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Abstract

In this paper, the structures of the linear codes over a family of the rings A; =
Zylu, ... ug) [(u? — us,uiu; — uju;) are given, where i,j = 1,2,...,t,i # j, Zy = {0,1,2,3}. A map
between the elements of the A; and the alphabet {A, T, C, G}2t is constructed. The DNA codes are
obtained with three different methods, by using the cyclic, skew cyclic codes over a family of the rings A,
and 6;-set, where 6; is a non trivial automorphism on 4;, fori = 1,2, ... t.
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1. Introduction

There are many methods in order to obtain DNA codes. In [1], it was used the cyclic codes over the finite ring
Fylu]/{u* — 1) in order to obtain DNA codes. The sufficient and necessary conditions of cyclic codes over the finite
ring satisfying the reverse complement constraints was given. By introducing a map, the DNA codes were obtained
from these types codes. In different method, it was used the skew cyclic codes over Z,[u, v]/{u? — u, v* — v, uv — vu)
in order to obtain reversible DNA codes, in [2]. Thanks to this, reversibility problem was solved for DNA 4-bases.
This problem arises from the fact that the pairing of nucleotides in two different strands of a DNA sequence is done
in opposite direction and reverse order. For example, take ¢ = 1. Let (a1, an) € A? be a codeword corresponding to
CTCG, where Ay = Z; + u1 Z4,u? = uy. The reverse of (o, as) is (ag, 7). The vector (a2, ay) corresponding to
CGCT. Itis not reverse of CT'CG. The reverse of CT'CG is GCTC. In order to solve reversibility problem, there is
a different approach. In [3], it was used #-set, where 6 is a non trivial automorphism on Fy[u, v]/(u?, v? — v, uv — vu)
in order to obtain reversible and reversible complement DNA codes.
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Moreover, there are similar papers in the literature, [4-6]. Motivated from all these works in which were
considered the codes over one ring and were used one method in order to DNA codes, we decide to consider the
codes over a family of rings and use three methods in order to obtain DNA codes.

In this paper, we use the cyclic, skew cyclic codes over a family of the rings A; = Zy[u1, ..., ut]/(u? — u;, wjuj —
uju;), whered,j =1,2,...,t,i # jand Z, = {0, 1, 2, 3} and 6;-set, where 6; is a non trivial automorphism on A;, for
it =1,2,...,tin order to obtain DNA codes. Section 2 includes some knowledge about a family of the rings A4;. A
map ¢, is defined from A, to A? |, fori = 1,2,...,t. Amap ¢; is defined from A, to {A, T, C,G}* ,fori = 1,2,...,t.
A Gray map is defined on 4;, for i = 1, ..., t. In the section 3 and 4, the structures of linear and cyclic codes over A;
are given, respectively. In the section 5.1 and 5.2 the sufficient and necessary conditions of cyclic codes over A;
satisfying the reverse and reverse complement constraints are given, respectively. The DNA codes are obtained
with first method. In the section 6, by defining a non trivial automorphism on 4, fori =1, ..., ¢, the skew cyclic
codes over a family of the finite rings are introduced. By using the skew cyclic codes over A;, the DNA codes are
obtained with second method. In the section 7, by using the 6;-set, where 6; is a non trivial automorphism on A4;,
fori=1,2,...,t the DNA codes are obtained with third method.

2. Preliminaries

A family of the finite rings A; = Za[u1, . .., us]/(u? — i, wjuj; — uju;), where i, j = 1,2,...,t,i # j contains the
commutative the finite rings with characteristic 4 and cardinality 4>". The finite rings of the family are written as
recursively

A=A 1 +u Ay

wherer =1,2,...,tand A, = Z; + u1Z4,u? = u1, where 4y = Z, = {0, 1, 2, 3}.
1

We define a map as follows for every a; = x;—1 + u;yi—1 € Ay,

¢i : Az — A?_l
a; +— ¢i(a;) = (Ti—1,Tic1 +Yi1)

wherei =1,2,...,¢tand

¢1 : A1 — Ag

ar = xo+uiyo — ¢1(a1) = (xo, o + Yo)
where Ay = Z4.

The map ¢; can be extended to A} naturally, fori =1,...,t.

Let Sp, = {A,T,C, G} represent the DNA alphabet. The Watson Crick Complement is given A° = T,T°¢ =
A,G° = C,C° = G. We use the same notation for the set Sp,, = {AA,TT,...,CG} which was presented in [7].
It is extended the notation to the elements of Sp,, such that AA* =TT, AT =TA,...,GG = CC. By using the
matching the elements of 4y and Sp, = {A,T,C,G} which is given as £,(0) = A,& (1) =T,£(3) = C,§&(2) = G
and by using the map ¢; from A; = Z; + u1 Z4 to Z3, we defined a &; correspondence between the elements of the
finite ring A1 = Z4 + w1 Z4 and DNA double pairs by a1 = z¢ + u1yo — (§0(x0), &o(z0 + yo)) in [7],
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Elements a; DNA double pairs &1 (a1)

0 AA

1 T

2 GG

3 cc

Ul AT

1 + Uy TG
u + 2 GC
ui + 3 CA
2’LL1 AG
3+ 2wy cT
3U1 AC
1+ 3'LL1 TA
2+ 3u1 GT
3+ 3uy caG

Table 1. Identifying codons with the elements of the ring A;.

By using the map ¢, and &;, we established & correspondence between the elements of A; and DNA 4-bases by
az = 1 +uryr = (§1(21), &1(21 + y1)) as follows in [2],

Elements a; DNA 4-bases &2 (asg)

0 AAAA
1 TTTT
2 GGGG
3 ccec
U7 ATAT

Table 2. Identifying codons with the elements of the ring As.

By using the map ¢; and &;_;, we can establish ¢; correspondence between the element of 4; and DNA 2/-bases for
1=1,..,t as follows.

& A — A2 — {AT,C,G}*

a; = Ti—1 +wYio1 — ¢ (@) = (Tim1, Tim1 + Yim1) — %5 (¢ (ai)) = (&1 (ziz1), &i—1 (@i +yiz1))

where ¢; = 7;¢; and the map +; is defined from A7 _; to DNA 2¢-bases as follows,

Yi(si-1,tio1) = (Gim1(si—1),&im1(tiz1))

where s;_1,t;_1 € A;_q,fori =1, ...,t.
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We established ¢; correspondence between the elements of A; and DNA 2%-bases as follows

Elements a; DNA 2i-bases &;(a;)
0 AA.. A
—_—

2° times

1 IT...T
—

27 times

2 GG...G
——

27 times

3 cc...C
—

2° times

u ATAT ... AT
—_—

27 times

Table 3. Identifying codons with the elements of the ring A;.

fori=1,...,t.
We can also express an element of A; as follows uniquely.

Let BC{1,2,...,t} and up = [] w;. In particular uy = 1. Each element of A, is of the form ) apup, where
i€B BEP,
ap € Zy, P, is the power set of the set {1,2,...,¢}. For A, B C {1,2,...,t}, we have that usup = uaup which gives

that > apup. Y. Bocuc= Y. ( > aBﬂC> up. Moreover,

BeP; CeP; DeP, \BUC=D

euy =1+ (—1)!Bl Z up

BeP;
and the number of e,,, is (;,).
€u; = Uj + (71)‘B|+1 Z up

i€BeP;,
|B|>2

fori=1,2,...,tand the number of e,, is (}).
B|+2
Cugu; = Uillj + (—1)| I+ Z up
v<d i,jEBEP,,

|B|=3

fori,j =1,2,...,t and the number of e,y is (5).

— B|+3
Cusuju, = WilljlUs + (—1)! Bl E up
1<g<s i,j,s€BEP;,
B>

fori,j,s =1,2,...,t and the number of €,,q,q, is (3)

Curus..uy — ULTUZ .. . Ut

and the number of e, .. 4, is (i)

Then we have > e, = 1,(eu;)? = eu, and eypen, = 0if A # B for any A, B C {1,2,...,t}. Hence

BeP;
A= @ Aew, = P Zsey,. So every element z of A, can be uniquely expressed as z = > ay,ey,, where
BeP; BeP; BeP;

Aoy € Zy.
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Example 2.1. Lettbe 3. Then Az = Z4 + w1 Z4 + usZy +usZs + uiusZy + urus Zy + ugus Zy + uiugus Z4. Consider
the elements of A3 below

Cuy = €1 =1 —up —us —usz + uiug + ugug + sz — UTULU3

)
€y, = UL — ULU2 — UTU3 + UTULU3
Cuy = U2 — UIU2 — U2U3 + U1U2U3
€ys = U3 — UIU3 — U2U3 + U ULU3

Cujuy = ULU2 — UTUUZ

Cujuz = U1U3 — UTU2UZ

Cusuz = U2U3 — UTUUZ

Cujugug — UIUU3

We can also define Gray map as follows,

\I/t : At — th
z = Z Augeuy; H— Yi(z) =7
BeP;
ZauB7 Z aqu"'y Z auB7 Z auB7 Z aqu"'a
B=0 BC{1} BC{t} BC{1,2} BC{1,3} .
where v = S Gups Y Gupsees Y ups. . > Quy and a,, € Zy, fori,j,s,... €
BC{ig},  BC{L1.23} BC{ij,s}, BC{1.2,...,t}
1<J 1<j<s
{1,2,...,t}.
The map V¥, can be extended from A}, naturally.
Example 2.2. Lett = 3. Then
s : A3 — Zf
z= Z augeuy; > Us(z) =7

BeP3
where v = (al, A1+ Aoy s Q1 F Qoygy A1 F Qg y A1 F Aoy + Ay F Coyqun s A1 F Qoyy + Ay + Qoyqug s A1 F Goyy + Ay + Qypig, @1 +

Ay F Quy + Quy + Quyuy + Quyug + Cuyug + Quyuus)-

The Lee weight on Z,, denoted wy,, is defined as wr,(p) = 0if p = 0, wr(p) = lifp=1orp =3, wr(p) = 2if
p=2 Foranyz = ) aygey., € A, the Gray weight of x is defined as

BeP,
2t
we (@) = wr (Vy(x)) = > w(w)
i=1
where U, (z) = (21,...,29t) and x; € Zy fori = 1,2,..., 2" The Gray weight of a vector a = (ay,...,a,) € A} is

defined to be a rational sum of the Gray weight of its components. Moreover, for any c,d € A}, the Gray distance
between ¢ and d is defined as d¢(c,d) = wg(c — d).

Theorem 2.1. The map U, is a linear and distance preserving map, fori =1,...,t.
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3. Linear codes over A,

A non empty subset C C A} is called linear code over A, if C is a submodule of A;.
Letx = (20, 21,...,%Zn—1) and y = (yo,¥1, ..., Yn—1) be two vectors in A?. The Euclidean inner product of x
and y is defined by

n—1
(x,y) =Yz,
=0

where the operations are performed in the ring A;.
Dual of the code C' C A} is the code

Ct={xecA?: (x,y)=0,Vy € C}.

Clearly, C* is also linear.

Denoter = (r(® ... r(»=V) ¢ A7, where r® = 3 @y, €4, fori =0,1,2,...,n — 1. Then r can be uniquely
BeP,
expressed asr = ) aygeqy,, Wwhere a,, = (Qoug, Glug;- - An-1ug), €ach B € P,.
BeP,
Let

Rl@...@RQt:{7’1+...+T‘2t‘7’1ERi,i:L...,zt},
Ri®...® Ry :{(7‘1,...,7"215”7“,*ERi,iZI,...,Qt}.

Define the codes C,,, as follows

Cuy = C1 ={ay, € Z}|3a,, 2o € Z7, Z a, e, €C}H

BeP;
Cu, ={ay, € Z}|3a,, px{1y € Z7, Z a, e, €C}
BeP;
Cu, = {au, € Z}'|3ay,, pri2y € Z7, Z ay ey, €CY
BeP;

Cu, = {au, € Z}|Fau, 521y € 23, Y augeu, € C}
BeP,

Culuz = {auluz € Zérll'aauB,B;é{l,Z} € ZZ» Z AupCup € C}
BeP;

CU]UQ...T,H, = {aulug...m € ZZ|HauB,B7${1,.‘.7t} € fo, Z AypCup € C}
BeP,

The number of C,,, is 2¢. Clearly C,,, is a linear code of length n over Z4. C' can be uniquely decomposed into

C= D Cuseus

BeP,

and hence we have |C| = [] |Cu,l-
Bep,
The following theorems can be proved as in [8].

Theorem 3.1. Let C = @ C., e, be a linear code of length n over A;. Then the dual C+ = @ C.,, " e., isalsoa
BEP, BEP,
linear code of length n over Ay.
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Theorem 3.2. If C is a (n, M, d¢) linear code over A;, then W;(C) is a (2'n, M,dy,) linear code over Zy fori = 1,...,t,
where dg = df.

Theorem 3.3. Let C be a linear code of length n over A;. Then U;(C) = Q Chup, fori=1,...,t.
BeP;
4. Cyclic codes over A,

In [9], the structures of cyclic codes of length n over Z, were determined as follows. By using this, we will obtain
the structures of cyclic codes over A4; fori =1,...,1t.

Theorem 4.1. [9] Let C be a cyclic code of length n over R,, = Zy[z]/{z™ — 1).

1. If nis odd, then R, is a principal ideal ring and C' = (g(x), 2a(x)) = (g(z) + 2a(x)), where g(x) and a(z) are polynomials
with a(x)|g(z)|z™ — 1 ( mod 4).

2. If nis not odd, then

i. If g(x) = a(z), then C = (g(x) + 2a(x)), where g(z)|z™ —1( mod 2), g(z) + 2a(z)|z™ — 1 ( mod 4),
ii. C = (g(x)+ 2p(z),2a(z)), where g(x), a(x) and p(x) are polynomials with g(x)|x™ — 1 ( mod 2) and
a(z)|p(z) («" = 1/g(x)) ( mod 2), deg a(x) > deg p().
Theorem 4.2. Let C = @ C, ey, bealinear code over A,. Then C'is a cyclic code over A, if and only if C,,, are cyclic

BeP;
codes over Z, for all B € P,. Moreover, if C is a cyclic code over Ay, then

C = {(fi(@)er, fur (T)euss- s fu, (@)eu,s furus (T)ususs - s furus.w (T)€urus..ur)
where f,, (x) are generator polynomials of C,,,, for all B € P,, respectively.

Proof. This can be proven similarly to [7]. O

5. The reversible codes and reversible complement codes

In [7], the sufficient and necessary conditions of cyclic codes over A; satisfying the reverse constraint and reverse
complement constraint were given. In this section, the sufficient and necessary conditions of cyclic codes over A;

satisfying the reverse constraint and reverse complement constraint are given for: = 2,...,¢.
Definition 5.1. A cyclic code C of length n over A, is said to be reversible if x" = (z,—1,...,20) € C, for all
x = (2gy...,2pn-1) € C.

Definition 5.2. For each polynomial ¢(z) = co + c1z + . .. + ¢pz™ with ¢,,, # 0, the reciprocal polynomial of ¢(x) is
defined to be the polynomial ¢*(x) = 2™c(x~!). The polynomial ¢(z) and ¢*(z) always have the same degree. The
polynomial ¢(z) is called reciprocal if and only if ¢(z) = ¢*(z).

Lemma 5.1. Let f(z) and g(x) be polynomials in A;[x]. Suppose that deg f(x)-deg g(x) = m, then
(f(x).9(x))" = f*(z)g"(x)

and

(f(@) +9(x))" = f*(x) + 2™g" (x).

5.1 The reversible codes
In [9], the author studied the reversible codes over Z; as follows, by using this, the sufficient and necessary
conditions of cyclic codes over A; satisfying the reverse constraint are given fori =2,...,t.

Lemma 5.2. [9] Let C = (g(x),2a(x)) = (g(x) + 2a(x)) be a cyclic code of odd length n over Z,. Then C is reversible if
and only if both g(x) and a(x) are self reciprocal.

Theorem 5.1. [9] Let C' = (g(z) + 2p(x)) be a cyclic code of even length n over Zy. Then C'is reversible if and only if

i. g(z) is self reciprocal,
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ii. a(x)| (z'p* () + p(x)), where i =deg g(x)- deg p(z).

Theorem 5.2. [9] Let C = (g(x) + 2p(z), 2a(x)) with g(x)|z"—1 ( mod 2), a(z)|g(x) ( mod 2), a(x)|p(x)| (™ — 1/g(x)) ( mod 2)
and deg a(x) > deg p(x) be a cyclic code of even length n over Z,. Then C is reversible if and only if

i. g(x) and a(zx) are self reciprocal,
ii. a(z)|(z'p*(x) + p(x)), where i =deg g(x)-deg p(z).

Theorem 5.3. Let C = @ Cyyeq, be a cyclic code of length n over A,. Then C is reversible if and only if C,,, are
BeP;

reversible, where C,,, are cyclic codes over Zy, for all B € P;.

Proof. This can be proven similarly to [7]. O

5.2 The reversible complement codes
In this section, the sufficient and necessary conditions of cyclic codes over A; satisfying the reverse complement

constraint are given for ¢ = 2,...,¢ and DNA codes are obtained by using cyclic DNA codes over A;.
Definition 5.3. A cyclic code C of length n over A; is said to be complement if x° = (z§,...,2%_,) € C, for all
x = (zgy...,2n-1) € C.

A cyclic code C of length n over A; is said to be reversible complement if x™ = (z¢_,,...,z§) € C, for all
x = (2gy...,2pn-1) € C.

A cyclic code C of length n over A; that has reversible complement property is said to be cyclic DNA code.
Lemma 5.3. The following conditions hold,
i. For any element a; € A;, af = (zi—1 + wiyi—1)® = x5 + 3u;yi—1, wWhere v;_1,y,—1 € A;_1,1=1,2,... 1.
ii. Forall a € Ay, we have a + a© = 1.
iii. For all a,b € Ay, we have (a + b)® = a® 4 b° + 3.

Proof. i.,1i. According the tables, the computations are easy.

iii. Let a,b € A;. Fromii, (a+b)°=1—-(a+b)=(1—-a)+(1-0)—1=a+0b°+3. O

Theorem 5.4. Let C' = @ C, ey, bea cyclic code of length n over A,. Then C'is reversible complement if and only if C
BeP;

is reversible and (0°, . ..,0°) € C, where C,,, are cyclic codes over Z,, for all B € P,.

Proof. This can be proven similarly to [7]. O

Corollary 5.1. Let C be a cyclic DNA code of length n over A, and minimum Hamming distance d. Then &,(C') is a DNA
code of length 2'n over the alphabet { A, C, G, T'} with minimum Hamming distance at least d.

6. Skew cyclic codes over A,

For i = 2, the reversibility problem was solved in [2]. In this section, by using the skew cyclic codes over A;, the
reversibility problem for DNA 2¢-mers is solved fori = 1,3, ... ,t.

Definition 6.1. Let B be a finite ring and 0 be a non trivial automorphism over B. A subset C of B" is called a skew
cyclic code of length n if C' satisfies the following conditions,

i. C'is a submodule of B™
ii. if ¢ = (cq, - .-, cn_1) € C, then gy (c) = (0(cn—1),0(co),-..,0(cn_2)) € C,

where oy is the skew cyclic shift operator.
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By defining a non trivial automorphism on A; as follows, we can define the skew cyclic codes over A;.
0 : Ai— A
Tio1 tuiyi-r = Oic1(Tic1 +yio1) — wibio1(yi-1)
and
01 : A — Ay
To+uiyo —  (To+yo) — wayo

where i = 2,3,...,t. The order of §; is 2, wherei =1,2,...,t.

The rings
Ailz,0;] = {b) +biw+ .. 4 2" b;- €cA,neN,i=1,...,t,j=0,...,n—1}
are called skew polynomial rings with the usual polynomial addition and the multiplication as follows

(02°)(nz") = 06 (n)x**"

where i = 1, ..., t. They are non commutative rings.
The set Ay, , = Ailz,0;]/ (2™ — 1) = {fi(z) + (=" — 1) : fi(x) € Ai[z,0;]} is a left A;[z,;]-module with the
multiplication from left as follows,

ri(@)(fi(z) + (z" = 1)) = ri(@) fi(x) + (=" = 1)

where for any r;(z) € A;[z,0;], fori=1,...,¢.

A code C; over A; of length n is a skew cyclic code if and only if C; is a left A;[z, 6;]-submodule of Ay, ,,, where
i=1,...,t. Let f;(x) be a polynomial in C; of minimal degree. If the leading cofficient of f;(x) is a unit in A;, then
C; = (fi(z)) , where f;(x) is a right divisor of z™ — 1.

We can express the matching the elements A; and Sp,, = {AA4,TT, ..., GG} by means of the automorphism 6,
as follows.

Each element a; = g + u1yo € A; and 61 () are mapped to DNA 2-bases which are reverse of each other. Let
&1 be a correspondence the elements of the finite ring A; and DNA 2-bases. For example

&1(ur) = AT, while & (61(u1)) =TA
By using a map &; = v; o ¢;, where the map +; is defined from A? | to DNA 2’-bases as foolows

Yi(si—1,tic1) = (&i—1(8i-1), &Gi—1(ti=1))

where s;_1,t;—1 € A;_1, fori =1,...,t, we can explain a relationship between skew cyclic codes and DNA codes.
Actually, &;(r;) and &; (6;(r;)) are DNA reverse of each other, where r; = a;_1 + w;bi_1, a;—1,bi—1 € A;_; for
i=1,...,t

Forr; = a;_1 + u;b;_1 € A;, we have

fi(ri) = Y (@'(%‘71 + Uibifl)) =7 (aifla a;i—1+ bzel)
= (&G-1(ai-1),&-1(ai—1 +bi—1))
On the other hand,
& (0i(ri)) = & (Oimi(aimi +bi—1) —uibi—1(bi1))

= v (i (0i—1(aj—1 +bi—1) —wibi—1(bi—1)))

= % (Bi—1(ai—1 +bi—1),0i—1(ai—1))

= (&1 (0i—1(ai—1 +bi—1)) &1 (Bi—1(ai-1)))
wherei =1,...,t.

This map can be extended as follows. For any s; = (si,...,s!_;) € A?,

(& (50) & (1) o€ (s1m0)) " = (& (O (s0m1)) oo & (0 (1)), & (0 (55)))

where i =1,2,... .
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Example 6.1. If ro = 14 uy + us (2 + 3uy) € A,, then we have
§2(r2) = 72(d2(r3)) =2 (1+ui,3)
(& (1+w) & (3) =(TG,CO)
On the other hand,
£2(02(r2)) = &2(01(3) — u2b1(2 + 3uq))
Y2(01(3), 01 (1 + u1))

(61(01(3)), (01 (1 +u1)))
(CC,GT)

Definition 6.2. Let C; be a code of length n over A4;, for i = 1,...,t. If §;(c)” € &/(C;) for all ¢ € C}, then C; or
equivalently &;(C;) is called a reversible DNA code, fori =1,...,t.

The skew cyclic code of odd length over A; with respect to §; is a cyclic code, as the order of 6, is2 fori = 1,. .., ¢t.
So we will take the length n to be even.

Definition 6.3. Let g;(x) = b} + bix + bia? + ... + blz® be a polynomial of degree s over A;, fori=1,...,t. g;(x) is
called a palindromic polynomial if b} = b, forall j € {0,1,...,s}. gi(z) is called a f;-palindromic polynomial if
b; = 0i(b,_;) forall j € {0,1,...,s}, fori=1,....t

Theorem 6.1. Let C; = (f; (x)) be a skew cyclic code of length n over A;, fori =1,3,...,t, where f;(x) is a right divisor of
" — 1 and deg(f;(x)) is odd. If f;(x) is a 8;-palindromic polynomial then &;(C;) is a reversible DNA code.

Proof. Let f;(x) be a §;-palindromic polynomial and f;(x) = af +ajx +...+ab, 2?*7'. Soa} = 0;(ab,_,_;), for all
j=0,1,...,s=1,i=1,3,... t. Let hj(z) = hj + hiz+...+hi,_ 2**~1. Let b} be the coefficient of x7 in h;(x) f;(x).
For any k < n/2, the coefficient of =" in h;(x) f;(x) is

Zhl 0 (a

2k—1—3
1]91

-

and the coefficient of z("~D~* ig bln1)_n =

K hzk (aés—l—(n—j))/ fori = 1737'~~7t

0

j
The polynomial h;(z) fi(x) = Z hi,a? fi(x) corresponds a vector b = (bj, bf,...,bl, 1) € Cy, fori =1,3,.
The vector &; (b) " = ((& (b)) . & ( ) ..., & (b5_1)))" is equal to the vector &; (z), where the vector z corresponds

2%—1
the polynomial Y 6;(hi)x? 1P f;(x)fori=1,3,...,t. So &(C;) is a reversible DNA code. O
p=0

Theorem 6.2. Let C; = (f; (x)) be a skew cyclic code of length n over A;, fori =1,3,...,t, where f;(x) is a right divisor of
" — 1 and deg(f;(x)) is even. If f;(x) is a palindromic polynomial then &;(C;) is a reversible DNA code.

Proof. Let f;(x) be a palindromic polynomial with even degree fix) = af + alx + ...+ ab o and a) = ab, _,, for
allp=0,1,...,s,fori=1,3,... t Let hy(x) = hj + hix + ... + hi,a?*. Let b, be the coefficient of 2 in h;(z) f;(x).
For any k < n/2, the coefficient of z* in h,(x) f;(x) is

Z hi6!(a
and the coefficient of z("~1~* ig birh1 —— ; hf%)fje?’“)*j(agsf(w)), fori=1,3,...,t

The polynomial h;(z) fi(z) = Z hia? fi(x) corresponds a vector b = (b, b, ...,b, ) € Cy, fori=1,3,...,t

The vector & (b) " = ((& (b)) & (bl) ..., & (05_1)))" is equal to the vector &; (z), where the vector z corresponds
2%k

the polynomial Y 6;(h)x**~7 fi(z). So &(C;) is a reversible DNA code. O
p=0
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7. 0;—set

In this section, we will obtain DNA codes by using 6;—set, where 6; is a non trivial automorphism on A; for
i=1,..,t

Definition 7.1. Let fy1,..., fo 2: be polynomials dividing 2™ — 1 over Z, and let f;_; 1, fi—1,2 be polynomials with
deg fi—1,1 =di—1,1,deg fi—12 = d;—1 2 and both are over A;_; fori =1,2,...,t. Let

fi=uificia+ A +u)fici2 € Ajlz]

and
ficia = wimificea + A+ wim1)ficoe
fici2 = wimificoz+ (1 +ui1)fi—oa
ficon = wi—afi—z1+ (1 +ui—2)fi—z2
ficoo = wi—afi—zz+ (1+ui—2)fi—z4
fi—ez = wi—afi—zs+ (1 +ui—2)fi—ze
ficoa = wi—aficzz+ (1 +ui—2)fi—zs
fir = uifor+ (1 +ur)foe
fiz = uifos+ (1 +ui)foa

Ji2i-1 = urfooiq + (1 +u1)foo

Letm; = min{n —d;_1,1,n — d;—_1 2}. The set L(f;) is called a 6;-set and is defined as
L(f)) ={Eo,Ey, ..., Em,—1,Fo, F1,...,Frp,_1}

where Ej = J)jfi,Fj = l‘jel(hl),o S] <m; —1,i=1,2...,t.
If deg fo,2 > deg fo,25—1,

his = uppdosfozs=desforamn fo o (1 4 uy) foos

otherwise
de s—1—de, s
hits =uifoos—1 + (14 up)xpdosfozsmri—degfoas g,

where s =1,2,...,2° "t and
If deg h; 1,2¢ > deg hi1,2¢—1,

hi,Q,t _ UQLUdegf”’l’zt_degfi’l‘ztflhi’Lgt,l + (1 + u2) hi,1,2t

otherwise
d ’ _,—deg fi.
hi,Q,t — Uzhi,1,2t—1 (1 uz) pde8 fi,1,2e—1—deg fu,l.2thi’1’2t

wheret=1,2,...,2" 2 and

If degh; ;220 > degh;i—220-1,
degh; ;2,20 —degh; 2,20
hiji—1,0 = uj_qa@®8 2208 R i=2201 o 9o 1+ (14 wi—1) hiji—2,20

otherwise
degh; i—2,20—1—degh; i_2 24
hiic1p = Wic1hii—2.20-1 + (1 4+ wj_q) @8 Miim220-17CC8 =220, o o o,

where v = 1,2 and
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Ifdegh;i—1,2 > degh;i—11,
hi = wpteshiimamdes i, o) 4 (14 w) higoo

otherwise
hi = uihii1q 4 (1+ ;) glesliitamdeghiiotzg, ;.

L(f:) generates a linear code C; over 4;, where i = 1,2,...,¢. It will be denoted by C; = (fi),, or C; = (L(f:))-
It means that it is A4;-submodule generated by the set L(f;), where i = 1,2,...,t. Let fi = a} + alz + ...+ a;mp €
Ailz], 0;(hi) = by + blx + ...+ biz®, wherei = 1,2,...,t. The A;-submodule can be considered to be generated by

the rows of the following matrix

Ey

y a_(i) ai ay - a;) 0 SRR

E; o b b L1 e bLO
L(f;) = Fr | _ 10 af) ai al a; 0 0 A

Es 0 b b e e b

Iy

o O O o

Theorem 7.1. Let fy 1,. .., fo2: be self reciprocal polynomials dividing ™ — 1 over Zy. Then C; = (L(f;)) is a linear code

over A; and &;(C;) is a reversible DNA code, where the map &; is from C; to ng,for 1=1,2,...,t

Proof. It is proved as in the proof of the Theorem 4.3 in [3].

O

Corollary 7.1. Let fo1,..., fooi be self reciprocal polynomials dividing ™ — 1 over Zy and C; = (L(f;)) be a cyclic code

over A; fori=1,...,t. If ”f:__ll € G, then &,(C;) is a reversible complement DNA code.

Example 7.1.

foalzr) = 2(x+1)

fO,z(ﬂC) = x4—x3—|—x2—x+1

where all of them divide z!9 — 1 over Z,. Hence,
fi=uifo1+ (1 +wu1) fo2

over A;. Thatis
fo=04u)a* — (1 +u)2® + (1 +u)a® — (1 —uy)z+ 1+ 3uy.

We get hy = U11‘3h1,071+(1+U1)h1,072 = (1 + 3U1)$4—(1 — U1)$3+(1 + ul) 1‘2—(1 + U1)J3+1+U_1. SO,_91 (h1) =

uprt —u 23+ (2 + 3u) 22— (2 + 3u1) 2+2+3u;. Since m; = 6, we consider the generator matrix of C

Ey
Fy
E,
Fy

Es
I

, where

Ey=fi,Ey =af1,By = 2f1, B3 =2 f1, By = 2 f1, E5s = 2° f1, Fy = 01 (h1) , Fy = 261 (h1) , F> = 2201 (W), F3 =
.’2391 (hl) 7}7‘4 = 1'401 (hl) ,F5 = 1’591 (hl) If we take ap = O,Ckl = 1,0&2 = U1,z = 0,0&4 = 0,0[5 = O,ﬁo = 1,51 =
0,80 =1,83=0,84 =0, 85 = 3, then agEg+ a1 E1 + oo Eo+ a3 B3+ oy By +as Es 4 Bo Fo+ 1 F1 + BaFo + B3 Fas + Ba Fu +
BaFy = 3uraz® +ura® + (2+u)z” + (2 4+ 2up) 28+ (3 + 3uy) 2® + (1 4 ) 2* + (34+u1)2® + (34 3uy)2? 4 32 + 24 3u;.

It corresponds to the codeword

d; = (2+3uy,3,3+3u1,3 4+ ug, 1 +u1,3+3u1,2+2u1,2+u1,u1,3u1)

Hence, fl(dl) = GTCCCGCATGCGGAGCATAC. Moreover, 61 (Oé()) Fs + 60 (011) Fy+ 04 (042) Fs + 6, (Ozg) Fy +
(14 up)2? +

01 () F1 + 61 (as) Fo + 61 (Bo) Es + 61 (1) Ea + 61 (B2) Es + 61 (B3) E2 + 61 (B4) E1 + 61 (B5) Eo
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378 + (2 4+ u1)z” + 3ura® + (2 + 3uy) 2° + (2 + w) 2t + 2urz® + (3 + 3uy)2® + (1 + 3uq)  + 3 + uy corresponds to
the codeword
d; = (3+U1, 14 3uq, 3+ 3uq, 2uq,2 +uq, 2 + 3uq, 3u, 2 + ug, 3,1 —I—u1)

Hence, &,(ds) = CATACGAGGCGTACGCCCTG. So, (¢1(dy))" = & (dy).

Example 7.2.
fo1(x) z+1
foa(z) = 24+l
f073(1‘) = JUG + $3 + 1
fo,a(x) rz+1

where all of them divide z° — 1 over Z,. Hence,
Jo =g (urfo1 + (1 +u1) fo2) + (1 +uz)
over A,. That is
fo=u (1+u2)z6+u1 (1+u2)9:3+u2 (1+u1)z2+ (1 4+ ug + 2ug + 3uguz) x + 1 + 2u;g + 2us.

Since ho11 = wizfo1 + (1 + u1)foz and ho1o = uifos + 2°(1 + u1)fos, we get ha = ugzho11 + (1 +
UQ)hQJ,Q = (1 + 2uq + 2U2) x5 + (1 + uy 4+ 2us + 3U1U2) x5+ (1 + ul)u2x4 + (1 + UQ)Ul.’L‘3 + Ul(l +UQ). So, 62 (hg) =
(1 + 2uy + 2u2) 2%4+(3 + 3ug + 3ugug) 2°+(2 + 3uy + 2us + ugus) (2 + 2uy + 3us + ugus) 3+(2 + 2uy + 3us + ugus).
Ey
Fy
£y
Iy
E,
Fy
92 (hg) ,F1 = 1‘62 (hg) 7F2 = 33292 (hg) If we take ag = 0,041 = O,a2 = 3,60 = 0751 = 2,62 = O, then
aoEy + a1E1 + asFs + BoFo + B1F1 + BoFe = 3ui(l + u2)z® + 227 + (2 + 2ug + 2uqug) 2% + (ug + ugug)z® +
(ug + urug)x® + (3 + 3ug + 2ug + uqug)x® + (3 + 2uq + 2ug) 22 + (2uz + 2uquz) x. It corresponds to the codeword

Since my = 3, we consider the generator matrix of C' , where Ey = f5,E1 = xfo,Fy = 22f5,Fy =

d — 0, 2ug + 2uqus, 3 + 2uy + 2ug, 3 4+ 3uq + 2us + ujus,
1= ug +U1U2,U1 +U1U2,2+2U2 +2U1U2,2,3U1 +3U1U2

Hence, &(d,) = AAAAAAGACTTCCGTT AATGAT AGGGAGGGGGAC AG. Moreover, 05 (a) Fa+0s (1) Fy +
02 (a2) Fo+02 (Bo) Ea+ 02 (B1) E1 + 02 (B2) Eo = 2u1 (1+ug)x” + (3 4 2uy + 2us2) 2® + (1 +us +ugus)z® + (24 3ug +
2us + ugug)zt + (24 2uy + 3uz + uug)w + (2 + 2uy + 2uquz) T2 + 22 + 2 + 2u; + ug + 3ujus corresponds to the
codeword
do — ( 2 4+ 2uq + ug + 3uqus, 2,2 + 2uq + 2uqus, 2 + 2uy + 3ug + ujue, )
2= 2 + 3U1 + 2’[1,2 + Uirug, 1 + ug + U1U2,3 + 2U1 + 2U2, 2U1 + 2U1U2, 0

Hence, £5(dz) = GACAGGGGGAGGGAT AGT AATTGCCTTCAGAAAAAA. So, (£5(ds))” = &(dy).

8. Conclusion

The DNA codes are obtained with three different methods by using cyclic, skew cyclic codes and §;-set over
a family of the rings A;. A one to one correspondence between A, and {A,T,C,G}?' is constructed by using a
map.The sufficient and necessary conditions of cyclic codes over A, satisfying the reverse and reverse complement
constraints are given, respectively. By defining a non trivial automorphism 6; on A, the skew cyclic codes are
introduced. By using the skew cyclic codes over A; and the §;-set, the DNA codes are obtained. In a future work, it
can be identified the new ring family and its associated Gray map reversible and reversible complement codes to
search for optimal DNA codes that meet all or some of the constraints.
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