

n-complete crossed modules and wreath products of groups

Mohammad Ali Dehghani¹ D, Bijan Davvaz² D

Abstract – In this paper we examine the <i>n</i> -completeness of a crossed module and we show that
if $X = (W_1, W_2, \partial)$ is an <i>n</i> -complete crossed module, where $W_i = A_i w r B_i$ is the wreath product
of groups A_i and B_i , then A_i is at most <i>n</i> -complete, for $i = 1, 2$. Moreover, we show that when
$X = (W_1, W_2, \partial)$ is an <i>n</i> -complete crossed module, where A_i is nilpotent and B_i is nilpotent of class
<i>n</i> , for $i = 1, 2$, then if A_i is an abelian group, then it is cyclic of order p_i . Also, if $W_i = C_p wrC_2$, where
<i>p</i> is prime with $p > 3$, $i = 1, 2$, then $X = (W_1, W_2, \partial)$ is not an <i>n</i> -complete crossed module.

Subject Classification (2020): 18D35, 20L05.

1. Introduction

Keywords Crossed module, Wreath products, Commutator

The notion of crossed module is investigated by Whitehead [1]. After him, many mathematicians applied crossed modules in many directions such as homology and cohomology of groups, algebraic structures, K-theory, and so on. Actor crossed module of algebroid is defined by Alp in [2]. Actions and automorphisms of crossed modules is studied by Norrie [3]. Tensor product modulo n of two crossed modules is introduced by Conduche and Rodriguez-Fernandez [4]. The concepts of q-commutator and q-center of a crossed module (where q is a non-negative integer) is studied by Doncel-Juarez and Crondjean-Valcarcel [5].

Let $X = (T, G, \partial)$ be a crossed module and $X = (T, G, \partial) = \gamma_1(X), \dots, \gamma_n(X), \dots$ be the lower central series of $X = (T, G, \partial)$. We define the series K_1, \dots, K_n, \dots where K_n consists of the automorphisms of X which induce the identity on the quotient crossed module $\frac{X}{\gamma_{n+1}(X)}$. Now, in this paper, we present the definition of an n-complete crossed module which is an extension of the definition of a semi-complete crossed module.

2. n-commutator crossed submodule

It is well known that an action of the group *G* on the group *T* is a homomorphism $G \to Aut(T)$ or, a map $\mu: T \times G \to T$ such that

1. $\mu(t_1 t_2, x) = \mu(t_1, x)\mu(t_2, x),$

¹dehghani19@yahoo.com; ²davvaz@yazd.ac.ir(Corresponding Author)

¹Department of Mathematics, Yazd University, and Department of Electrical and Computer Engineering, Faculty of Sadooghi, Yazd Branch, Technical and Vocational University(TVU), Yazd, Iran

²Department of Mathematics, Yazd University, Yazd, Iran

Article History: Received: 08 Apr 2021 - Accepted: 24 Apr 2021 - Published: 30 Apr 2021

2. $\mu(t, x_1 x_2) = \mu(\mu(t, x_1), x_2),$

for all $t_1, t_2 \in T$ and $x, x_1, x_2 \in G$.

As usual, we will consider the notation $\mu(t, x) =^{x} t$ in continue. Indeed, a crossed module [6] is a 4-tuple $X = (T, G, \mu, \partial)$ or 3-tuple (T, G, ∂) , where T and G are groups, μ is an action of T on G, and $\partial : G \to T$ is a homomorphism. The map ∂ is called the boundary, and it satisfies the following statements:

- 1. *X* Mod 1: $\partial(^t x) = t^{-1}\partial(x)t$ for all $x \in G$ and $t \in T$.
- 2. *X* Mod 2: $\partial(y) x = y^{-1} x y$ for all $x, y \in G$.

If *T* and *G* are finite groups, then the crossed module is called finite.

Example 2.1. Let *G* be a group. We denote by RG the crossed module $(G, 1, \mu, \partial)$, where 1 is the trivial subgroup of *G*, and the action μ and the boundary map ∂ are trivial.

Example 2.2. Let *G* be a group. We denote by DG the crossed module (*G*, *G*, μ , *id*), where μ is the conjugation action, and *id* : $x \rightarrow x$ is the trivial map.

From the definition, we immediately conclude that $K = \text{Ker } \partial$ is a central subgroup of G, $I = \text{im } \partial$ is a normal subgroup of T, and obtain the following exact sequence $1 \rightarrow K \rightarrow G \rightarrow T \rightarrow C \rightarrow 1$, where $C = \frac{T}{I}$ is the cokernel of ∂ . Specially, for a finite crossed module we have |G||C| = |K||T| [7]. A morphism $\phi : X \rightarrow Y$ between two crossed modules $X = (T_1, G_1, \mu_X, \partial_X)$ and $y = (T_2, G_2, \mu_Y, \partial_Y)$ is a pair (ϕ_1, ϕ_2) , where $\phi_1 : T_1 \rightarrow T_2, \phi_2 : G_1 \rightarrow G_2$ are group homomorphisms, and the following relations hold:

$$\partial_Y \circ \phi_2 = \phi_1 \circ \partial_X, \quad \mu_Y \circ (\phi_2 \times \phi_1) = \phi_2 \circ \mu_X.$$

This yields the commutativity of the following diagrams:

Definition 2.3. Suppose that (T, G, ∂) is a crossed module and *n* is a non-negative integer. We define the notion of *n*-commutator crossed submodule of (T, G, ∂) as $\partial : D_G^n(T) \to G \neq_n G$, where $D_G^n(T)$ is the subgroup of *T* generated by the set

$${xaa^{-1}b^n \mid x \in G, a, b \in T},$$

and in a general case, if *N* is a normal subgroup of *G*, then $G \neq_n G$ is the *n*-commutator subgroup of *G* and *N*, i.e., the subgroup generated by the

$${[x, a]a'^n | x \in G, a, a' \in N}$$

The *n*-commutator crossed submodule of (T, G, ∂) is a normal crossed submodule.

Example 2.4. The group *G* acts on *N* by conjugation if *N* is a normal subgroup. The triple (N, G, i) is a crossed module, where *i* is the inclusions. The *n*-commutator crossed submodule of (N, G) equals $(G \neq_n)$

N, $G \neq_n G$, *i*). This implies that for any group *G*, the triple (*G*, *G*, *id*) is a crossed module and ($G \neq_n G$, $G \neq_n G$, *id*) is its *n*-commutator.

Let (T, G, ∂) be a crossed module with trivial center. According to [3], we can obtain a sequence of crossed modules as follows:

$$(T, G, \partial), \mathscr{A}(T, G, \partial), \mathscr{A}(\mathscr{A}(T, G, \partial)), \ldots$$

in which each term embeds in its successor. This sequence is called the actor tower of (T, G, ∂) .

We say the crossed module (T, G, ∂) is complete if $Z(T, G, \partial) = 1$ and the canonical morphism $\langle \eta, \gamma \rangle$: $(T, G, \partial) \rightarrow \mathcal{A}(T, G, \partial)$ is an isomorphism. Notice that the crossed module (T, G, ∂) is semi complete if $\langle \eta, \gamma \rangle$ is an epimorphism. Consequently, a semi complete crossed module with trivial center is complete.

3. *n*-complete crossed modules

A crossed module (T, G, ∂) is said to be *n*-complete if *n* is the smallest positive integer such that K_n is subcrossed module $I_{nn}(T, G, \partial)$, where $I_{nn}(T, G, \partial)$ is the crossed module of the inner automorphisms of (T, G, ∂) . **Proposition 3.1.** Let (T, G, ∂) is an *n*-complete crossed module. Then, *T* and *G* are at most *n*-complete and nilpotent of class at most *n*.

Example 3.2. If (*G*, *G*, *i*) is an *n*-complete crossed module, then *G* is *n*-complete and nilpotent of class *n*.

In Proposition 3.3 we give a relation between nilpotent groups and *n*-complete crossed modules.

Proposition 3.3. If (T, G, ∂) is a crossed module and groups *T*, *G* are nilpotent of class at most *n*, then (T, G, ∂) is an *n*-complete crossed module for some *m* with $m \le n$.

Suppose that (R, K, ∂) is a normal crossed submodule of (T, G, ∂) and (S, H, ∂') is a crossed module such that $(T/R, G/K) \cong (S, H)$, then we call (T, G) an extension of (R, K) by (S, H). If there exists a surjective morphism $\psi = (\psi_1, \psi_2) : (X_1, X_2) \rightarrow (T, G)$, the trivially (X_1, X_2) is an extension of the crossed module ker ϕ by (T, G). An extension $((X_1, X_2), \psi)$ by (T, G) is *n*-central extension if ker $\psi = (\text{ker}\psi_1, \text{ker}\psi_2)$ is contained in $Z^n(X_1, X_2)$.

Let (M, G, μ) and (N, G, ν) be two crossed modules, and consider the pullback

Then, $M \times_G N = \{(a, b) \mid a \in M, b \in N, \mu(a) = \nu(b)\}$. If we write $\alpha = \mu \pi_1 = \nu \pi_2$, then for $c \in M \times_G N, a \in M, b \in N$, we get

$$\pi_1(c) a = \alpha(c) a = \pi_2(k) a, \ \pi_1(c) b = \alpha(c) b = \pi_2(c) b.$$

The tensor product $M \otimes^q N$ is defined as the group generated by the symbols $a \otimes b$ and $\{c\}$, $a \in M$, $b \in N$, $c \in M \times_G N$, with the following relations:

- 1. $a \otimes bb' = (a \otimes b)({}^b a \otimes {}^b b').$
- 2. $aa' \otimes b = (^aa' \otimes ^ab)(a \otimes b)$.
- 3. $\{c\}(a \otimes b)\{c\}^{-1} = {}^{\alpha(c)^q}a \otimes {}^{\alpha(c)^q}b.$

- 4. $[\{c\}, \{c'\}] = \pi_1(c)^q \otimes \pi_2(c')^q$.
- 5. $\{cc'\} = \{c\} \left(\prod_{i=1}^{q-1} (\pi_1(c)^{-1} \otimes (\alpha(c)^{1-q+i} \pi_2(c'))^i) \right) \{c'\}.$
- 6. $\{(a^b a^{-1}, {}^a b b^{-1})\} = (a \otimes b)^q$.

Note that the structure of the tensor product mode *q* is bifunctorial. Under this conditions there exists an action of *G* on $M \otimes^q N$ defined as follows:

$${}^{x}(a \otimes b) = {}^{x}a \otimes {}^{x}b, \; {}^{x}\{c\} = \{{}^{x}c\}$$

 $a \in M$, $b \in N$, $c \in M \times_G N$, $x \in G$. The group *M* (resp. *N*) acts on $M \otimes^q N$ through the homomorphism μ (respectively ν) and if $a \in M$, $b \in N$, $c \in M \times_G N$, then

$${}^{a}{c} = (a \otimes \pi_{2}c^{q}){c}, \quad {}^{b}{c} = {c}(\pi_{1}c^{-q} \otimes b).$$

Now let (T, G, ∂) and (G, G, id) be crossed modules. We can consider the tensor product $T \otimes^q G$, it was first defined by Brown. In this case $T \times_G G \cong T$, $\pi_1 = id_T$, $\pi_2 = \partial$. Similarly, we consider $G \otimes^q G$. Then, we have the following crossed modules:

$$\begin{array}{ll} (T \otimes^q G, T, \lambda), & \lambda(t \otimes g) = t^g t^{-1}, & \lambda(\{t\}) = t^q, & t \in T, \ g \in G; \\ (T \otimes^q G, T, \lambda'), & \lambda'(t \otimes g) = [\partial(t), g], & \lambda'(\{t\}) = \partial(t)^q, & t \in T, \ g \in G; \\ (G \otimes^q G, G, \xi), & \xi(g \otimes h) = [g, h], & \xi(\{g\}) = g^q, & g, h \in G. \end{array}$$

Theorem 3.4. If (T, G, ∂) is an *n*-complete crossed module, then $(T \otimes^n G, G \otimes^n G, (\lambda, \epsilon))$ is an *n*-complete extension by (T, G, ∂) .

The restricted standard wreath product W = AwrB of two groups A and B is the splitting extension of the direct power A^B by the group B, with B acting on A^B according to the rule, if $b \in B$ then $f^b(x) = f(xb^{-1})$ for all $f \in A^B$, $x \in B$. The base group A^B is characteristic in W, in all cases, except when A is of order 2, or is a dihedral group of order 4k + 1 and B is of order 2. In the following it is assumed that A^B is characteristic in W. The next theorem is of great importance for the sequel. But first we need the following results from [8].

Proposition 3.5. [8] If $\alpha \in Aut(A)$, we define $\alpha^* \in Aut(W)$ by $(bf)^{\alpha^*} = bf^{\alpha^*}$ for all $b \in B$, $f \in \mathscr{F}$, where $f^{\alpha^*}(x) = (f(x))^{\alpha}$, for all $x \in B$, then the group A^* of all such automorphisms is isomorphic to Aut(A).

Proposition 3.6. [8] If $\beta \in Aut(B)$, we define $\beta^* \in Aut(W)$ by $(bf)^{\beta^*} = b^{\beta}f^{\beta^*}$ for all $b \in B$, $f \in \mathcal{F}$, where $f^{\beta^*}(x) = f(x^{\beta^{-1}})$ for all $x \in B$, then the group B^* of all such automorphisms is isomorphic to Aut(B).

Theorem 3.7. [8]

- 1. The automorphism group of the wreath product *W* of two groups *A* and *B* can be expressed as a product, $Aut(W) = KI_1B^*$, where
 - *K* is the subgroup of *Aut*(*W*) consisting of those automorphisms which leave *B* element wise fixed.
 - I_1 is the subgroup of Aut(W) consisting of those inner automorphisms corresponding to transformation by elements of the base group \mathcal{F} .

- *B*^{*} is defined as in Proposition 3.5.
- 2. The group *K* can be written as A^*H , where
 - A^* is defined as in Proposition 3.6.
 - *H* is the subgroup of *Aut*(*W*) consisting of those automorphisms which leave both *B* and diagonal element wise fixed.
- 3. The subgroups A^*HI_1 , HI_1B^* , HI_1 , and I_1 are normal in Aut(W) and Aut(W) is splitting extension of A^*HI_1 by B^* . Furthermore, A^* intersects HB^* trivially.

In the following it is assumed that $W_1 = A_1 w r B_1$ and $W_2 = A_2 w r B_2$ are two standard wreath products of groups.

Theorem 3.8. If $X = (W_1, W_2, \partial)$ is an *n*-complete crossed module, then A_i is at most *n*-complete, for i = 1, 2.

Proof.

If $(\alpha, \beta) \in K_n(X)$, then $\alpha \in K_n(A_1)$ and $f \in A_1^{B_1}$. Hence, $f^{\alpha^*}(x) = (f(x))^{\alpha} = f(x)u_x$ for $x \in B_1$ and $u_x \in \gamma_{n+1}(A_1)$. If $g_1 \in A_1^{B_1}$, $g_1(x) = u_x$ for all $x \in B_1$, then $f^{\alpha^*}(x) = (fg_1(x))$ for all $x \in B_1$. Therefor, $f^{\alpha^*} = fg_1$, where $g_1 \in \gamma_{n+1}(W_1)$. Since W_1 is *n*-complete, it follows that $K_n(W_1) \leq I(W_1)$ and so $\alpha^* \in I(W_1)$. But according to [9], $\alpha^* \in I(W_1)$ if and only if $\alpha \in I(A_1)$. Hence, $K_n(A_1) \leq I(A_1)$. The proof for $K_n(A_2) \leq I(A_2)$ is similar.

Theorem 3.9. If $X = (W_1, W_2, \partial)$ is an *n*-complete crossed module, then B_i is nilpotent of class at most *n*, for i = 1, 2.

Proof.

If $L(B_1)$ and $L(B_2)$ are the left regular representation of the groups B_1 , B_2 respectively, then for each element $l_b \in L(B_1)$, $b \in B_1$, there corresponds an automorphism l_b^* of W_1 defined by $(cf)^{l_b^*} = cf^{l_b^*}$ for all $c \in B_1$, $f \in A_1^{B_1}$, where $f^{l_b^*}(x) = f(bx)$ for all $x \in B_1$.

If $f_1 \in A_1^{B_1}$ such that $f_1(1) = a$, $f_1(x) = 1$ for all $x \in B_1$, $x \neq 1$ and $b \in B_1$, $b \neq 1$, then $f_1^{l_b^*}(b^{-1}) = f_1(1) = a$ and $f_1^{l_b^*}(x) = f_1(bx) = 1$ for all $x \neq b^{-1}$.

Moreover, we obtain $f_1^{l_b^*} = f_1 g$, where $g(1) = a^{-1}$, $g(b^{-1}) = a$, g(x) = 1 for all $x \in B$, $x \neq 1$, b^{-1} . Also, by [10] for the element $g \in A_1^{B_1}$, $g = [b^{-1}, \varphi]$, where $\varphi \in A_1^{B_1}$ with $\varphi(1) = g(1)$ and $\varphi(x) = 1$ for all $x \neq 1$.

Now, if $X_i \in B_1$, we define the element $f_{x_i} \in A_1^{B_1}$ by $f_{x_i}(x_i) = a$ and $f_{x_i}(d) = 1$ for all $d \in B$, $d \neq x_i$, then $(f_{x_i})^{l_b^*} = f_{x_i}g^{x_i}$. If $b \in \gamma_n(B_1)$, then l_b^* belongs to the group $K_n(W_1) \leq I(W_1)$. But $b \in Z(B_1)$ if and only if $l_b^* \in I(W_1)$. So, the group B_1 is nilpotent of class at most n, and similarly B_2 is nilpotent of class at most n.

Theorem 3.10. If $X = (W_1, W_2, \partial)$ is an *n*-complete crossed module, and B_i is nilpotent of class *n*, for i = 1, 2, then A_i is directly indecomposable.

Proof.

Suppose that $A_i = U_i \times V_i$ is a non trivial direct decomposition of A_i for i = 1, 2. If $f \in A_1^{B_1}$, then $f(x) = u_{1x}v_{1x}$ for all $x \in B_1$, where $u_{1x} \in U_1$ and $v_{1x} \in V_1$. If $g_f \in A_1^{B_1}$, $g_f(x) = u_{1x}$ for all $x \in B_1$ and $x \in \gamma_n(B_1) \le Z(B_1)$, $z \ne 1$, then $\eta : W_1 \to W_1$ by $(bf)^{\eta} = bf[g_f, z]$ is a map. Since $g_{fh} = g_f g_h$ and $g_f^{\gamma} = g_{fg}$ for all $f, h \in A_1^{B_1}$, $y \in B_1$, it follows that η is an outer automorphism of W_1 with $\eta \in K_n(W_1)$ and is a contradiction.

Theorem 3.11. If $X = (W_1, W_2, \partial)$ is an *n*-complete crossed module, where A_i is finite nilpotent and B_i is nilpotent of class *n*, then A_i is a p_i -group, (p_i is prime) for i = 1, 2.

Proof.

By Theorem 3.10, the proof is straightforward.

Theorem 3.12. Let $X = (W_1, W_2, \partial)$ is an *n*-complete crossed module, where A_i is nilpotent and B_i is nilpotent of class *n*, for i = 1, 2. If A_i is abelian group, then it is cyclic of order p_i .

Proof.

By Theorem 3.11, A_i is p_i -group. But A_i is abelian, and so A_i is cyclic of order p^r for some positive integer r. Now, we show that r = 1.

If *r* is not equal to 1, we choose an element $x \in \gamma_n(B_1)$, $x \neq 1$ and we define a mapping $\eta : W_1 \to W_1$ by $(bf)^{\eta} = bf[f, x]^p$, η is an automorphism of W_1 belonging to the group $K_n(W_1)$ by [9]. Since r > 1 and η is an outer automorphism, it follows that W_1 is not *n*-complete. Hence, r = 1, and A_2 is cyclic of order p_i , accordingly.

Corollary 3.13. If $X = (W_1, W_2, \partial)$ is an *n*-complete crossed module and A_i is finite nilpotent and B_i nilpotent of class *n*, for i = 1, 2, then A_i is cyclic of prime order.

Now, we give examples of non *n*-complete crossed module. Let W = AwrB be the restricted wreath product of *A* by *B*. The set $\sigma(f) = \{x \in B | f(x) \neq 1\}$ is the support of $f \in A^B$. Map $\pi : A^B \to \frac{A}{A'}$ given by

$$\pi(f) = \prod_{x \in \sigma(f)} f(x) A'$$

is well defined and obviously a homomorphism satisfying $\pi(f^b) = \pi(f)$ for all $b \in B$.

Proposition 3.14. [10] The derived subgroup W' of W is W' = B'M, where $M = Ker\pi$.

Theorem 3.15. If $W_i = C_p wr C_2$, where *p* is prime with p > 3, i = 1, 2, then $X = (W_1, W_2, \partial)$ is not *n*-complete crossed module.

Proof.

If $W_1 = A_1 wr B_1$, then $W'_1 = B'_1 M_1$, where $M_1 = \{f | f \in A_1^{B_1}, \pi(f) \in A'_1\}$. But $B_1 = C_2$, $|M_1| ||A_1|^{|B_1|} = p^2$ and so $|M_1| = p$. W_1 is not nilpotent and thus $\gamma_n(W_1) = M_1$ for all $n \in Z^+$, $n \ge 2$. If $A_1 = C_p = \langle a \rangle$, $B_1 = C_2 = \langle b \rangle$, then $f_1 = (a^{p-1}, a^2)$, $f_2 = (a^2, a^{p-1})$, $g_1 = (a, 1)$, $g_2 = (1, a)$, instill the mapping $g_1 \to f_1$, $g_2 \to f_2$ which can be extended to an automorphism γ of $A_1^{B_1}$, which commutes with the automorphism of $A_1^{B_1}$ induced by the element $b \in B_1$, since $A_1^{B_1} = \langle f_1, f_2 \rangle = \langle g_1, g_2 \rangle$ and $A_1^{B_1}$ is elementary abelian of rank 2 and $p \ne 3$. Thus, the automorphism γ can be extended to an automorphism of W_1 , which fixes B_1 element wise [8]. On the other hand, we have

$$\begin{split} g_1^{\gamma} &= (a,1)^{\gamma} = (a^{p-1},a^2) = (a,1)(a^{p-2},a^2), \\ g_2^{\gamma} &= (1,a)^{\gamma} = (a^2,a^{p-1}) = (1,a)(a^2,a^{p-2}), \end{split}$$

and $(a^{p-2}, a^2), (a^2, a^{p-2}) \in M_1 = \gamma_n(W_1), n \ge 2$, so $\gamma \in K_n(W_1), n \ge 2$ and γ is an outer automorphism. Hence $W_1 = C_p wr C_2$ is not *n*-complete. Therefore, $X = (W_1, W_2, \partial)$ is not *n*-complete crossed module.

Theorem 3.16. If $W_i = C_p w r B_i$, where *p* is prime with p > 3, i = 1, 2, and B_i is nilpotent of class *n* with $k_i = |B_i| \ge 3$, i = 1, 2, then $X = (W_1, W_2, \partial)$ is not *n*-complete crossed module.

Proof.

The group $A_i^{B_i}$ is an elementary abelian *p*-group, since A_i is $A_i = C_p = \langle a_i \rangle$. The set $g_{x_i} \in A_i^{B_i}$ for all $x_i \in B_i = \{x_1, ..., x_{k_i}\}$ with $g_{x_i}(x_i) = a_i$, $g_{x_i}(x_j) = 1$, $x_j \neq x_i$ is a basis of $A_i^{B_i}$. Now, if we consider the mapping

 $g_{x_i} \rightarrow f_{x_i} = g_{x_i}[b_1, g_{x_i}] = g_{x_i}^2 (g_{x_i}^{-1})^{b_1}$ for all $x_i \in B_i$, where $b_1 \in \gamma_n(B_i)$, then this mapping is extended to an automorphism $\overline{\gamma}$ of $A_i^{B_i}$, since the set $f_{x_i}, x_i \in B_i$ is a basis of $A_i^{B_i}$. On the other hand, since $C_p \cong Z_p$ and p > 3, it follows that the determinant of matrix

$$\begin{bmatrix} 2 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \\ 0 & 2 & \cdots & -1 & 0 & 0 & \cdots & 0 \\ & & & \ddots & & & \\ 0 & 0 & \cdots & -1 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

is not zero in Z_p , where the element 2 is in the main diagonal and in each row and column we have once the element -1. But $\overline{\gamma}$ can be extended to an automorphism γ of the group W_i , which fixes B_i element wise, since the automorphism $\overline{\gamma}$ of $A_i^{B_i}$ commutes with the automorphisms of $A_i^{B_i}$ which are induced by the elements of the group B_i . The automorphism γ is an outer automorphism with $\gamma \in K_n(W_i)$. So, $X = (W_1, W_2, \partial)$ is not *n*-complete crossed module.

Proposition 3.17. [11] The wreath product $W = C_2 wrB$ is not *n*-complete, where *B* is finite abelian with $m = |B| \ge 4$ and *m* is an odd number.

Theorem 3.18. If $W_i = C_2 w r B_i$, where B_i is finite abelian with $m_i = |B_i| \ge 4$, i = 1, 2, and m_i is an odd number, then $X = (W_1, W_2, \partial)$ is not *n*-complete crossed module.

Proof.

By Proposition 3.17, the proof is straightforward.

We have assumed up to this point that subgroup A^B is characteristic in W = AwrB. Now, we investigate the case of W in which A is a special dihedral group and B is of order 2. At this case A^B is not characteristic in W. We recall that D_m is $D_m = \langle a, b | a^m = 1, b^2 = 1, (ab)^2 = 1 \rangle$.

Theorem 3.19. [11] The standard wreath product $W = D_n wr C_2$ is semi complete if and only if n = 3.

Theorem 3.20. Let $W = D_m wrC_2$, where m = 2k + 1, $k \in N$, and C_2 is the cyclic group of order 2. Then, the crossed module X = (W, W, i) is *n*-complete if and only if m = 3.

Proof.

In this case, we know that for the lower central series of the group D_m , is $\gamma_{k+1}(D_m) = \langle a^{2^k} \rangle$, for all k = 1, 2, ... Since *m* is an odd number, it follows that

$$\gamma_2(D_m) = \gamma_3(D_m) = \cdots = \gamma_k(D_m) = \gamma_{k+1}(D_m) = \cdots$$

If the crossed module (W, W, i) is *n*-complete, then by Theorem 3.8, the group D_m is at most *n*-complete. This means that D_m is semi complete [12], and this is true if and only if m = 3.

References

- [1] J. H. C. Whitehead, *Combinatorial homotopy II*, Bulletin of the American Mathematical Society, 55, (1949) 453–496.
- [2] M. Alp, *Actor of crossed modules of algebroids, proc.* 16th International Conference of Jangieon Mathematical Society, 16, (2005), 6–15.

- [3] K. Norrie, *Actions and automorphisms of crossed modules*, Bulletin de la Societe Mathematique de France, 118, (1990) 129–146.
- [4] D. Conduche and C. Rodriguez-Fernandez, *Non-abelian tensor and exterior products module q and universal q-center relative extension*, Journal of Pure and Applied Algebra, 78(2), (1992) 139–160.
- [5] J. L. Doncel-Juurez, A. R.-Crondjeanl.-Valcarcel, *q-perfect crossed modules*, Journal of Pure and Applied Algebra, 81, (1992) 279–292.
- [6] M. Alp, C. D. Wenseley, Automorphisms and homotopies of groupoids and crossed modules, Applied Categorical Structures, 18, (2010) 473–504.
- [7] R. Brown, Higher-dimensional group theory. Low-dimensional topology (Bangor, 1979), pp. 215–238, London Mathematical Society Lecture Note Series, 48, Cambridge University Press, Cambridge-New York, 1982.
- [8] C. Houghton, On the automorphisms groups of certain wreath products, Publicationes Mathematicae Debrecen, 9, (1963) 307–313.
- [9] J. Panagopoulos, *Groups of automorphisms of standard wreath products*, Archiv der Mathematik, 37, (1981) 499–511.
- [10] P. M. Neumann, *On the structure of standard wreath products of groups*, Mathematische Zeitschrift, 84, (1964) 343–373.
- [11] J. Panagopoulos, A semicomplete standard wreath products, Archiv der Mathematik, 43, (1984) 301–302.
- [12] J. Panagopoulos, *The groups of central automorphisms of the standard wreath products*, Archiv der Mathematik, 45, (1985) 411–417.