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Abstract. The goal of this paper is to give a definition of a generalization of fuzzy prime Γ-ideals in Γ-rings
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rings and to give their properties. Furthermore, we give a diagram which transition between definitions of fuzzy
2-absorbing Γ-ideals of a Γ-ring. Finally, we introduce fuzzy quotient Γ-ring of R induced by the fuzzy weakly
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1. Introduction

Zadeh in [27] introduced the notion of fuzzy subset and Rosenfeld [25] examined to apply fuzzy theory on algebraic
structures. Then, many researchers have investigated about it. Liu [19] studied the concept of fuzzy ideal of a ring.
N.Nobusawa [24] defined the notion of a Γ−ring, as more general than a ring. W.E. Barnes [5] weakened slightly the
conditions in the definition of the Γ−rings in the sense of Nobusawa. W.E.Barnes [5], S.Kyuno [16,17] and J.Luh [21]
developed the structure of Γ−rings and acquired various generalizations analogous to corresponding parts in ring theory.
In fuzzy commutative algebra, prime ideals are the most significant structures. Dutta and Chanda [9] described fuzzy
prime ideals in Γ−rings. Ersoy [12] discussed fuzzy semiprime ideals in Γ−rings.

The concept of a 2-absorbing ideal, which is a generalization of prime ideal, was proposed by Badawi in [2] and
also presented in [1, 3]. At present, study on the 2-absorbing ideal theory is progressing rapidly. It has been studied
extensively by many authors (e.g. [4, 7, 14] ). Darani [6] demonstrated the notion of L−fuzzy 2-absorbing ideals
and has acquired interesting results on these concepts. Then, Darani and Hashempoor constructed the concept of
L−fuzzy 2-absorbing ideals in semiring [8]. Elkettani and Kasem [11] clarified the notion of 2-absorbing δ−primary
Γ−ideal of Γ−ring and gave interesting results concerning these notions. Sönmez [26] described 2-absorbing primary
fuzzy ideals of commutative rings and established relations between 2-absorbing primary fuzzy ideals and 2-absorbing
primary ideals.

This paper provides a new algebraic structure of fuzzy prime Γ−ideal of commutative Γ−ring by 2-absorbing and
weakly completely prime 2-absorbing ideal theory. We examine the notion of fuzzy 2-absorbing Γ−ideal of Γ−ring
and fuzzy weakly completely 2-absorbing Γ−ideal of Γ−ring and explain some of its characterization of algebraic
properties. Furthermore, we give definition of fuzzy strongly 2-absorbing Γ−ideal of Γ−ring and fuzzy K−2-absorbing
Γ−ideal of Γ−ring. We investigate image and inverse image of fuzzy 2-absorbing Γ−ideal of Γ−ring and fuzzy weakly
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completely 2-absorbing Γ−ideal of Γ−ring. Then, we construct a diagram which transition between definitions of fuzzy
2-absorbing Γ−ideals of a Γ−ring as well as the relationship of these concepts with the notion of 2-absorbing Γ−ideal.
Finally, we introduce fuzzy quotient Γ−ring of R induced by the fuzzy weakly completely 2-absorbing Γ−ideal is a
2-absorbing Γ−ring.

2. Preliminaries

In this section, for the sake of completeness, we first recall some useful definitions and results. Throughout this
paper, Γ−ring R is a commutative with 1 , 0 and L = [0, 1] stands for a complete lattice.

Definition 2.1 ( [27]). A fuzzy subset µ in a set X is a function µ : X → [0, 1].

Proposition 2.2 ( [22]). Let µ and ν be fuzzy subset of X. We say that, µ is a subset of ν and write µ ⊆ ν, if µ (x) ≤ ν (x)
for all x ∈ X.

Definition 2.3 ( [22]). Let µ be any fuzzy subset of X and t ∈ L. Then, the set

µt = {x ∈ X | µ (x) ≥ t}

is called the t − level subset of X with respect to µ.

Definition 2.4 ( [22]). A fuzzy subset µ of X is called a fuzzy point if x ∈ X and r ∈ L\ {0} , is a fuzzy subset of X and
defined by

xr (y) =
{

r, if y = x;
0, otherwise.

If xr is a fuzzy point of X and xr ⊆ µ, then we write xr ∈ µ.

Definition 2.5 ( [10]). Let R and Γ be two abelian additive groups. R is called a Γ−ring, if there exist a mapping

R × Γ × R → R

(x, α, y) 7→ xαy,

satisfying the following conditions;
(1) (x + y)αz = xαz + yαz,
(2) xα (y + z) = xαy + xαz,
(3) x (α + β) y = xαy + xβy,
(4) xα (yβz) = (xαy) βz,

for all x, y, z ∈ R and all α, β ∈ Γ. A Γ−ring R is called commutative, if xαy = yαx for any x, y ∈ R and α ∈ Γ.

Definition 2.6 ( [10]). A left (resp. right) ideal of a Γ−ring R is a subset A of R which is an additive subgroup of R
and RΓA ⊆ A

(
resp,AΓR ⊆ A

)
where,

RΓA = {xαy | x ∈ R, α ∈ Γ, y ∈ A} .

If A is both a left and a right ideal, then A is called a Γ−ideal of R.

Definition 2.7 ( [9]). A fuzzy set µ in a Γ−ring R is called a fuzzy ideal of R, if the following requirements are satisfied:
(1) µ (x − y) ≥ min {µ (x) , µ (y)} ,
(2) µ (xαy) ≥ max {µ (x) , µ (y)} ,

for all x, y ∈ R and α ∈ Γ.

Definition 2.8 ( [10]). Let R and S be two Γ−rings, and f be a mapping of R into S . Then, f is called a Γ−homomorphism,
if

f (a + b) = f (a) + f (b)

and

f (aαb) = f (a)α f (b) ,

for all a, b ∈ R and α ∈ Γ.
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Definition 2.9 ( [5]). Let R be a Γ−ring. A proper ideal P of R is called a prime Γ−ideal, if for all pairs of ideals S and
T of R,

SΓT ⊆ P implies that S ⊆ P or T ⊆ P.

Proposition 2.10 ( [18]). If P is an ideal of a Γ−ring R, then the following conditions are equivalent:

(1) P is a prime Γ−ideal of R.
(2) If x, y ∈ R and xΓRΓy ⊆ P, then x ∈ P or y ∈ P.

Definition 2.11 ( [13]). A non-constant fuzzy ideal µ of a Γ−ring R is called a fuzzy prime Γ−ideal of R if for any two
fuzzy ideals σ and θ of R,

σΓθ ⊆ µ implies that either σ ⊆ µ or θ ⊆ µ.

Definition 2.12 ( [22]). Let µ be a fuzzy subset of R. Then, the fuzzy ideal of R generated by µ is defined to be the
intersection of all fuzzy ideals of R containing µ and denoted by ⟨µ⟩ .

Clearly, ⟨µ⟩ is a fuzzy ideal of R. In fact, ⟨µ⟩ is the smallest fuzzy ideal of R containing µ.

Lemma 2.13 ( [9]). Let R be a commutative Γ−ring with identity and let xr and ys be two fuzzy points of R. Then,

(1) xrαys = (xαy)r∧s ,
(2) ⟨xr⟩α ⟨ys⟩ = ⟨xrαys⟩ .

Theorem 2.14 ( [9]). Let R be a commutative Γ−ring and µ be a fuzzy Γ−ideal of R. Then, the followings are
equivalent:

(1) xrΓyt ⊆ µ⇒ xr ⊆ µ or yt ⊆ µ where xr and yt are two fuzzy points of R.
(2) µ is a fuzzy prime ideal of R.

Definition 2.15 ( [2]). A proper ideal I of commutative ring M is called a 2-absorbing ideal of M if whenever x, y, z ∈ M
and xyz ∈ I, then xy ∈ I or xz ∈ I or yz ∈ I.

Definition 2.16 ( [23]). A fuzzy ideal µ of R is said to be a fuzzy weakly completely prime ideal if µ is non-constant
function and for all x, y ∈ R,

µ (x, y) = max {µ (x) , µ (y)} .

Definition 2.17 ( [15]). Let µ be a non-constant fuzzy ideal of R. µ is said to be a fuzzy K−prime ideal if for any
x, y ∈ R,

µ (xy) = µ (0) implies either µ (x) = µ (0) orµ (y) = µ (0) .

Definition 2.18 ( [11]). A proper Γ−ideal I of a Γ−ring R is called a 2-absorbing Γ−ideal of R if whenever x, y, z ∈ R,
α, β ∈ Γ and xαyβz ∈ I, then xαy ∈ I or xβz ∈ I or yβz.

Proposition 2.19 ( [11]). Every prime Γ-ideal of Γ-ring R is a 2-absorbing Γ-ideal of R.

3. Fuzzy 2-absorbing Γ−ideals of a Γ−ring

In this section, we investigate fuzzy 2-absorbing Γ-ideals of a Γ- ring. Throughout this paper, we assume that R is a
commutative Γ-ring.

Definition 3.1. Let R be a commutative Γ−ring and µ be fuzzy Γ−ideal of Γ−ring R. µ is called fuzzy 2-absorbing
Γ− ideals of R if µ is non-constant and for any fuzzy points xr, ys, zt of R and α, β ∈ Γ with

xrαysβzt ∈ µ implies that either xrαys ∈ µ or xrβzt ∈ µ or ysβzt ∈ µ.

Proposition 3.2. Every fuzzy prime Γ−ideal of R is a fuzzy 2-absorbing Γ− ideal of R.

Proof. The proof is straightforward. □
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Example 3.3. Let R = Z4 and Γ = Z, define xαy = xαy for all x, y ∈ Z4 and α ∈ Z. So, Z4 is a Γ−ring. A fuzzy subset
µ in Z4 is defined

µ (x) =
{

1, x ∈
{
0, 2
}

0, otherwise.

Then, µ is a fuzzy prime Γ−ideal and fuzzy 2-absorbing Γ− ideal of Z4.

The following example shows that the converse of Proposition 3.2 is not necessarily true.

Example 3.4. Let R = Z4 and Γ = Z, define xαy = xαy for all x, y ∈ Z4 and α ∈ Z. So, Z4 is a Γ−ring. A fuzzy subset
µ in Z4 is defined

µ (x) =
{

1/2, x ∈
{
0, 2
}

0, otherwise.

Then, for fuzzy points 23/4, 31/2 of Z4 and α ∈ Z

23/4α31/2 =
(
2α3
)

3/4∧1/2
=
(
2α3
)

1/2

(
2α3
)
= 1/2

≤ µ
(
2α3
)
= 1/2.

So, 23/4α31/2 ∈ µ. But since

23/4

(
2
)
= 3/4 > 1/2 = µ

(
2
)
, we get 23/4 < µ and

31/2

(
3
)
= 1/2 > 0 = µ

(
3
)
, we get 31/2 < µ.

Therefore, µ is not a fuzzy prime Γ−ideal of Z4. On the other hand, µ is a fuzzy 2-absorbing Γ−ideal of Z4.

Theorem 3.5. Let µ and η be two distinct fuzzy prime Γ−ideals of R. Then, µ ∩ η is a fuzzy 2-absorbing Γ−ideal of R.

Proof. Assume that xrαysβzt ∈ µ ∩ η for some fuzzy points xr, ys, zt of R, but xrαys < µ ∩ η and xrβzt < µ ∩ η. Then,
we have the following cases:

Case 1. If xrαys < µ and xrβzt < µ, then since µ is a fuzzy prime Γ−ideal of R, we get zt ∈ µ and so xrβzt ∈ µ
which is a contradiction.

Case 2. In similar way, we get a contradiction if xrαys < η and xrβzt < η. Hence, either xrαys < µ and xrβzt < η or
xrαys < η and xrβzt < µ.

Case 3. If the former case holds, then from xrαysβzt ∈ µ ∩ η, we get zt ∈ µ and ys ∈ η. Therefore, ysβzt ∈ µ ∩ η.
Case 4. Similarly, we easily show that ysβzt ∈ µ ∩ η if the latter case hold.

Finally µ ∩ η is a fuzzy 2-absorbing Γ−ideal of R. □

Corollary 3.6. The intersection of every pair of distinct fuzzy prime Γ−ideals of R is a fuzzy 2-absorbing Γ−ideal of R.

Theorem 3.7. Let µ be a fuzzy 2-absorbing Γ−ideal of R. Then, µa is a 2-absorbing Γ−ideal of R for every a ∈
[
0, µ (0)

]
with µa , R.

Proof. Suppose that x, y, z ∈ R and α, β ∈ Γ are such that xαyβz ∈ µa. Then, µ (xαyβz) ≥ a and we get xaαyaβza =

(xαyβz)a ∈ µ. Since µ is a fuzzy 2-absorbing Γ−ideal of R, we get (xαy)a = xaαya ∈ µ or (xβz)a = xaβza ∈ µ or
(yβz)a = yaβza ∈ µ. If ka ∈ µ for some k ∈ R, then µ (k) ≥ a and so k ∈ µa. Hence, xαy ∈ µa or xβz ∈ µa or yβz ∈ µa.
Therefore, µa is a 2-absorbing Γ−ideal of R. □

The following example shows that the converse of Theorem 3.7 is not generally true.

Example 3.8. Let R = Z and Γ = 3Z, then R is a Γ−ring. Define the fuzzy Γ−ideal of Z by

µ (x) =


1, x = 0
1/4, x ∈ 4Z − {0}
0, x ∈ Z − 4Z.
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Then,

t ≥ 0, µ (x) ≥ 0 and x ∈ Z, we get µt = Z,

t ≥ 1/4, we get µt = 4Z,
t = 1, we get µt = 0.

Hence, µt is a 2-absorbing Γ−ideal of R for all t ∈ Imµ. However, for α, β ∈ Z we have

21/2α21/2β11/4 = (2α2β1)(1/2∧1/2∧1/4) = (2α2β1)1/4 (2α2β1) = 1/4
≤ µ (2α2β1) = 1/4.

So, 21/2α21/2β11/4 ∈ µ.

21/2α21/2 = (2α2)1/2∧1/2 = (2α2)1/2 (2α2) = 1/2
> µ (2α2) = 1/4.

Thus, 21/2α21/2 < µ and

21/2β11/4 = (2β1)1/2∧1/4 = (2β1)1/4 (2β1) = 1/4
> µ (2β1) = 0.

Hence, 21/2β11/4 < µ.We conclude that µ is not a fuzzy 2-absorbing Γ−ideal of Z.

Corollary 3.9. If µ is a fuzzy 2-absorbing Γ−ideal of R, then

µ∗ = {x ∈ R | µ (x) = µ (0)}

is a 2-absorbing Γ−ideal of R.

Proof. Since µ is a non-constant fuzzy Γ−ideal of R, µ∗ , R. Now, the result follows from the above theorem. □

Definition 3.10. Let 1 , σ ∈ [0, µ (0)). Then, σ is called a 2-absorbing element if r ∧ s∧ t ≤ σ implies that r ∧ s ≤ σ
or r ∧ t ≤ σ or s ∧ t ≤ σ for all r, s, t ∈ L.

Proposition 3.11. If µ is a fuzzy 2-absorbing Γ−ideal of R, then σ = µ (1) is a 2-absorbing element.

Proof. Assume that r∧ s∧ t ≤ σ for some r, s, t ∈ L. Let 1r, 1s, 1t are three fuzzy points of Γ−ring R and α, β ∈ Γ with
1(r∧s∧t) = 1rα1sβ1t ∈ µ. Since µ is a fuzzy 2-absorbing Γ−ideal of R, we get 1r∧s = 1rα1s ∈ µ or 1r∧t = 1rβ1t ∈ µ or
1s∧t = 1sβ1t ⊆ µ. So, r ∧ s ≤ µ (1) = σ or r ∧ t ≤ µ (1) = σ or s ∧ t ≤ µ (1) = σ and the result follows. □

Theorem 3.12. Let I be a 2-absorbing Γ−ideal of R and σ be a 2-absorbing element. Then, the fuzzy subset of R
defined by

µ (x) =
{

1, if x ∈ I
σ, otherwise

is a fuzzy 2-absorbing Γ−ideal of R.

Proof. Since I is a 2-absorbing Γ−ideal of R we get I , R and so µ is non-constant. Suppose that xrαysβzt ∈ µ but
xrαys < µ and xrβzt < µ and ysβzt < µ, where xr, ys, zt are fuzzy points of R and α, β ∈ Γ. Then, µ (xαy) = σ and so
xαy < I. Similarly, xβz < I and yβz < I. But I is assumed to be a 2-absorbing Γ−ideal of R. Thus, xαyβz < I and so
µ (xαyβz) = σ for x, y, z ∈ R and α, β ∈ Γ. Also, from (xαyβz)(r∧s∧t) = xrαysβzt ∈ µ we get r ∧ s ∧ t ≤ µ (xαyβz) = σ.
Thus, r ∧ s ≤ σ or r ∧ t ≤ σ or s ∧ t ≤ σ, since σ is a 2-absorbing element, which is a contradiction. Thus xrαy ∈ µ
or xrβzt ∈ µ or ysβzt ∈ µ. □

Example 3.13. We know that, every fuzzy prime Γ−ideal of R is a fuzzy 2-absorbing Γ−ideal of R as mentioned
before. In this example, we show that the converse is not generally true. For example, consider R = 2Z and Γ = 3Z.

R × Γ × R → R
(a, α, b) 7→ aαb,

for all a, b ∈ R and α ∈ Γ. Then, R is a Γ−ring. Now, define µ : 2Z→ [0, 1] by

µ (x) =
{

1, if x ∈ 6Z
0, otherwise.
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Then, µ is a fuzzy 2-absorbing Γ−ideal of 2Z. Furthermore, µ0 = I is a 2-absorbing Γ−ideal of 2Z that is not a prime
Γ−ideal. Therefore, µ is not a fuzzy prime Γ−ideal of 2Z.

Theorem 3.14. Let {µi | i ∈ I} be a collection of fuzzy 2-absorbing Γ−ideals of R. Then, the fuzzy ideal µ = ∪
i∈I
µi is a

fuzzy 2-absorbing Γ−ideal of R.

Proof. Assume that xrαysβzt ∈ µ and xrαys < µ for some xr, ys, zt are fuzzy points of R and α, β ∈ Γ. Then, there exist
j ∈ I such that xrαysβzt ∈ µ j and xrαys < µ j for all j ∈ I. Since µ j is a fuzzy 2-absorbing Γ−ideal of R then ysβzt ∈ µ j

or xrβzt ∈ µ j. Hence, ysβzt ∈ µ j ⊆ ∪
i∈I
µi = µ or xrβzt ∈ µ j ⊆ ∪

i∈I
µi = µ. Therefore, µ = ∪

i∈I
µi is a fuzzy 2-absorbing

Γ−ideal of R. □

Theorem 3.15. Let f : R → S be a surjective Γ−ring homomorphism. If µ is a fuzzy 2-absorbing Γ−ideal of R which
is constant on Kerf, then f (µ) is a fuzzy 2-absorbing Γ−ideal of S .

Proof. Assume that xrαysβzt ∈ f (µ) , where xr, ys, zt are fuzzy points of S and α, β ∈ Γ. Since f is a surjective Γ−ring
homomorphism then there exist a, b, c ∈ R such that f (a) = x, f (b) = y, f (c) = z. Thus,

xrαysβzt (xαyβz) = r ∧ s ∧ t

≤ f (µ) (xαyβz)

= f (µ) ( f (a)α f (b) β f (c))

= f (µ) ( f (aαbβc))

= µ (aαbβc) .

Because µ is constant on Ker f . Then, we get arαbsβct ∈ µ. Since µ is a fuzzy 2-absorbing Γ− ideal of R then,

arαbs ∈ µ or arβct ∈ µ or bsβct ∈ µ.

Thus,

r ∧ s ≤ µ (aαb) = f (µ) ( f (aαb))

= f (µ) ( f (a)α f (b))

= f (µ) (xαy) ,

and so xrαys ∈ f (µ) or

r ∧ t ≤ µ (aβc) = f (µ) ( f (aβc))

= f (µ) ( f (a) β f (c))

= f (µ) (xβz) .

So, xrβzt ∈ f (µ) or

s ∧ t ≤ µ (bβc) = f (µ) ( f (bβc))

= f (µ) ( f (b) β f (c))

= f (µ) (yβz) .

So, ysβzt ∈ f (µ) . Hence, f (µ) is a fuzzy 2-absorbing Γ−ideal of S . □

Theorem 3.16. Let f : R → S be a Γ−ring homomorphism. If v is a fuzzy 2-absorbing Γ−ideal of S , then f −1 (v) is a
fuzzy 2-absorbing Γ−ideal of R.

Proof. Suppose that xrαysβzt ∈ f −1 (v) , where xr, ys, zt any fuzzy points of R and α, β ∈ Γ. Then,

r ∧ s ∧ t ≤ f −1 (v) ((xαyβz))

= v ( f (xαyβz))

= v ( f (x)α f (y) β f (z)) .
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Let f (x) = a, f (y) = b, f (z) = c ∈ S . Hence, we have that r ∧ s ∧ t ≤ v (aαbβc) and arαbsβct ∈ v. Since v is a fuzzy
2-absorbing Γ−ideal of R then arαbs ∈ v or arβct ∈ v or bsβct ∈ v. If arαbs ∈ v, then

r ∧ s ≤ v (aαb) = v ( f (x)α f (y))

= v ( f (xαy))

= f −1 (v (xαy)) .

Thus, we conclude that xrαys ∈ f −1 (v) . In similar way, it can be see that xrβzt ∈ f −1 (v) or ysβzt ∈ f −1 (v) . □

Definition 3.17. Let µ be a fuzzy Γ−ideal of R. µ is called a fuzzy strongly 2-absorbing Γ−ideal of R if it is non-
constant and whenever λ, η, ν are fuzzy Γ−ideal of R with λΓηΓν ⊆ µ, then λΓη ⊆ µ or λΓν ⊆ µ or ηΓν ⊆ µ.

Theorem 3.18. Every fuzzy prime Γ−ideal of R is a fuzzy strongly 2-absorbing Γ−ideal of R.

Proof. The proof is straightforward. □

Theorem 3.19. Every fuzzy strongly 2-absorbing Γ−ideal of R is a fuzzy 2-absorbing Γ−ideal of R.

Proof. Assume that µ is a fuzzy strongly 2-absorbing Γ−ideal of R. Suppose that xr, ys, zt ∈ µ for some fuzzy points
xr, ys, zt of R. We get ⟨xr⟩Γ ⟨ys⟩Γ ⟨zt⟩ = ⟨xrΓysΓzt⟩ ⊆ µ. Since µ is a fuzzy strongly 2-absorbing Γ−ideal of R, we get
⟨xrΓys⟩ = ⟨xr⟩Γ ⟨ys⟩ ⊆ µ or ⟨xrΓzt⟩ = ⟨xr⟩Γ ⟨zt⟩ ⊆ µ or ⟨ysΓzt⟩ = ⟨ys⟩Γ ⟨zt⟩ ⊆ µ. Hence, xrΓys ⊆ µ or xrΓzt ⊆ µ or
ysΓzt ⊆ µ and then for α, β ∈ Γ, xrαys ∈ µ or xrβzt ∈ µ or ysβzt ∈ µ which implies that µ is a fuzzy 2-absorbing Γ−ideal
of R. □

4. FuzzyWeakly Completely 2-absorbing Γ−ideals of a Γ− ring

Definition 4.1. Let µ be a fuzzy Γ−ideal of R and µ is called a fuzzy weakly completely 2-absorbing Γ−ideal of R if

µ (xαyβz) = µ (xαy) or µ (xαyβz) = µ (xβz) or µ (xαyβz) = µ (yβz) ,

for all x, y, z ∈ R and α, β ∈ Γ.

Proposition 4.2. Let µ be a non-constant fuzzy Γ−ideal of R. µ is a fuzzy weakly completely 2-absorbing Γ−ideal of R
if and only if

µ (xαyβz) = max {µ (xαy) , µ (xβz) , µ (yβz)} ,

for every x, y, z ∈ R and α, β ∈ Γ.

Definition 4.3. A fuzzy Γ−ideal µ of R is called a fuzzy weakly completely prime Γ−ideal of R if µ is non-constant
function and for all x, y ∈ R and α ∈ Γ,

µ (xαy) = max {µ (x) , µ (y)} .

Theorem 4.4. Every fuzzy weakly completely prime Γ−ideal of R is a fuzzy weakly completely 2-absorbing Γ−ideal of
R.

Proof. Let µ be a fuzzy weakly completely prime Γ−ideal of R. Then, for every x, y, z ∈ R and α, β ∈ Γ,

µ (xαyβz) = µ (x) or µ (xαyβz) = µ (y) or µ (xαyβz) = µ (z) .

Suppose that µ (xαyβz) = µ (x) . Then from µ (xαyβz) ≥ µ (xαy) ≥ µ (x) we get µ (xαyβz) = µ (xαy). In similar way, we
can easily show that if µ (xαyβz) = µ (y) or µ (xαyβz) = µ (z) , then µ (xαyβz) = µ (yβz) or µ (xαyβz) = µ (xβz) . Thus,
µ is a fuzzy weakly completely 2-absorbing Γ−ideal of R. □

Theorem 4.5. Let µ a fuzzy Γ−ideal of R. The following statements are equivalent:

(1) µ is a fuzzy weakly completely 2-absorbing Γ−ideal of R.
(2) For every a ∈

[
0, µ (0)

]
, the a−level subset µa of µ is a 2-absorbing Γ−ideal of R.
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Proof. (1) ⇒ (2) : Suppose that µ is a fuzzy weakly completely 2-absorbing Γ−ideal of R and let x, y, z ∈ R, α, β ∈ Γ
and xαyβz ∈ µa for some a ∈

[
0, µ (0)

]
. Then,

max {µ (xαy) , µ (xβz) , µ (yβz)} = µ (xαyβz) ≥ a.

Hence, µ (xαy) ≥ a or µ (xβz) ≥ a or µ (yβz) ≥ a, which implies that xαy ∈ µa or xβz ∈ µa or yβz ∈ µa. Hence, µa is
a 2-absorbing Γ−ideal of R.

(2) ⇒ (1) : Admit that µa is a 2-absorbing Γ−ideal of R for every a ∈ [0, 1] . For x, y, z ∈ R and α, β ∈ Γ, let
µ (xαyβz) = a. Then xαyβz ∈ µa and µa is 2-absorbing Γ−ideal it gives xαy ∈ µa or xβz ∈ µa or yβz ∈ µa. Hence,
µ (xαy) ≥ a or µ (xβz) ≥ a or µ (yβz) ≥ a, that is max {µ (xαy) , µ (xβz) , µ (yβz)} ≥ a = µ (xαyβz) . Also, since µ is a
fuzzy Γ− ideal of R, we get

µ (xαyβz) ≥ max {µ (xαy) , µ (xβz) , µ (yβz)} .

Thus, µ (xαyβz) = max {µ (xαy) , µ (xβz) , µ (yβz)} , that is µ is a fuzzy weakly completely 2-absorbing Γ−ideal of R. □

Theorem 4.6. Let f : R → S be a surjective Γ−ring homomorphism. If µ is a fuzzy weakly completely 2-absorbing
Γ−ideal of R which is constant on Ker f , then f (µ) is a fuzzy weakly completely 2-absorbing Γ−ideal of S .

Proof. Suppose that f (µ) (xαyβz) , f (µ) (xαy) for any x, y, z ∈ S and α, β ∈ Γ. Since f is a surjective Γ−ring
homomorphism then,

f (a) = x, f (b) = y, f (c) = z for some a, b, c ∈ R.

Hence,

f (µ) (xαyβz) = f (µ) ( f (a)α f (b) β f (c)) = f (µ) ( f (aαbβc))

, f (µ) (xαy) = f (µ) ( f (a)α f (b)) = f (µ) ( f (aαb)) .

Since µ is constant on Ker f ,

f (µ) ( f (aαbβc)) = µ (aαbβc) and
f (µ) ( f (aαb)) = µ (aαb) .

It means that,

f (µ) ( f (aαbβc)) = µ (aαbβc) , µ (aαb) = f (µ) ( f (aαb)) .

Since µ is a fuzzy weakly completely 2-absorbing Γ−ideal of R, then

µ (aαbβc) = f (µ) ( f (a)α f (b) β f (c)) = f (µ) (xαyβz)

= µ (aβc) = f (µ) ( f (aβc)) = f (µ) ( f (a) β f (c)) = f (µ) (xβz) .

So, we get f (µ) (xαyβz) = f (µ) (xβz) or

µ (aαbβc) = f (µ) ( f (a)α f (b) β f (c)) = f (µ) (xαyβz)

= µ (bβc) = f (µ) ( f (bβc)) = f (µ) ( f (b) β f (c)) = f (µ) (yβz) .

We have f (µ) (xαyβz) = f (µ) (yβz) . Therefore, f (µ) is a fuzzy weakly completely 2-absorbing Γ−ideal of S . □

Theorem 4.7. Let f : R→ S be a Γ−ring homomorphism. If v is a fuzzy weakly completely 2-absorbing Γ−ideal of S ,
then f −1 (v) is a fuzzy weakly completely 2-absorbing Γ− ideal of R.

Proof. Suppose that f −1 (v) (xαyβz) , f −1 (v) (xαy) for any x, y, z ∈ R and α, β ∈ Γ. Then,

f −1 (v) (xαyβz) = v ( f (xαyβz)) = v ( f (x)α f (y) β f (z))

, f −1 (v) (xαy) = v ( f (xαy)) = v ( f (x)α f (y)) .

Since v is a fuzzy weakly completely 2-absorbing Γ−ideal of S we have that

v ( f (x)α f (y) β f (z)) = f −1 (v) (xαyβz)

= v ( f (x) β f (z)) = v ( f (xβz))

= f −1 (v) (xβz)
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or

v ( f (x)α f (y) β f (z)) = f −1 (v) (xαyβz)

= v ( f (y) β f (z)) = v ( f (yβz))

= f −1 (v) (yβz) .

Hence, f −1 (v) is a fuzzy weakly completely 2-absorbing Γ−ideal of R. □

Corollary 4.8. Let f be a Γ−ring homomorphism from R onto S . f induces a one to one inclusion preserving correspon-
dence between fuzzy weakly completely 2-absorbing Γ−ideal of S in such a way that if µ is a fuzzy weakly completely
2-absorbing Γ−ideal of R constant on Kerf, then f (µ) is the corresponding fuzzy weakly completely 2-absorbing
Γ−ideal of S , and if v is a fuzzy weakly completely 2-absorbing Γ−ideal of S , then f −1 (v) is the corresponding fuzzy
weakly completely 2-absorbing Γ−ideal of R.

5. Fuzzy K−2-absorbing Γ−ideals of a Γ−ring

Definition 5.1. Let µ be a fuzzy Γ−ideal of R. µ is called a fuzzy K− 2-absorbing Γ−ideal of R if for all x, y, z ∈ R and
α, β ∈ Γ,

µ (xαyβz) = µ (0) implies that µ (xαy) = µ (0) or µ (xβz) = µ (0) or µ (yβz) = µ (0) .

Theorem 5.2. Every fuzzy weakly completely 2-absorbing Γ−ideal of R is a fuzzy K−2-absorbing Γ−ideal of R.

Proof. Assume that µ is a fuzzy weakly completely 2-absorbing Γ-ideal of R. If µ (xαyβz) = µ (0) for any x, y, z ∈ R
and α, β ∈ Γ, then we get

µ (0) = µ (xαyβz) ≤ µ (xαy) ≤ µ (0) or
µ (0) = µ (xαyβz) ≤ µ (xβz) ≤ µ (0) or
µ (0) = µ (xαyβz) ≤ µ (yβz) ≤ µ (0) .

Because µ is a fuzzy weakly completely 2-absorbing Γ-ideal of R. From this, the following result is obtained:

µ (xαy) = µ (0) or µ (xβz) = µ (0) or µ (yβz) = µ (0) .

It means that, µ is a fuzzy K − 2-absorbing Γ-ideal of R. □

The following example shows that the converse of the above theorem is need not to be true.

Example 5.3. Let R = Z and Γ = 2Z, so R is a Γ−ring. Define the fuzzy Γ−ideal µ of R by

µ (x) =


1, if x = 0
1/3, if x ∈ 27Z − {0}
1/4, if x ∈ Z − 27Z.

Then, µ is a fuzzy K−2-absorbing Γ−ideal of R. However, for α, β ∈ 2Z we have

µ (3α3β15) = 1/3 > 1/4 = max {µ (3α3) , µ (3β15) , µ (3β15)} .

Hence, µ is not a fuzzy weakly completely 2-absorbing Γ−ideal of R.

Definition 5.4. Let µ be a fuzzy Γ-ideal of R and µ is called a fuzzy K−prime Γ− ideal of R if

µ (xαy) = µ (0) implies that µ (x) = µ (0) or µ (y) = µ (0) ,

for x, y ∈ R and α, β ∈ Γ.

Theorem 5.5. Every fuzzy K−prime Γ−ideal of R is a fuzzy K−2-absorbing Γ−ideal of R.

Proof. Let µ be a fuzzy K−prime Γ− ideal of R. Then, for every x, y, z ∈ R and α, β ∈ Γ,

µ (xαyβz) = µ (0) implies that µ (x) = µ (0) or µ (y) = µ (0) or µ (z) = µ (0) .

Admit that µ (x) = µ (0) . Then, from

µ (0) = µ (x) ≤ µ (xαy) ≤ µ (xαyβz) = µ (0) ,

we get µ (xαy) = µ (0) or similarly, we can easily show that µ (xβz) = µ (0) or µ (yβz) = µ (0) . Therefore, µ is a fuzzy
K − 2-absorbing Γ− ideal of R. □
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Theorem 5.6. Let f : R → S be a surjective Γ−ring homomorphism. If µ is a fuzzy K−2-absorbing Γ−ideal of R
which is constant on Ker f , then f (µ) is a fuzzy K−2-absorbing Γ−ideal of S .

Proof. Assume that f (µ) (aαbβc) = f (µ) (0S ) for any a, b, c ∈ S and α, β ∈ Γ. Then, f (x) = a, f (y) = b, f (z) = c for
some x, y, z ∈ R since f is a surjective Γ−ring homomorphism. Thus,

f (µ) (aαbβc) = f (µ) ( f (x)α f (y) β f (z))

= f (µ) ( f (xαyβz))

and

f (µ) (0S ) = ∨ {µ (x) | f (x) = 0S } .

From here, we get x ∈ Ker f and so µ is constant on Ker f , µ (x) = µ (0)

f (µ) (0S ) = ∨ {µ (x) | f (x) = 0S } ,

which implies that

f (µ) ( f (xαyβz)) = µ (xαyβz) = µ (0) .

Due to fact that µ is a fuzzy K − 2-absorbing Γ-ideal of R,

µ (xαyβz) = µ (0) implies that µ (xαy) = µ (0) or µ (xβz) = µ (0) or µ (yβz) = µ (0) .

By the previous theorem, the rest of proof can easily show and we see that f (µ) is a fuzzy K − 2-absorbing Γ-ideal of
S . □

Theorem 5.7. Let f : R→ S be a Γ−ring homomorphism. If v is a fuzzy K−2-absorbing Γ−ideal of S , then f −1 (v) is
a fuzzy K−2-absorbing Γ−ideal of R.

Proof. Suppose that f −1 (v) (xαyβz) = f −1 (v) (0) for any x, y, z ∈ R and α, β ∈ Γ. Then, from

f −1 (v) (xαyβz) = v ( f (xαyβz)) = v ( f (x)α f (y) β f (z))

= f −1 (v) (0) = v ( f (0)) = v (0)

we get v ( f (x)α f (y) β f (z)) = v (0) since f is a surjective Γ−ring homomorphism. Then, we have

v ( f (x)α f (y) β f (z)) = v (0) implies that
v ( f (x)α f (y)) = v (0) or v ( f (x) β f (z)) = v (0) or v ( f (y) β f (z)) = v (0) ,

since v is a fuzzy K − 2-absorbing Γ-ideal of S . From this, we have

v ( f (x)α f (y)) = v ( f (xαy)) = f −1 (v) (xαy)

= v (0) = v ( f (0)) = f −1 (v) (0)

f −1 (v) (xαy) = f −1 (v) (0) or

similarly, we can show that f −1 (v) (xβz) = f −1 (v) (0) or f −1 (v) (yβz) = f −1 (v) (0) . Finally, f −1 (v) is a fuzzy K − 2-
absorbing Γ-ideal of R. □

Corollary 5.8. Let f be a Γ−ring homomorphism from R onto S . f induces a one to one inclusion preserving corre-
spondence between fuzzy K−2-absorbing Γ−ideal of S in such a way that if µ is a fuzzy K−2-absorbing Γ−ideal of R
constant on Kerf, then f (µ) is the corresponding fuzzy K−2-absorbing Γ− ideal of S , and if v is a fuzzy K−2-absorbing
Γ−ideal of S , then f −1 (v) is the corresponding fuzzy K−2-absorbing Γ−ideal of R.

Remark 5.9. The following table summarizes findings of fuzzy 2-absorbing Γ−ideals of a Γ−ring.

f . strongly 2 − abs.Γ − ideal
↗ ↓

f .primeΓ − ideal→ f . 2 − abs. Γ − ideal
↓ ↓

f .w. c.p.Γ − ideal→ f .w. c. 2 − abs. Γ − ideal
↓

f .K − 2 − abs. Γ − ideal
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6. Fuzzy Quotient Γ−ring of R Induced by Fuzzy 2-absorbing Γ−ideal

Now, we remind the notion of fuzzy quotient Γ−ring induced by fuzzy Γ−ideal of R. Let µ be a fuzzy Γ−ideal of a
Γ−ring R. For any x, y ∈ R, define a binary relation ∼ on R which is a congruence relation of R by x ∼ y if and only if

µ (x − y) = µ (0) ,

where 0 is the zero element of R. Let µ [x] = {y ∈ R | y ∼ x} be the equivalence class containing x and R/µ =
{µ [x] | x ∈ R} the set of all equivalence classes of R. Define two operations by

µ [x] + µ
[
y
]
= µ

[
x + y
]

and
µ [x]αµ

[
y
]
= µ

[
xαy
]
,

for x, y ∈ R, α ∈ Γ. Then, R/µ is a fuzzy Γ−ring with two operations and call it fuzzy quotient Γ−ring of R induced by
the fuzzy Γ−ideal µ [20].

Theorem 6.1. Let µ be a non-constant fuzzy Γ−ideal of R. Then, µ is a fuzzy K − 2-absorbing Γ−ideal of R if and only
if R/µ is a 2-absorbing Γ−ring.

Proof. Suppose that µ is a fuzzy K − 2-absorbing Γ−ideal of R and let µ [x] , µ
[
y
]
, µ [z] ∈ R/µ be such that

µ [x]αµ
[
y
]
βµ [z] = µ [0] .

Since µ [x]αµ
[
y
]
βµ [z] = µ

[
xαyβz

]
, we get

µ (xαyβz) = µ (xαyβz − 0) = 1 = µ (0) .

As µ is considered to be fuzzy K − 2-absorbing Γ−ideal of R,

µ (xαy) = µ (0) = 1 or µ (xβz) = µ (0) = 1 or µ (yβz) = µ (0) = 1.

It means that,

µ
[
xαy
]
= µ [x]αµ

[
y
]
= µ [0] or

µ
[
xβz
]
= µ [x] βµ [z] = µ [0] or

µ
[
yβz
]
= µ

[
y
]
βµ [z] = µ [0] .

So, R/µ is a 2-absorbing Γ−ring. Conversely, suppose that R/µ is a 2-absorbing Γ−ring and let µ (xαyβz) = µ (0) = 1
for x, y, z ∈ R and α, β ∈ Γ. Then, we get

µ [x]αµ
[
y
]
βµ [z] = µ

[
xαyβz

]
= µ [0] .

Since R/µ is a 2-absorbing Γ−ring,

µ
[
xαy
]
= µ [0] or µ

[
xβz
]
= µ [0] or µ

[
yβz
]
= µ [0] ,

which implies that µ is a fuzzy K − 2-absorbing Γ−ideal of R. □

Corollary 6.2. If µ is a fuzzy weakly completely 2-absorbing Γ−ideal of R, then R/µ is a 2-absorbing Γ−ring.

7. Conclusion

In this paper, we have characterized fuzzy 2-absorbing Γ−ideals of a Γ−ring. Also, the notions of fuzzy weakly
completely 2-absorbing Γ−ideals of a Γ−ring and fuzzy K−2-absorbing Γ−ideals of a Γ−ring and their properties
are proposed. Moreover, we have given a diagram which transition between definitions of fuzzy Γ−ideals of Γ−ring.
Finally, we have shown that if µ is a fuzzy weakly completely 2-absorbing Γ−ideal, then fuzzy quotient Γ−ring of R
induced by the fuzzy Γ−ideal is a 2-absorbing Γ−ring. To extend this study, one could study other algebraic structures
and do some further study on the properties them. In our future work, we have planed to define an intuitionistic fuzzy
2-absorbing Γ−ideal of a Γ−ring and an intuitionistic fuzzy weakly completely 2-absorbing Γ−ideal of a Γ−ring and to
discuss its related properties.
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