{C} u_{C}=\sum_{D \in P_{t}}\left(\sum_{B \cup C=D} \alpha_{B} \beta_{C}\right) u_{D}$. Moreover,

$$
e_{u_{\emptyset}}=1+(-1)^{|B|} \sum_{B \in P_{t}} u_{B}
$$

and the number of $e_{u_{\emptyset}}$ is $\binom{t}{0}$.

$$
e_{u_{i}}=u_{i}+(-1)^{|B|+1} \sum_{\substack{i \in B \in P_{t},|B| \geq 2}} u_{B}
$$

for $i=1,2, \ldots, t$ and the number of $e_{u_{i}}$ is $\binom{t}{1}$.

$$
e_{u_{i} u_{j}}=u_{i} u_{j}+(-1)^{|B|+2} \sum_{\substack{i, j \in B \in P_{t},|B| \geq 3}} u_{B}
$$

for $i, j=1,2, \ldots, t$ and the number of $e_{u_{i} u_{j}}$ is $\binom{t}{2}$.

$$
e_{u_{i} u_{j} u_{s}}=u_{i} u_{j} u_{s}+(-1)^{|B|+3} \sum_{\substack{i, j, s \in B \in P_{P},|B| \geq 4}} u_{B}
$$

for $i, j, s=1,2, \ldots, t$ and the number of $e_{u_{i} u_{j} u_{s}}$ is $\binom{t}{3}$

$$
e_{u_{1} u_{2} \ldots u_{t}}=u_{1} u_{2} \ldots u_{t}
$$

and the number of $e_{u_{1} u_{2} \ldots u_{t}}$ is $\binom{t}{t}$.
Then we have $\sum_{B \in P_{t}} e_{u_{B}}=1,\left(e_{u_{B}}\right)^{2}=e_{u_{B}}$ and $e_{u_{B}} e_{u_{A}}=0$ if $A \neq B$ for any $A, B \subseteq\{1,2, \ldots, t\}$. Hence $A_{t}=\bigoplus_{B \in P_{t}} A_{t} e_{u_{B}} \cong \bigoplus_{B \in P_{t}} Z_{4} e_{u_{B}}$. So every element z of A_{t} can be uniquely expressed as $z=\sum_{B \in P_{t}} a_{u_{B}} e_{u_{B}}$, where $a_{u_{B}} \in Z_{4}$.

Example 2.1. Let t be 3. Then $A_{3}=Z_{4}+u_{1} Z_{4}+u_{2} Z_{4}+u_{3} Z_{4}+u_{1} u_{2} Z_{4}+u_{1} u_{3} Z_{4}+u_{2} u_{3} Z_{4}+u_{1} u_{2} u_{3} Z_{4}$. Consider the elements of A_{3} below

$$
\begin{gathered}
e_{u_{\emptyset}}=e_{1}=1-u_{1}-u_{2}-u_{3}+u_{1} u_{2}+u_{1} u_{3}+u_{2} u_{3}-u_{1} u_{2} u_{3} \\
e_{u_{1}}=u_{1}-u_{1} u_{2}-u_{1} u_{3}+u_{1} u_{2} u_{3} \\
e_{u_{2}}=u_{2}-u_{1} u_{2}-u_{2} u_{3}+u_{1} u_{2} u_{3} \\
e_{u_{3}}=u_{3}-u_{1} u_{3}-u_{2} u_{3}+u_{1} u_{2} u_{3} \\
e_{u_{1} u_{2}}=u_{1} u_{2}-u_{1} u_{2} u_{3} \\
e_{u_{1} u_{3}}=u_{1} u_{3}-u_{1} u_{2} u_{3} \\
e_{u_{2} u_{3}}=u_{2} u_{3}-u_{1} u_{2} u_{3} \\
e_{u_{1} u_{2} u_{3}}=u_{1} u_{2} u_{3}
\end{gathered}
$$

We can also define Gray map as follows,

$$
\begin{array}{rll}
\Psi_{t} & : & A_{t} \longrightarrow Z_{4}^{2^{t}} \\
z=\sum_{B \in P_{t}} a_{u_{B}} e_{u_{B}} & \longmapsto & \Psi_{t}(z)=\gamma
\end{array}
$$

where $\gamma=\binom{\sum_{B=\emptyset} a_{u_{B}}, \sum_{B \subseteq\{1\}} a_{u_{B}}, \ldots, \sum_{B \subseteq\{t\}} a_{u_{B}}, \sum_{B \subseteq\{1,2\}} a_{u_{B}}, \sum_{B \subseteq\{1,3\}} a_{u_{B}}, \ldots}{,\sum_{B \subseteq\{i, j\},} a_{u_{B}}, \sum_{B \subseteq\{1,2,3\}} a_{u_{B}}, \ldots, \sum_{B \subseteq\{i, j, s\},} a_{u_{B}}, \ldots, \sum_{B \subseteq\{1,2, \ldots, t\}} a_{u_{B}}}$ and $a_{u_{B}} \in Z_{4}$, for $i, j, s, \ldots \in$ $\{1,2, \ldots, t\}$.

The map Ψ_{t} can be extended from A_{t}^{n}, naturally.
Example 2.2. Let $t=3$. Then

$$
\begin{array}{rcc}
\Psi_{3} & : & A_{3} \longrightarrow Z_{4}^{8} \\
z=\sum_{B \in P_{3}} a_{u_{B}} e_{u_{B}} & \longmapsto & \Psi_{3}(z)=\gamma
\end{array}
$$

where $\gamma=\left(a_{1}, a_{1}+a_{u_{1}}, a_{1}+a_{u_{2}}, a_{1}+a_{u_{3}}, a_{1}+a_{u_{1}}+a_{u_{2}}+a_{u_{1} u_{2}}, a_{1}+a_{u_{1}}+a_{u_{3}}+a_{u_{1} u_{3}}, a_{1}+a_{u_{2}}+a_{u_{3}}+a_{u_{2} u_{3}}, a_{1}+\right.$ $\left.a_{u_{1}}+a_{u_{2}}+a_{u_{3}}+a_{u_{1} u_{2}}+a_{u_{2} u_{3}}+a_{u_{1} u_{3}}+a_{u_{1} u_{2} u_{3}}\right)$.

The Lee weight on Z_{4}, denoted w_{L}, is defined as $w_{L}(p)=0$ if $p=0, w_{L}(p)=1$ if $p=1$ or $p=3, w_{L}(p)=2$ if $p=2$. For any $x=\sum_{B \in P_{t}} a_{u_{B}} e_{u_{B}} \in A_{t}$, the Gray weight of x is defined as

$$
w_{G}(x)=w_{L}\left(\Psi_{t}(x)\right)=\sum_{i=1}^{2^{t}} w_{L}\left(x_{i}\right)
$$

where $\Psi_{t}(x)=\left(x_{1}, \ldots, x_{2^{t}}\right)$ and $x_{i} \in Z_{4}$ for $i=1,2, \ldots, 2^{t}$. The Gray weight of a vector $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in A_{t}^{n}$ is defined to be a rational sum of the Gray weight of its components. Moreover, for any $\mathbf{c}, \mathbf{d} \in A_{t}^{n}$, the Gray distance between \mathbf{c} and \mathbf{d} is defined as $d_{G}(\mathbf{c}, \mathbf{d})=w_{G}(\mathbf{c}-\mathbf{d})$.
Theorem 2.1. The map Ψ_{i} is a linear and distance preserving map, for $i=1, \ldots, t$.

3. Linear codes over A_{t}

A non empty subset $C \subseteq A_{t}^{n}$ is called linear code over A_{t} if C is a submodule of A_{t}.
Let $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ and $\mathbf{y}=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ be two vectors in A_{t}^{n}. The Euclidean inner product of \mathbf{x} and \mathbf{y} is defined by

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{j=0}^{n-1} x_{j} y_{j}
$$

where the operations are performed in the ring A_{t}.
Dual of the code $C \subseteq A_{t}^{n}$ is the code

$$
C^{\perp}=\left\{\mathbf{x} \in A_{t}^{n}:\langle\mathbf{x}, \mathbf{y}\rangle=0, \forall \mathbf{y} \in C\right\}
$$

Clearly, C^{\perp} is also linear.
Denote $\mathbf{r}=\left(r^{(0)}, \ldots, r^{(n-1)}\right) \in A_{t}^{n}$, where $r^{(i)}=\sum_{B \in P_{t}} a_{i u_{B}} e_{u_{B}}$ for $i=0,1,2, \ldots, n-1$. Then \mathbf{r} can be uniquely expressed as $\mathbf{r}=\sum_{B \in P_{t}} \mathbf{a}_{u_{B}} e_{u_{B}}$, where $\mathbf{a}_{u_{B}}=\left(a_{0 u_{B}}, a_{1 u_{B}}, \ldots, a_{n-1 u_{B}}\right)$, each $B \in P_{t}$.

Let

$$
\begin{gathered}
R_{1} \oplus \ldots \oplus R_{2^{t}}=\left\{r_{1}+\ldots+r_{2^{t}} \mid r_{i} \in R_{i}, i=1, \ldots, 2^{t}\right\}, \\
R_{1} \oplus \ldots \oplus R_{2^{t}}=\left\{\left(r_{1}, \ldots, r_{2^{t}}\right) \mid r_{i} \in R_{i}, i=1, \ldots, 2^{t}\right\}
\end{gathered}
$$

Define the codes $C_{u_{B}}$ as follows

$$
\begin{gathered}
C_{u_{\emptyset}}=C_{1}=\left\{\mathbf{a}_{u_{\emptyset}} \in Z_{4}^{n} \mid \exists \mathbf{a}_{u_{B}, B \neq \emptyset} \in Z_{4}^{n}, \sum_{B \in P_{t}} \mathbf{a}_{u_{B}} e_{u_{B}} \in C\right\} \\
C_{u_{1}}=\left\{\mathbf{a}_{u_{1}} \in Z_{4}^{n} \mid \exists \mathbf{a}_{u_{B}, B \neq\{1\}} \in Z_{4}^{n}, \sum_{B \in P_{t}} \mathbf{a}_{u_{B}} e_{u_{B}} \in C\right\} \\
C_{u_{2}}=\left\{\mathbf{a}_{u_{2}} \in Z_{4}^{n} \mid \exists \mathbf{a}_{u_{B}, B \neq\{2\}} \in Z_{4}^{n}, \sum_{B \in P_{t}} \mathbf{a}_{u_{B}} e_{u_{B}} \in C\right\} \\
\vdots \\
C_{u_{t}}=\left\{\mathbf{a}_{u_{t}} \in Z_{4}^{n} \mid \exists \mathbf{a}_{u_{B}, B \neq\{t\}} \in Z_{4}^{n}, \sum_{B \in P_{t}} \mathbf{a}_{u_{B}} e_{u_{B}} \in C\right\} \\
C_{u_{1} u_{2}}=\left\{\mathbf{a}_{u_{1} u_{2}} \in Z_{4}^{n} \mid \exists \mathbf{a}_{u_{B}, B \neq\{1,2\}} \in Z_{4}^{n}, \sum_{B \in P_{t}} \mathbf{a}_{u_{B}} e_{u_{B}} \in C\right\} \\
\vdots \\
C_{u_{1} u_{2} \ldots u_{t}}=\left\{\mathbf{a}_{u_{1} u_{2} \ldots u_{t}} \in Z_{4}^{n} \mid \exists \mathbf{a}_{u_{B}, B \neq\{1, \ldots, t\}} \in Z_{4}^{n}, \sum_{B \in P_{t}} \mathbf{a}_{u_{B}} e_{u_{B}} \in C\right\}
\end{gathered}
$$

The number of $C_{u_{B}}$ is 2^{t}. Clearly $C_{u_{B}}$ is a linear code of length n over $Z_{4} . C$ can be uniquely decomposed into

$$
C=\bigoplus_{B \in P_{t}} C_{u_{B}} e_{u_{B}}
$$

and hence we have $|C|=\prod_{B \in P_{t}}\left|C_{u_{B}}\right|$.
The following theorems can be proved as in [8].
Theorem 3.1. Let $C=\underset{B \in P_{t}}{ } C_{u_{B}} e_{u_{B}}$ be a linear code of length n over A_{t}. Then the dual $C^{\perp}=\underset{B \in P_{t}}{\bigoplus} C_{u_{B}}{ }^{\perp} e_{u_{B}}$ is also a linear code of length n over A_{t}.

Theorem 3.2. If C is a $\left(n, M, d_{G}\right)$ linear code over A_{i}, then $\Psi_{i}(C)$ is a $\left(2^{i} n, M, d_{L}\right)$ linear code over Z_{4} for $i=1, \ldots, t$, where $d_{G}=d_{L}$.
Theorem 3.3. Let C be a linear code of length n over A_{i}. Then $\Psi_{i}(C)=\bigotimes_{B \in P_{i}} C_{u_{B}}$, for $i=1, \ldots, t$.

4. Cyclic codes over A_{t}

In [9], the structures of cyclic codes of length n over Z_{4} were determined as follows. By using this, we will obtain the structures of cyclic codes over A_{i} for $i=1, \ldots, t$.

Theorem 4.1. [9] Let C be a cyclic code of length n over $R_{n}=Z_{4}[x] /\left\langle x^{n}-1\right\rangle$.

1. If n is odd, then R_{n} is a principal ideal ring and $C=\langle g(x), 2 a(x)\rangle=\langle g(x)+2 a(x)\rangle$, where $g(x)$ and $a(x)$ are polynomials with $a(x)|g(x)| x^{n}-1(\bmod 4)$.
2. If n is not odd, then
i. If $g(x)=a(x)$, then $C=\langle g(x)+2 a(x)\rangle$, where $g(x)\left|x^{n}-1(\bmod 2), g(x)+2 a(x)\right| x^{n}-1(\bmod 4)$,
ii. $C=\langle g(x)+2 p(x), 2 a(x)\rangle$, where $g(x), a(x)$ and $p(x)$ are polynomials with $g(x) \mid x^{n}-1(\bmod 2)$ and

$$
a(x) \mid p(x)\left(x^{n}-1 / g(x)\right)(\bmod 2), \operatorname{deg} a(x)>\operatorname{deg} p(x) .
$$

Theorem 4.2. Let $C=\underset{B \in P_{t}}{\bigoplus} C_{u_{B}} e_{u_{B}}$ be a linear code over A_{t}. Then C is a cyclic code over A_{t} if and only if $C_{u_{B}}$ are cyclic codes over Z_{4} for all $B \in P_{t}$. Moreover, if C is a cyclic code over A_{t}, then

$$
C=\left\langle f_{1}(x) e_{1}, f_{u_{1}}(x) e_{u_{1}}, \ldots, f_{u_{t}}(x) e_{u_{t}}, f_{u_{1} u_{2}}(x) e_{u_{1} u_{2}}, \ldots, f_{u_{1} u_{2} \ldots u_{t}}(x) e_{u_{1} u_{2} \ldots u_{t}}\right\rangle
$$

where $f_{u_{B}}(x)$ are generator polynomials of $C_{u_{B}}$, for all $B \in P_{t}$, respectively.
Proof. This can be proven similarly to [7].

5. The reversible codes and reversible complement codes

In [7], the sufficient and necessary conditions of cyclic codes over A_{1} satisfying the reverse constraint and reverse complement constraint were given. In this section, the sufficient and necessary conditions of cyclic codes over A_{i} satisfying the reverse constraint and reverse complement constraint are given for $i=2, \ldots, t$.

Definition 5.1. A cyclic code C of length n over A_{t} is said to be reversible if $\mathbf{x}^{r}=\left(x_{n-1}, \ldots, x_{0}\right) \in C$, for all $\mathbf{x}=\left(x_{0}, \ldots, x_{n-1}\right) \in C$.

Definition 5.2. For each polynomial $c(x)=c_{0}+c_{1} x+\ldots+c_{m} x^{m}$ with $c_{m} \neq 0$, the reciprocal polynomial of $c(x)$ is defined to be the polynomial $c^{*}(x)=x^{m} c\left(x^{-1}\right)$. The polynomial $c(x)$ and $c^{*}(x)$ always have the same degree. The polynomial $c(x)$ is called reciprocal if and only if $c(x)=c^{*}(x)$.
Lemma 5.1. Let $f(x)$ and $g(x)$ be polynomials in $A_{t}[x]$. Suppose that $\operatorname{deg} f(x)-\operatorname{deg} g(x)=m$, then

$$
(f(x) \cdot g(x))^{*}=f^{*}(x) g^{*}(x)
$$

and

$$
(f(x)+g(x))^{*}=f^{*}(x)+x^{m} g^{*}(x) .
$$

5.1 The reversible codes

In [9], the author studied the reversible codes over Z_{4} as follows, by using this, the sufficient and necessary conditions of cyclic codes over A_{i} satisfying the reverse constraint are given for $i=2, \ldots, t$.
Lemma 5.2. [9] Let $C=\langle g(x), 2 a(x)\rangle=\langle g(x)+2 a(x)\rangle$ be a cyclic code of odd length n over Z_{4}. Then C is reversible if and only if both $g(x)$ and $a(x)$ are self reciprocal.
Theorem 5.1. [9] Let $C=\langle g(x)+2 p(x)\rangle$ be a cyclic code of even length n over Z_{4}. Then C is reversible if and only if
i. $g(x)$ is self reciprocal,
ii. $a(x) \mid\left(x^{i} p^{*}(x)+p(x)\right)$, where $i=\operatorname{deg} g(x)-\operatorname{deg} p(x)$.

Theorem 5.2. [9] Let $C=\langle g(x)+2 p(x), 2 a(x)\rangle$ with $g(x)\left|x^{n}-1(\bmod 2), a(x)\right| g(x)(\bmod 2), a(x)|p(x)|\left(x^{n}-1 / g(x)\right)(\bmod 2)$ and deg $a(x)>\operatorname{deg} p(x)$ be a cyclic code of even length n over Z_{4}. Then C is reversible if and only if
i. $g(x)$ and $a(x)$ are self reciprocal,
ii. $a(x) \mid\left(x^{i} p^{*}(x)+p(x)\right)$, where $i=\operatorname{deg} g(x)-\operatorname{deg} p(x)$.

Theorem 5.3. Let $C=\bigoplus_{B \in P_{t}} C_{u_{B}} e_{u_{B}}$ be a cyclic code of length n over A_{t}. Then C is reversible if and only if $C_{u_{B}}$ are reversible, where $C_{u_{B}}$ are cyclic codes over Z_{4}, for all $B \in P_{t}$.

Proof. This can be proven similarly to [7].

5.2 The reversible complement codes

In this section, the sufficient and necessary conditions of cyclic codes over A_{i} satisfying the reverse complement constraint are given for $i=2, \ldots, t$ and DNA codes are obtained by using cyclic DNA codes over A_{t}.

Definition 5.3. A cyclic code C of length n over A_{t} is said to be complement if $\mathbf{x}^{c}=\left(x_{0}^{c}, \ldots, x_{n-1}^{c}\right) \in C$, for all $\mathbf{x}=\left(x_{0}, \ldots, x_{n-1}\right) \in C$.

A cyclic code C of length n over A_{t} is said to be reversible complement if $\mathbf{x}^{r c}=\left(x_{n-1}^{c}, \ldots, x_{0}^{c}\right) \in C$, for all $\mathbf{x}=\left(x_{0}, \ldots, x_{n-1}\right) \in C$.

A cyclic code C of length n over A_{t} that has reversible complement property is said to be cyclic DNA code.
Lemma 5.3. The following conditions hold,
i. For any element $a_{i} \in A_{i}, a_{i}^{c}=\left(x_{i-1}+u_{i} y_{i-1}\right)^{c}=x_{i-1}^{c}+3 u_{i} y_{i-1}$, where $x_{i-1}, y_{i-1} \in A_{i-1}, i=1,2, \ldots, t$.
ii. For all $a \in A_{t}$, we have $a+a^{c}=1$.
iii. For all $a, b \in A_{t}$, we have $(a+b)^{c}=a^{c}+b^{c}+3$.

Proof. i., ii. According the tables, the computations are easy.
iii. Let $a, b \in A_{t}$. From ii., $(a+b)^{c}=1-(a+b)=(1-a)+(1-b)-1=a^{c}+b^{c}+3$.

Theorem 5.4. Let $C=\bigoplus_{B \in P_{t}} C_{u_{B}} e_{u_{B}}$ be a cyclic code of length n over A_{t}. Then C is reversible complement if and only if C is reversible and $\left(0^{c}, \ldots, 0^{c}\right) \in C$, where $C_{u_{B}}$ are cyclic codes over Z_{4}, for all $B \in P_{t}$.

Proof. This can be proven similarly to [7].
Corollary 5.1. Let C be a cyclic DNA code of length n over A_{t} and minimum Hamming distance d. Then $\xi_{t}(C)$ is a DNA code of length $2^{t} n$ over the alphabet $\{A, C, G, T\}$ with minimum Hamming distance at least d.

6. Skew cyclic codes over A_{t}

For $i=2$, the reversibility problem was solved in [2]. In this section, by using the skew cyclic codes over A_{i}, the reversibility problem for DNA 2^{i}-mers is solved for $i=1,3, \ldots, t$.

Definition 6.1. Let B be a finite ring and θ be a non trivial automorphism over B. A subset C of B^{n} is called a skew cyclic code of length n if C satisfies the following conditions,
i. C is a submodule of B^{n}
ii. If $c=\left(c_{0}, \ldots, c_{n-1}\right) \in C$, then $\sigma_{\theta}(c)=\left(\theta\left(c_{n-1}\right), \theta\left(c_{0}\right), \ldots, \theta\left(c_{n-2}\right)\right) \in C$,
where σ_{θ} is the skew cyclic shift operator.

By defining a non trivial automorphism on A_{t} as follows, we can define the skew cyclic codes over A_{t}.

$$
\begin{array}{rll}
\theta_{i} & : & A_{i} \longrightarrow A_{i} \\
x_{i-1}+u_{i} y_{i-1} & \longmapsto & \theta_{i-1}\left(x_{i-1}+y_{i-1}\right)-u_{i} \theta_{i-1}\left(y_{i-1}\right)
\end{array}
$$

and

$$
\begin{array}{rcl}
\theta_{1} & : & A_{1} \longrightarrow A_{1} \\
x_{0}+u_{1} y_{0} & \longmapsto & \left(x_{0}+y_{0}\right)-u_{1} y_{0}
\end{array}
$$

where $i=2,3, \ldots, t$. The order of θ_{i} is 2 , where $i=1,2, \ldots, t$.
The rings

$$
A_{i}\left[x, \theta_{i}\right]=\left\{b_{0}^{i}+b_{1}^{i} x+\ldots+b_{n-1}^{i} x^{n-1}: b_{j}^{i} \in A_{i}, n \in N, i=1, \ldots, t, j=0, \ldots, n-1\right\}
$$

are called skew polynomial rings with the usual polynomial addition and the multiplication as follows

$$
\left(\varrho x^{s}\right)\left(\eta x^{v}\right)=\varrho \theta_{i}^{s}(\eta) x^{s+v}
$$

where $i=1, \ldots, t$. They are non commutative rings.
The set $A_{\theta_{i}, n}=A_{i}\left[x, \theta_{i}\right] /\left\langle x^{n}-1\right\rangle=\left\{f_{i}(x)+\left\langle x^{n}-1\right\rangle: f_{i}(x) \in A_{i}\left[x, \theta_{i}\right]\right\}$ is a left $A_{i}\left[x, \theta_{i}\right]$-module with the multiplication from left as follows,

$$
r_{i}(x)\left(f_{i}(x)+\left\langle x^{n}-1\right\rangle\right)=r_{i}(x) f_{i}(x)+\left\langle x^{n}-1\right\rangle
$$

where for any $r_{i}(x) \in A_{i}\left[x, \theta_{i}\right]$, for $i=1, \ldots, t$.
A code C_{i} over A_{i} of length n is a skew cyclic code if and only if C_{i} is a left $A_{i}\left[x, \theta_{i}\right]$-submodule of $A_{\theta_{i}, n}$, where $i=1, \ldots, t$. Let $f_{i}(x)$ be a polynomial in C_{i} of minimal degree. If the leading cofficient of $f_{i}(x)$ is a unit in A_{i}, then $C_{i}=\left\langle f_{i}(x)\right\rangle$, where $f_{i}(x)$ is a right divisor of $x^{n}-1$.

We can express the matching the elements A_{1} and $S_{D_{16}}=\{A A, T T, \ldots, G G\}$ by means of the automorphism θ_{1} as follows.

Each element $\alpha_{1}=x_{0}+u_{1} y_{0} \in A_{1}$ and $\theta_{1}\left(\alpha_{1}\right)$ are mapped to DNA 2-bases which are reverse of each other. Let ξ_{1} be a correspondence the elements of the finite ring A_{1} and DNA 2-bases. For example

$$
\xi_{1}\left(u_{1}\right)=A T, \text { while } \xi_{1}\left(\theta_{1}\left(u_{1}\right)\right)=T A
$$

By using a map $\xi_{i}=\gamma_{i} \circ \phi_{i}$, where the map γ_{i} is defined from A_{i-1}^{2} to DNA 2^{i}-bases as foolows

$$
\gamma_{i}\left(s_{i-1}, t_{i-1}\right)=\left(\xi_{i-1}\left(s_{i-1}\right), \xi_{i-1}\left(t_{i-1}\right)\right)
$$

where $s_{i-1}, t_{i-1} \in A_{i-1}$, for $i=1, \ldots, t$, we can explain a relationship between skew cyclic codes and DNA codes. Actually, $\xi_{i}\left(r_{i}\right)$ and $\xi_{i}\left(\theta_{i}\left(r_{i}\right)\right)$ are DNA reverse of each other, where $r_{i}=a_{i-1}+u_{i} b_{i-1}, a_{i-1}, b_{i-1} \in A_{i-1}$ for $i=1, \ldots, t$.

For $r_{i}=a_{i-1}+u_{i} b_{i-1} \in A_{i}$, we have

$$
\begin{aligned}
\xi_{i}\left(r_{i}\right) & =\gamma_{i}\left(\phi_{i}\left(a_{i-1}+u_{i} b_{i-1}\right)\right)=\gamma_{i}\left(a_{i-1}, a_{i-1}+b_{i-1}\right) \\
& =\left(\xi_{i-1}\left(a_{i-1}\right), \xi_{i-1}\left(a_{i-1}+b_{i-1}\right)\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\xi_{i}\left(\theta_{i}\left(r_{i}\right)\right) & =\xi_{i}\left(\theta_{i-1}\left(a_{i-1}+b_{i-1}\right)-u_{i} \theta_{i-1}\left(b_{i-1}\right)\right) \\
& =\gamma_{i}\left(\phi_{i}\left(\theta_{i-1}\left(a_{i-1}+b_{i-1}\right)-u_{i} \theta_{i-1}\left(b_{i-1}\right)\right)\right) \\
& =\gamma_{i}\left(\theta_{i-1}\left(a_{i-1}+b_{i-1}\right), \theta_{i-1}\left(a_{i-1}\right)\right) \\
& =\left(\xi_{i-1}\left(\theta_{i-1}\left(a_{i-1}+b_{i-1}\right)\right), \xi_{i-1}\left(\theta_{i-1}\left(a_{i-1}\right)\right)\right)
\end{aligned}
$$

where $i=1, \ldots, t$.
This map can be extended as follows. For any $\mathbf{s}_{i}=\left(s_{0}^{i}, \ldots, s_{n-1}^{i}\right) \in A_{i}^{n}$,

$$
\left(\xi_{i}\left(s_{0}^{i}\right), \xi_{i}\left(s_{1}^{i}\right), \ldots, \xi_{i}\left(s_{n-1}^{i}\right)\right)^{r}=\left(\xi_{i}\left(\theta_{i}\left(s_{n-1}^{i}\right)\right), \ldots, \xi_{i}\left(\theta_{i}\left(s_{1}^{i}\right)\right), \xi_{i}\left(\theta_{i}\left(s_{0}^{i}\right)\right)\right)
$$

where $i=1,2, \ldots, t$.

Example 6.1. If $r_{2}=1+u_{1}+u_{2}\left(2+3 u_{1}\right) \in A_{2}$, then we have

$$
\begin{aligned}
\xi_{2}\left(r_{2}\right) & =\gamma_{2}\left(\phi_{2}\left(r_{3}\right)\right)=\gamma_{2}\left(1+u_{1}, 3\right) \\
& \left.=\left(\xi_{1}\left(1+u_{1}\right), \xi_{1}(3)\right)\right)=(T G, C C)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\xi_{2}\left(\theta_{2}\left(r_{2}\right)\right) & =\xi_{2}\left(\theta_{1}(3)-u_{2} \theta_{1}\left(2+3 u_{1}\right)\right) \\
& =\gamma_{2}\left(\theta_{1}(3), \theta_{1}\left(1+u_{1}\right)\right) \\
& =\left(\xi_{1}\left(\theta_{1}(3)\right), \xi_{1}\left(\theta_{1}\left(1+u_{1}\right)\right)\right) \\
& =(C C, G T)
\end{aligned}
$$

Definition 6.2. Let C_{i} be a code of length n over A_{i}, for $i=1, \ldots, t$. If $\xi_{i}(\mathbf{c})^{r} \in \xi_{i}\left(C_{i}\right)$ for all $\mathbf{c} \in C_{i}$, then C_{i} or equivalently $\xi_{i}\left(C_{i}\right)$ is called a reversible DNA code, for $i=1, \ldots, t$.

The skew cyclic code of odd length over A_{i} with respect to θ_{i} is a cyclic code, as the order of θ_{i} is 2 for $i=1, \ldots, t$. So we will take the length n to be even.
Definition 6.3. Let $g_{i}(x)=b_{0}^{i}+b_{1}^{i} x+b_{2}^{i} x^{2}+\ldots+b_{s}^{i} x^{s}$ be a polynomial of degree s over A_{i}, for $i=1, \ldots, t . g_{i}(x)$ is called a palindromic polynomial if $b_{j}^{i}=b_{s-j}^{i}$ for all $j \in\{0,1, \ldots, s\} . g_{i}(x)$ is called a θ_{i}-palindromic polynomial if $b_{j}^{i}=\theta_{i}\left(b_{s-j}^{i}\right)$ for all $j \in\{0,1, \ldots, s\}$, for $i=1, \ldots, t$.
Theorem 6.1. Let $C_{i}=\left\langle f_{i}(x)\right\rangle$ be a skew cyclic code of length n over A_{i}, for $i=1,3, \ldots, t$, where $f_{i}(x)$ is a right divisor of $x^{n}-1$ and $\operatorname{deg}\left(f_{i}(x)\right)$ is odd. If $f_{i}(x)$ is a θ_{i}-palindromic polynomial then $\xi_{i}\left(C_{i}\right)$ is a reversible DNA code.
Proof. Let $f_{i}(x)$ be a θ_{i}-palindromic polynomial and $f_{i}(x)=a_{0}^{i}+a_{1}^{i} x+\ldots+a_{2 s-1}^{i} x^{2 s-1}$. So $a_{j}^{i}=\theta_{i}\left(a_{2 s-1-j}^{i}\right)$, for all $j=0,1, \ldots, s-1, i=1,3, \ldots, t$. Let $h_{i}(x)=h_{0}^{i}+h_{1}^{i} x+\ldots+h_{2 k-1}^{i} x^{2 k-1}$. Let b_{j}^{i} be the coefficient of x^{j} in $h_{i}(x) f_{i}(x)$. For any $\kappa<n / 2$, the coefficient of x^{κ} in $h_{i}(x) f_{i}(x)$ is

$$
b_{\kappa}^{i}=\sum_{j=0}^{\kappa} h_{j}^{i} \theta_{i}^{j}\left(a_{\kappa-j}^{i}\right)
$$

and the coefficient of $x^{(n-1)-\kappa}$ is $b_{(n-1)-\kappa}^{i}=\sum_{j=0}^{\kappa} h_{2 k-1-j}^{i} \theta_{i}^{2 k-1-j}\left(a_{2 s-1-(\kappa-j)}^{i}\right)$, for $i=1,3, \ldots, t$.
The polynomial $h_{i}(x) f_{i}(x)=\sum_{p=0}^{2 k-1} h_{p}^{i} x^{p} f_{i}(x)$ corresponds a vector $\mathbf{b}=\left(b_{0}^{i}, b_{1}^{i}, \ldots, b_{n-1}^{i}\right) \in C_{i}$, for $i=1,3, \ldots, t$. The vector $\xi_{i}(\mathbf{b})^{r}=\left(\left(\xi_{i}\left(b_{0}^{i}\right), \xi_{i}\left(b_{1}^{i}\right), \ldots, \xi_{i}\left(b_{n-1}^{i}\right)\right)\right)^{r}$ is equal to the vector $\xi_{i}(\mathbf{z})$, where the vector \mathbf{z} corresponds the polynomial $\sum_{p=0}^{2 k-1} \theta_{i}\left(h_{p}^{i}\right) x^{2 k-1-p} f_{i}(x)$,for $i=1,3, \ldots, t$. So $\xi_{i}\left(C_{i}\right)$ is a reversible DNA code.
Theorem 6.2. Let $C_{i}=\left\langle f_{i}(x)\right\rangle$ be a skew cyclic code of length n over A_{i}, for $i=1,3, \ldots, t$, where $f_{i}(x)$ is a right divisor of $x^{n}-1$ and $\operatorname{deg}\left(f_{i}(x)\right)$ is even. If $f_{i}(x)$ is a palindromic polynomial then $\xi_{i}\left(C_{i}\right)$ is a reversible DNA code.
Proof. Let $f_{i}(x)$ be a palindromic polynomial with even degree. $f_{i}(x)=a_{0}^{i}+a_{1}^{i} x+\ldots+a_{2 s}^{i} x^{2 s}$ and $a_{p}^{i}=a_{2 s-p}^{i}$, for all $p=0,1, \ldots, s$, for $i=1,3, \ldots, t$. Let $h_{i}(x)=h_{0}^{i}+h_{1}^{i} x+\ldots+h_{2 k}^{i} x^{2 k}$. Let b_{p}^{i} be the coefficient of x^{p} in $h_{i}(x) f_{i}(x)$. For any $\kappa<n / 2$, the coefficient of x^{κ} in $h_{i}(x) f_{i}(x)$ is

$$
b_{\kappa}^{i}=\sum_{j=0}^{\kappa} h_{j}^{i} \theta_{i}^{j}\left(a_{\kappa-j}^{i}\right)
$$

and the coefficient of $x^{(n-1)-\kappa}$ is $b_{(n-1)-\kappa}^{i}=\sum_{j=0}^{\kappa} h_{(2 k)-j}^{i} \theta_{i}^{(2 k)-j}\left(a_{2 s-(\kappa-j)}^{i}\right)$, for $i=1,3, \ldots, t$.
The polynomial $h_{i}(x) f_{i}(x)=\sum_{p=0}^{2 k} h_{p}^{i} x^{p} f_{i}(x)$ corresponds a vector $\mathbf{b}=\left(b_{0}^{i}, b_{1}^{i}, \ldots, b_{n-1}^{i}\right) \in C_{i}$, for $i=1,3, \ldots, t$. The vector $\xi_{i}(\mathbf{b})^{r}=\left(\left(\xi_{i}\left(b_{0}^{i}\right), \xi_{i}\left(b_{1}^{i}\right), \ldots, \xi_{i}\left(b_{n-1}^{i}\right)\right)\right)^{r}$ is equal to the vector $\xi_{i}(\mathbf{z})$, where the vector \mathbf{z} corresponds the polynomial $\sum_{p=0}^{2 k} \theta_{i}\left(h_{p}^{i}\right) x^{2 k-p} f_{i}(x)$. So $\xi_{i}\left(C_{i}\right)$ is a reversible DNA code.

7. $\theta_{i}-$ set

In this section, we will obtain DNA codes by using θ_{i}-set, where θ_{i} is a non trivial automorphism on A_{i} for $i=1, \ldots, t$.

Definition 7.1. Let $f_{0,1}, \ldots, f_{0,2^{2}}$ be polynomials dividing $x^{n}-1$ over Z_{4} and let $f_{i-1,1}, f_{i-1,2}$ be polynomials with $\operatorname{deg} f_{i-1,1}=d_{i-1,1}, \operatorname{deg} f_{i-1,2}=d_{i-1,2}$ and both are over A_{i-1} for $i=1,2, \ldots, t$. Let

$$
f_{i}=u_{i} f_{i-1,1}+\left(1+u_{i}\right) f_{i-1,2} \in A_{i}[x]
$$

and

$$
\begin{aligned}
& f_{i-1,1}= u_{i-1} f_{i-2,1}+\left(1+u_{i-1}\right) f_{i-2,2} \\
& f_{i-1,2}= u_{i-1} f_{i-2,3}+\left(1+u_{i-1}\right) f_{i-2,4} \\
& \\
& f_{i-2,1}= u_{i-2} f_{i-3,1}+\left(1+u_{i-2}\right) f_{i-3,2} \\
& f_{i-2,2}= u_{i-2} f_{i-3,3}+\left(1+u_{i-2}\right) f_{i-3,4} \\
& f_{i-2,3}= u_{i-2} f_{i-3,5}+\left(1+u_{i-2}\right) f_{i-3,6} \\
& f_{i-2,4}= u_{i-2} f_{i-3,7}+\left(1+u_{i-2}\right) f_{i-3,8} \\
& \vdots \\
& f_{1,1}= u_{1} f_{0,1}+\left(1+u_{1}\right) f_{0,2} \\
& f_{1,2}= u_{1} f_{0,3}+\left(1+u_{1}\right) f_{0,4} \\
& \vdots \\
& f_{1,2^{i-1}}= u_{1} f_{0,2^{i}-1}+\left(1+u_{1}\right) f_{0,2^{i}}
\end{aligned}
$$

Let $m_{i}=\min \left\{n-d_{i-1,1}, n-d_{i-1,2}\right\}$. The set $L\left(f_{i}\right)$ is called a θ_{i}-set and is defined as

$$
L\left(f_{i}\right)=\left\{E_{0}, E_{1}, \ldots, E_{m_{i}-1}, F_{0}, F_{1}, \ldots, F_{m_{i}-1}\right\}
$$

where $E_{j}=x^{j} f_{i}, F_{j}=x^{j} \theta_{i}\left(h_{i}\right), 0 \leq j \leq m_{i}-1, i=1,2, \ldots, t$.
If $\operatorname{deg} f_{0,2 s} \geq \operatorname{deg} f_{0,2 s-1}$,

$$
h_{i, 1, s}=u_{1} x^{\operatorname{deg} f_{0,2 s}-\operatorname{deg} f_{0,2 s-1}} f_{0,2 s-1}+\left(1+u_{1}\right) f_{0,2 s}
$$

otherwise

$$
h_{i, 1, s}=u_{1} f_{0,2 s-1}+\left(1+u_{1}\right) x^{\operatorname{deg} f_{0,2 s-1}-\operatorname{deg} f_{0,2 s}} f_{0,2 s}
$$

where $s=1,2, \ldots, 2^{i-1}$ and
If $\operatorname{deg} h_{i, 1,2 t} \geq \operatorname{deg} h_{i, 1,2 t-1}$,

$$
h_{i, 2, t}=u_{2} x^{\operatorname{deg} f_{i, i, 2 t}-\operatorname{deg} f_{i, 1,2 t-1}} h_{i, 1,2 t-1}+\left(1+u_{2}\right) h_{i, 1,2 t}
$$

otherwise

$$
h_{i, 2, t}=u_{2} h_{i, 1,2 t-1}+\left(1+u_{2}\right) x^{\operatorname{deg} f_{i, 1,2 t-1}-\operatorname{deg} f_{i i, 1,2 t}} h_{i, 1,2 t}
$$

where $t=1,2, \ldots, 2^{i-2}$ and

If $\operatorname{deg} h_{i, i-2,2 v} \geq \operatorname{deg} h_{i, i-2,2 v-1}$,

$$
h_{i, i-1, v}=u_{i-1} x^{\operatorname{deg} h_{i, i-2,2 v}-\operatorname{deg} h_{i, i-2,2 v-1} h_{i, i-2,2 v-1}+\left(1+u_{i-1}\right) h_{i, i-2,2 v}}
$$

otherwise

$$
h_{i, i-1, v}=u_{i-1} h_{i, i-2,2 v-1}+\left(1+u_{i-1}\right) x^{\operatorname{deg} h_{i, i-2,2 v-1}-\operatorname{deg} h_{i, i-2,2 v}} h_{i, i-2,2 v}
$$

where $v=1,2$ and

If $\operatorname{deg} h_{i, i-1,2} \geq \operatorname{deg} h_{i, i-1,1}$,

$$
h_{i}=u_{i} x^{\operatorname{deg} h_{i, i-1,2}-\operatorname{deg} h_{i, i-1,1}} h_{i, i-1,1}+\left(1+u_{i}\right) h_{i, i-1,2}
$$

otherwise

$$
h_{i}=u_{i} h_{i, i-1,1}+\left(1+u_{i}\right) x^{\operatorname{deg} h_{i, i-1,1}-\operatorname{deg} h_{i, i-1,2}} h_{i, i-1,2} .
$$

$L\left(f_{i}\right)$ generates a linear code C_{i} over A_{i}, where $i=1,2, \ldots, t$. It will be denoted by $C_{i}=\left\langle f_{i}\right\rangle_{\theta_{i}}$ or $C_{i}=\left\langle L\left(f_{i}\right)\right\rangle$. It means that it is A_{i}-submodule generated by the set $L\left(f_{i}\right)$, where $i=1,2, \ldots, t$. Let $f_{i}=a_{0}^{i}+a_{1}^{i} x+\ldots+a_{p}^{i} x^{p} \in$ $A_{i}[x], \theta_{i}\left(h_{i}\right)=b_{0}^{i}+b_{1}^{i} x+\ldots+b_{s}^{i} x^{s}$, where $i=1,2, \ldots, t$. The A_{i}-submodule can be considered to be generated by the rows of the following matrix

$$
L\left(f_{i}\right)=\left[\begin{array}{c}
E_{0} \\
F_{0} \\
E_{1} \\
F_{1} \\
E_{2} \\
F_{2} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccccccccccc}
a_{0}^{i} & a_{1}^{i} & a_{2}^{i} & \cdots & a_{p}^{i} & 0 & \cdots & \ldots & \cdots & 0 \\
b_{0}^{i} & b_{1}^{i} & \cdots & \cdots & b_{p}^{p} & b_{p+1}^{i} & \cdots & b_{s}^{i} & 0 & \cdots & 0 \\
0 & a_{0}^{i} & a_{1}^{i} & a_{2}^{i} & \cdots & a_{p}^{i} & 0 & 0 & & \cdots & 0 \\
0 & b_{0}^{i} & b_{1}^{i} & \cdots & \cdots & \cdots & \cdots & \cdots & b_{s}^{i} & \cdots & 0 \\
\vdots & \cdots & \cdots & \cdots & \vdots & \cdots & \cdots & \cdots & \cdots & \vdots
\end{array}\right]
$$

Theorem 7.1. Let $f_{0,1}, \ldots, f_{0,2^{2}}$ be self reciprocal polynomials dividing $x^{n}-1$ over Z_{4}. Then $C_{i}=\left\langle L\left(f_{i}\right)\right\rangle$ is a linear code over A_{i} and $\xi_{i}\left(C_{i}\right)$ is a reversible DNA code, where the map ξ_{i} is from C_{i} to $S_{D_{4}}^{i^{i} n}$, for $i=1,2, \ldots$, t.

Proof. It is proved as in the proof of the Theorem 4.3 in [3].
Corollary 7.1. Let $f_{0,1}, \ldots, f_{0,2^{i}}$ be self reciprocal polynomials dividing $x^{n}-1$ over Z_{4} and $C_{i}=\left\langle L\left(f_{i}\right)\right\rangle$ be a cyclic code over A_{i} for $i=1, \ldots$, . If $\frac{x^{n}-1}{x-1} \in C_{i}$, then $\xi_{i}\left(C_{i}\right)$ is a reversible complement DNA code.

Example 7.1.

$$
\begin{aligned}
& f_{0,1}(x)=2(x+1) \\
& f_{0,2}(x)=x^{4}-x^{3}+x^{2}-x+1
\end{aligned}
$$

where all of them divide $x^{10}-1$ over Z_{4}. Hence,

$$
f_{1}=u_{1} f_{0,1}+\left(1+u_{1}\right) f_{0,2}
$$

over A_{1}. That is

$$
f_{2}=\left(1+u_{1}\right) x^{4}-\left(1+u_{1}\right) x^{3}+\left(1+u_{1}\right) x^{2}-\left(1-u_{1}\right) x+1+3 u_{1} .
$$

We get $h_{1}=u_{1} x^{3} h_{1,0,1}+\left(1+u_{1}\right) h_{1,0,2}=\left(1+3 u_{1}\right) x^{4}-\left(1-u_{1}\right) x^{3}+\left(1+u_{1}\right) x^{2}-\left(1+u_{1}\right) x+1+u_{1}$. So, $\theta_{1}\left(h_{1}\right)=$
$u_{1} x^{4}-u_{1} x^{3}+\left(2+3 u_{1}\right) x^{2}-\left(2+3 u_{1}\right) x+2+3 u_{1}$. Since $m_{1}=6$, we consider the generator matrix of C
$E_{0}=f_{1}, E_{1}=x f_{1}, E_{2}=x^{2} f_{1}, E_{3}=x^{3} f_{1}, E_{4}=x^{4} f_{1}, E_{5}=x^{5} f_{1}, F_{0}=\theta_{1}\left(h_{1}\right), F_{1}=x \theta_{1}\left(h_{1}\right), F_{2}=x^{2} \theta_{1}\left(h_{1}\right), F_{3}=$ $x^{3} \theta_{1}\left(h_{1}\right), F_{4}=x^{4} \theta_{1}\left(h_{1}\right), F_{5}=x^{5} \theta_{1}\left(h_{1}\right)$. If we take $\alpha_{0}=0, \alpha_{1}=1, \alpha_{2}=u_{1}, \alpha_{3}=0, \alpha_{4}=0, \alpha_{5}=0, \beta_{0}=1, \beta_{1}=$ $0, \beta_{2}=1, \beta_{3}=0, \beta_{4}=0, \beta_{5}=3$, then $\alpha_{0} E_{0}+\alpha_{1} E_{1}+\alpha_{2} E_{2}+\alpha_{3} E_{3}+\alpha_{4} E_{4}+\alpha_{5} E_{5}+\beta_{0} F_{0}+\beta_{1} F_{1}+\beta_{2} F_{2}+\beta_{3} F_{3}+\beta_{4} F_{4}+$ $\beta_{4} F_{4}=3 u_{1} x^{9}+u_{1} x^{8}+\left(2+u_{1}\right) x^{7}+\left(2+2 u_{1}\right) x^{6}+\left(3+3 u_{1}\right) x^{5}+\left(1+u_{1}\right) x^{4}+\left(3+u_{1}\right) x^{3}+\left(3+3 u_{1}\right) x^{2}+3 x+2+3 u_{1}$. It corresponds to the codeword

$$
\mathbf{d}_{1}=\left(2+3 u_{1}, 3,3+3 u_{1}, 3+u_{1}, 1+u_{1}, 3+3 u_{1}, 2+2 u_{1}, 2+u_{1}, u_{1}, 3 u_{1}\right)
$$

Hence, $\xi_{1}\left(\mathbf{d}_{1}\right)=$ GTCCCGCATGCGGAGCATAC. Moreover, $\theta_{1}\left(\alpha_{0}\right) F_{5}+\theta_{1}\left(\alpha_{1}\right) F_{4}+\theta_{1}\left(\alpha_{2}\right) F_{3}+\theta_{1}\left(\alpha_{3}\right) F_{2}+$ $\theta_{1}\left(\alpha_{4}\right) F_{1}+\theta_{1}\left(\alpha_{5}\right) F_{0}+\theta_{1}\left(\beta_{0}\right) E_{5}+\theta_{1}\left(\beta_{1}\right) E_{4}+\theta_{1}\left(\beta_{2}\right) E_{3}+\theta_{1}\left(\beta_{3}\right) E_{2}+\theta_{1}\left(\beta_{4}\right) E_{1}+\theta_{1}\left(\beta_{5}\right) E_{0}=\left(1+u_{1}\right) x^{9}+$
$3 x^{8}+\left(2+u_{1}\right) x^{7}+3 u_{1} x^{6}+\left(2+3 u_{1}\right) x^{5}+\left(2+u_{1}\right) x^{4}+2 u_{1} x^{3}+\left(3+3 u_{1}\right) x^{2}+\left(1+3 u_{1}\right) x+3+u_{1}$ corresponds to the codeword

$$
\mathbf{d}_{2}=\left(3+u_{1}, 1+3 u_{1}, 3+3 u_{1}, 2 u_{1}, 2+u_{1}, 2+3 u_{1}, 3 u_{1}, 2+u_{1}, 3,1+u_{1}\right)
$$

Hence, $\xi_{1}\left(\mathbf{d}_{2}\right)=$ CAT ACGAGGCGT ACGCCCTG. So, $\left(\xi_{1}\left(\mathbf{d}_{2}\right)\right)^{r}=\xi_{1}\left(\mathbf{d}_{1}\right)$.

Example 7.2.

$$
\begin{aligned}
f_{0,1}(x) & =x+1 \\
f_{0,2}(x) & =x^{2}+x+1 \\
f_{0,3}(x) & =x^{6}+x^{3}+1 \\
f_{0,4}(x) & =x+1
\end{aligned}
$$

where all of them divide $x^{9}-1$ over Z_{4}. Hence,

$$
f_{2}=u_{2}\left(u_{1} f_{0,1}+\left(1+u_{1}\right) f_{0,2}\right)+\left(1+u_{2}\right)
$$

over A_{2}. That is

$$
f_{2}=u_{1}\left(1+u_{2}\right) x^{6}+u_{1}\left(1+u_{2}\right) x^{3}+u_{2}\left(1+u_{1}\right) x^{2}+\left(1+u_{1}+2 u_{2}+3 u_{1} u_{2}\right) x+1+2 u_{1}+2 u_{2} .
$$

Since $h_{2,1,1}=u_{1} x f_{0,1}+\left(1+u_{1}\right) f_{0,2}$ and $h_{2,1,2}=u_{1} f_{0,3}+x^{5}\left(1+u_{1}\right) f_{0,4}$, we get $h_{2}=u_{2} x^{4} h_{2,1,1}+(1+$ $\left.u_{2}\right) h_{2,1,2}=\left(1+2 u_{1}+2 u_{2}\right) x^{6}+\left(1+u_{1}+2 u_{2}+3 u_{1} u_{2}\right) x^{5}+\left(1+u_{1}\right) u_{2} x^{4}+\left(1+u_{2}\right) u_{1} x^{3}+u_{1}\left(1+u_{2}\right)$. So, $\theta_{2}\left(h_{2}\right)=$ $\left(1+2 u_{1}+2 u_{2}\right) x^{6}+\left(3+3 u_{2}+3 u_{1} u_{2}\right) x^{5}+\left(2+3 u_{1}+2 u_{2}+u_{1} u_{2}\right) x^{4}+\left(2+2 u_{1}+3 u_{2}+u_{1} u_{2}\right) x^{3}+\left(2+2 u_{1}+3 u_{2}+u_{1} u_{2}\right)$.

Since $m_{2}=3$, we consider the generator matrix of C
$\theta_{2}\left(h_{2}\right), F_{1}=x \theta_{2}\left(h_{2}\right), F_{2}=x^{2} \theta_{2}\left(h_{2}\right)$. If we take $\alpha_{0}=0, \alpha_{1}=0, \alpha_{2}=3, \beta_{0}=0, \beta_{1}=2, \beta_{2}=0$, then $\alpha_{0} E_{0}+\alpha_{1} E_{1}+\alpha_{2} E_{2}+\beta_{0} F_{0}+\beta_{1} F_{1}+\beta_{2} F_{2}=3 u_{1}\left(1+u_{2}\right) x^{8}+2 x^{7}+\left(2+2 u_{2}+2 u_{1} u_{2}\right) x^{6}+\left(u_{1}+u_{1} u_{2}\right) x^{5}+$ $\left(u_{2}+u_{1} u_{2}\right) x^{4}+\left(3+3 u_{1}+2 u_{2}+u_{1} u_{2}\right) x^{3}+\left(3+2 u_{1}+2 u_{2}\right) x^{2}+\left(2 u_{2}+2 u_{1} u_{2}\right) x$. It corresponds to the codeword

$$
\mathbf{d}_{1}=\binom{0,2 u_{2}+2 u_{1} u_{2}, 3+2 u_{1}+2 u_{2}, 3+3 u_{1}+2 u_{2}+u_{1} u_{2},}{u_{2}+u_{1} u_{2}, u_{1}+u_{1} u_{2}, 2+2 u_{2}+2 u_{1} u_{2}, 2,3 u_{1}+3 u_{1} u_{2}}
$$

Hence, $\xi_{2}\left(\mathbf{d}_{1}\right)=$ AAAAAAGACTTCCGTTAATGATAGGGAGGGGGACAG. Moreover, $\theta_{2}\left(\alpha_{0}\right) F_{2}+\theta_{2}\left(\alpha_{1}\right) F_{1}+$ $\theta_{2}\left(\alpha_{2}\right) F_{0}+\theta_{2}\left(\beta_{0}\right) E_{2}+\theta_{2}\left(\beta_{1}\right) E_{1}+\theta_{2}\left(\beta_{2}\right) E_{0}=2 u_{1}\left(1+u_{2}\right) x^{7}+\left(3+2 u_{1}+2 u_{2}\right) x^{6}+\left(1+u_{2}+u_{1} u_{2}\right) x^{5}+\left(2+3 u_{1}+\right.$ $\left.2 u_{2}+u_{1} u_{2}\right) x^{4}+\left(2+2 u_{1}+3 u_{2}+u_{1} u_{2}\right) x^{3}+\left(2+2 u_{1}+2 u_{1} u_{2}\right) x^{2}+2 x+2+2 u_{1}+u_{2}+3 u_{1} u_{2}$ corresponds to the codeword

$$
\mathbf{d}_{2}=\binom{2+2 u_{1}+u_{2}+3 u_{1} u_{2}, 2,2+2 u_{1}+2 u_{1} u_{2}, 2+2 u_{1}+3 u_{2}+u_{1} u_{2},}{2+3 u_{1}+2 u_{2}+u_{1} u_{2}, 1+u_{2}+u_{1} u_{2}, 3+2 u_{1}+2 u_{2}, 2 u_{1}+2 u_{1} u_{2}, 0}
$$

Hence, $\xi_{2}\left(\mathbf{d}_{2}\right)=$ GACAGGGGGAGGGATAGTAATTGCCTTCAGAAAAAA. So, $\left(\xi_{2}\left(\mathbf{d}_{2}\right)\right)^{r}=\xi_{2}\left(\mathbf{d}_{1}\right)$.

8. Conclusion

The DNA codes are obtained with three different methods by using cyclic, skew cyclic codes and θ_{i}-set over a family of the rings A_{t}. A one to one correspondence between A_{t} and $\{A, T, C, G\}^{2^{t}}$ is constructed by using a map.The sufficient and necessary conditions of cyclic codes over A_{t} satisfying the reverse and reverse complement constraints are given, respectively. By defining a non trivial automorphism θ_{i} on A_{t}, the skew cyclic codes are introduced. By using the skew cyclic codes over A_{t} and the θ_{i}-set, the DNA codes are obtained. In a future work, it can be identified the new ring family and its associated Gray map reversible and reversible complement codes to search for optimal DNA codes that meet all or some of the constraints.

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Author's contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.
Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.
Availability of data and materials: Not applicable.

References

[1] Yildiz, B., Siap, I.: Cyclic codes over $F_{2}[u] /\left(u^{4}-1\right)$ and applications to DNA codes. Computers Mathematics with Applications. 63(7), 1169-1176 (2012).
[2] Cengellenmis Y., Dertli A.: On the reversibility problem for DNA 4-bases. Erzincan University Journal of Science and Technology. 13(3), 1383-1388 (2020).
[3] Zhu, S., Chen, X.: Cyclic DNA codes over $F_{2}+u F_{2}+v F_{2}+u v F_{2}$ and their applications. Journal of Applied Mathematics and Computing. 55(1), 479-493 (2017).
[4] Benbelkacem, N., Ezerman, M. F., Abualrub, T., Aydin, N., Batoul, A.: Skew cyclic codes over $F_{4} R$. Journal of Algebra and Its Applications. 21(4), 2250065 (2020).
[5] Bennenni, N., Guenda, K., Mesnager, S.: New DNA cyclic codes over rings. Preprint arxiv:1505.06263 (2015).
[6] Guenda, K., Gulliver, T. A., Solé, P. : On cyclic DNA codes. In: 2013 IEEE International Symposium on Information Theory. 121-125 (2013).
[7] Dertli, A., Cengellenmis, Y.: On the cyclic $D N A$ and skew cyclic $D N A$ codes over $Z_{4}+v Z_{4}$. Biomath. (Submitted Article).
[8] Gao, J.: Quantum codes from cyclic codes over $F_{q}+v F_{q}+v^{2} F_{q}+v^{3} F_{q}$. International Journal of Quantum Information. 13(08), 1550063 (2015).
[9] Abualrub, T., Siap, I.: Reversible cyclic codes over Z_{4}. Australasian Journal of Combinatorics. 38, 195-206 (2007).

Affiliations

Abdullah Dertli
Address: Ondokuz Mayıs University, Dept. of Mathematics, 55200, Samsun-Turkey.
E-MAIL: abdullah.dertli@gmail.com
ORCID ID:0000-0001-8687-032X

YASEMIN ÇENGELLENMIŞ
Address: Trakya University, Dept. of Mathematics, 22030, Edirne-Turkey.
E-MAIL: ycengellenmis@gmail.com
ORCID ID:0000-0002-8133-9836

