Journal of New Results in Science
https://dergipark.org.tr/en/pub/jnrs

n-complete crossed modules and wreath products of groups

Mohammad Ali Dehghani ${ }^{1}$ (D) , Bijan Davvaz ${ }^{2}$ (D)

Keywords

Crossed module,
Wreath products, Commutator

Abstract

In this paper we examine the n-completeness of a crossed module and we show that if $X=\left(W_{1}, W_{2}, \partial\right)$ is an n-complete crossed module, where $W_{i}=A_{i} w r B_{i}$ is the wreath product of groups A_{i} and B_{i}, then A_{i} is at most n-complete, for $i=1,2$. Moreover, we show that when $X=\left(W_{1}, W_{2}, \partial\right)$ is an n-complete crossed module, where A_{i} is nilpotent and B_{i} is nilpotent of class n, for $i=1,2$, then if A_{i} is an abelian group, then it is cyclic of order p_{i}. Also, if $W_{i}=C_{p} w r C_{2}$, where p is prime with $p>3, i=1,2$, then $X=\left(W_{1}, W_{2}, \partial\right)$ is not an n-complete crossed module.

Subject Classification (2020): 18D35, 20L05.

1. Introduction

The notion of crossed module is investigated by Whitehead [1]. After him, many mathematicians applied crossed modules in many directions such as homology and cohomology of groups, algebraic structures, Ktheory, and so on. Actor crossed module of algebroid is defined by Alp in [2]. Actions and automorphisms of crossed modules is studied by Norrie [3]. Tensor product modulo n of two crossed modules is introduced by Conduche and Rodriguez-Fernandez [4]. The concepts of q-commutator and q-center of a crossed module (where q is a non-negative integer) is studied by Doncel-Juarez and Crondjean-Valcarcel [5].

Let $X=(T, G, \partial)$ be a crossed module and $X=(T, G, \partial)=\gamma_{1}(X), \ldots, \gamma_{n}(X), \ldots$ be the lower central series of $X=(T, G, \partial)$. We define the series $K_{1}, \ldots, K_{n}, \ldots$ where K_{n} consists of the automorphisms of X which induce the identity on the quotient crossed module $\frac{X}{\gamma_{n+1}(X)}$. Now, in this paper, we present the definition of an n-complete crossed module which is an extension of the definition of a semi-complete crossed module.

2. n-commutator crossed submodule

It is well known that an action of the group G on the group T is a homomorphism $G \rightarrow \operatorname{Aut}(T)$ or, a map $\mu: T \times G \rightarrow T$ such that

1. $\mu\left(t_{1} t_{2}, x\right)=\mu\left(t_{1}, x\right) \mu\left(t_{2}, x\right)$,

[^0]2. $\mu\left(t, x_{1} x_{2}\right)=\mu\left(\mu\left(t, x_{1}\right), x_{2}\right)$,
for all $t_{1}, t_{2} \in T$ and $x, x_{1}, x_{2} \in G$.
As usual, we will consider the notation $\mu(t, x)={ }^{x} t$ in continue. Indeed, a crossed module [6] is a 4-tuple $X=(T, G, \mu, \partial)$ or 3-tuple (T, G, ∂), where T and G are groups, μ is an action of T on G, and $\partial: G \rightarrow T$ is a homomorphism. The map ∂ is called the boundary, and it satisfies the following statements:

1. $X \operatorname{Mod} 1: \partial\left({ }^{t} x\right)=t^{-1} \partial(x) t$ for all $x \in G$ and $t \in T$.
2. $X \operatorname{Mod} 2:{ }^{\partial(y)} x=y^{-1} x y$ for all $x, y \in G$.

If T and G are finite groups, then the crossed module is called finite.
Example 2.1. Let G be a group. We denote by RG the crossed module ($G, 1, \mu, \partial$), where 1 is the trivial subgroup of G, and the action μ and the boundary map ∂ are trivial.

Example 2.2. Let G be a group. We denote by DG the crossed module ($G, G, \mu, i d$), where μ is the conjugation action, and $i d: x \rightarrow x$ is the trivial map.

From the definition, we immediately conclude that $K=\operatorname{Ker} \partial$ is a central subgroup of $G, I=\operatorname{im} \partial$ is a normal subgroup of T, and obtain the following exact sequence $1 \rightarrow K \rightarrow G \rightarrow T \rightarrow C \rightarrow 1$, where $C=\frac{T}{I}$ is the cokernel of ∂. Specially, for a finite crossed module we have $|G||C|=|K||T|[7]$. A morphism $\phi: X \rightarrow Y$ between two crossed modules $X=\left(T_{1}, G_{1}, \mu_{X}, \partial_{X}\right)$ and $y=\left(T_{2}, G_{2}, \mu_{Y}, \partial_{Y}\right)$ is a pair $\left(\phi_{1}, \phi_{2}\right)$, where $\phi_{1}: T_{1} \rightarrow$ $T_{2}, \phi_{2}: G_{1} \rightarrow G_{2}$ are group homomorphisms, and the following relations hold:

$$
\partial_{Y} \circ \phi_{2}=\phi_{1} \circ \partial_{X}, \quad \mu_{Y} \circ\left(\phi_{2} \times \phi_{1}\right)=\phi_{2} \circ \mu_{X} .
$$

This yields the commutativity of the following diagrams:

Definition 2.3. Suppose that (T, G, ∂) is a crossed module and n is a non-negative integer. We define the notion of n-commutator crossed submodule of (T, G, ∂) as $\partial: D_{G}^{n}(T) \rightarrow G \neq{ }_{n} G$, where $D_{G}^{n}(T)$ is the subgroup of T generated by the set

$$
\left\{{ }^{x} a a^{-1} b^{n} \mid x \in G, a, b \in T\right\}
$$

and in a general case, if N is a normal subgroup of G, then $G \neq n G$ is the n-commutator subgroup of G and N, i.e., the subgroup generated by the

$$
\left\{[x, a] a^{\prime n} \mid x \in G, \quad a, a^{\prime} \in N\right\} .
$$

The n-commutator crossed submodule of (T, G, ∂) is a normal crossed submodule.
Example 2.4. The group G acts on N by conjugation if N is a normal subgroup. The triple (N, G, i) is a crossed module, where i is the inclusions. The n-commutator crossed submodule of (N, G) equals ($G \neq n$
$N, G \neq{ }_{n} G, i$). This implies that for any group G, the triple ($G, G, i d$) is a crossed module and $(G \neq n G, G \neq n$ $G, i d$) is its n-commutator.

Let (T, G, ∂) be a crossed module with trivial center. According to [3], we can obtain a sequence of crossed modules as follows:

$$
(T, G, \partial), \mathscr{A}(T, G, \partial), \mathscr{A}(\mathscr{A}(T, G, \partial)), \ldots
$$

in which each term embeds in its successor. This sequence is called the actor tower of (T, G, ∂).
We say the crossed module (T, G, ∂) is complete if $Z(T, G, \partial)=1$ and the canonical morphism $<\eta, \gamma>$: $(T, G, \partial) \rightarrow \mathscr{A}(T, G, \partial)$ is an isomorphism. Notice that the crossed module (T, G, ∂) is semi complete if $<\eta, \gamma>$ is an epimorphism. Consequently, a semi complete crossed module with trivial center is complete.

3. n-complete crossed modules

A crossed module (T, G, ∂) is said to be n-complete if n is the smallest positive integer such that K_{n} is subcrossed module $I_{n n}(T, G, \partial)$, where $I_{n n}(T, G, \partial)$ is the crossed module of the inner automorphisms of (T, G, ∂). Proposition 3.1. Let (T, G, ∂) is an n-complete crossed module. Then, T and G are at most n-complete and nilpotent of class at most n.

Example 3.2. If (G, G, i) is an n-complete crossed module, then G is n-complete and nilpotent of class n.
In Proposition 3.3 we give a relation between nilpotent groups and n-complete crossed modules.
Proposition 3.3. If (T, G, ∂) is a crossed module and groups T, G are nilpotent of class at most n, then (T, G, ∂) is an n-complete crossed module for some m with $m \leq n$.

Suppose that (R, K, ∂) is a normal crossed submodule of (T, G, ∂) and $\left(S, H, \partial^{\prime}\right)$ is a crossed module such that $(T / R, G / K) \cong(S, H)$, then we call (T, G) an extension of (R, K) by (S, H). If there exists a surjective morphism $\psi=\left(\psi_{1}, \psi_{2}\right):\left(X_{1}, X_{2}\right) \rightarrow(T, G)$, the trivially $\left(X_{1}, X_{2}\right)$ is an extension of the crossed module $\operatorname{ker} \phi$ by (T, G). An extension $\left(\left(X_{1}, X_{2}\right), \psi\right)$ by (T, G) is n-central extension if $\operatorname{ker} \psi=\left(\operatorname{ker} \psi_{1}, \operatorname{ker} \psi_{2}\right)$ is contained in $Z^{n}\left(X_{1}, X_{2}\right)$. Let (M, G, μ) and (N, G, v) be two crossed modules, and consider the pullback

Then, $M \times{ }_{G} N=\{(a, b) \mid a \in M, b \in N, \mu(a)=v(b)\}$. If we write $\alpha=\mu \pi_{1}=v \pi_{2}$, then for $c \in M \times{ }_{G} N, a \in M, b \in$ N, we get

$$
{ }^{\pi_{1}(c)} a={ }^{\alpha(c)} a={ }^{\pi_{2}(k)} a,^{\pi_{1}(c)} b={ }^{\alpha(c)} b={ }^{\pi_{2}(c)} b
$$

The tensor product $M \otimes^{q} N$ is defined as the group generated by the symbols $a \otimes b$ and $\{c\}, a \in M, b \in N, c \in$ $M \times{ }_{G} N$, with the following relations:

1. $a \otimes b b^{\prime}=(a \otimes b)\left({ }^{b} a \otimes^{b} b^{\prime}\right)$.
2. $a a^{\prime} \otimes b=\left({ }^{a} a^{\prime} \otimes^{a} b\right)(a \otimes b)$.
3. $\{c\}(a \otimes b)\{c\}^{-1}={ }^{\alpha(c)^{q}} a \otimes^{\alpha(c)^{q}} b$.
4. $\left[\{c\},\left\{c^{\prime}\right\}\right]=\pi_{1}(c)^{q} \otimes \pi_{2}\left(c^{\prime}\right)^{q}$.
5. $\left\{c c^{\prime}\right\}=\{c\}\left(\prod_{i=1}^{q-1}\left(\pi_{1}(c)^{-1} \otimes\left(^{\alpha(c)^{1-q+i}} \pi_{2}\left(c^{\prime}\right)\right)^{i}\right)\right)\left\{c^{\prime}\right\}$.
6. $\left\{\left(a^{b} a^{-1},{ }^{a} b b^{-1}\right)\right\}=(a \otimes b)^{q}$.

Note that the structure of the tensor product mode q is bifunctorial. Under this conditions there exists an action of G on $M \otimes^{q} N$ defined as follows:

$$
{ }^{x}(a \otimes b)={ }^{x} a \otimes{ }^{x} b,{ }^{x}\{c\}=\left\{{ }^{x} c\right\}
$$

$a \in M, b \in N, c \in M \times{ }_{G} N, x \in G$. The group M (resp. N) acts on $M \otimes^{q} N$ through the homomorphism μ (respectively v) and if $a \in M, b \in N, c \in M \times{ }_{G} N$, then

$$
a_{\{c\}}=\left(a \otimes \pi_{2} c^{q}\right)\{c\},{ }^{b}\{c\}=\{c\}\left(\pi_{1} c^{-q} \otimes b\right) .
$$

Now let (T, G, ∂) and $(G, G, i d)$ be crossed modules. We can consider the tensor product $T \otimes^{q} G$, it was first defined by Brown. In this case $T \times{ }_{G} G \cong T, \pi_{1}=i d_{T}, \pi_{2}=\partial$. Similarly, we consider $G \otimes^{q} G$. Then, we have the following crossed modules:

$$
\begin{array}{llll}
\left(T \otimes^{q} G, T, \lambda\right), & \lambda(t \otimes g)=t^{g} t^{-1}, & \lambda(\{t\})=t^{q}, & t \in T, g \in G ; \\
\left(T \otimes^{q} G, T, \lambda^{\prime}\right), & \lambda^{\prime}(t \otimes g)=[\partial(t), g], & \lambda^{\prime}(\{t\})=\partial(t)^{q}, & t \in T, g \in G ; \\
\left(G \otimes^{q} G, G, \xi\right), & \xi(g \otimes h)=[g, h], & \xi(\{g\})=g^{q}, & g, h \in G .
\end{array}
$$

Theorem 3.4. If (T, G, ∂) is an n-complete crossed module, then ($T \otimes^{n} G, G \otimes^{n} G,(\lambda, \epsilon)$) is an n-complete extension by (T, G, ∂).

The restricted standard wreath product $W=A w r B$ of two groups A and B is the splitting extension of the direct power A^{B} by the group B, with B acting on A^{B} according to the rule, if $b \in B$ then $f^{b}(x)=f\left(x b^{-1}\right)$ for all $f \in A^{B}, x \in B$. The base group A^{B} is characteristic in W, in all cases, except when A is of order 2 , or is a dihedral group of order $4 k+1$ and B is of order 2. In the following it is assumed that A^{B} is characteristic in W. The next theorem is of great importance for the sequel. But first we need the following results from [8].

Proposition 3.5. [8] If $\alpha \in \operatorname{Aut}(A)$, we define $\alpha^{*} \in \operatorname{Aut}(W)$ by $(b f)^{\alpha^{*}}=b f^{\alpha^{*}}$ for all $b \in B, f \in \mathscr{F}$, where $f^{\alpha^{*}}(x)=(f(x))^{\alpha}$, for all $x \in B$, then the group A^{*} of all such automorphisms is isomorphic to Aut (A).
Proposition 3.6. [8] If $\beta \in \operatorname{Aut}(B)$, we define $\beta^{*} \in \operatorname{Aut}(W)$ by $(b f)^{\beta^{*}}=b^{\beta} f^{\beta^{*}}$ for all $b \in B, f \in \mathscr{F}$, where $f^{\beta^{*}}(x)=f\left(x^{\beta^{-1}}\right)$ for all $x \in B$, then the group B^{*} of all such automorphisms is isomorphic to $\operatorname{Aut}(B)$.

Theorem 3.7. [8]

1. The automorphism group of the wreath product W of two groups A and B can be expressed as a product, $\operatorname{Aut}(W)=K I_{1} B^{*}$, where

- K is the subgroup of $\operatorname{Aut}(W)$ consisting of those automorphisms which leave B element wise fixed.
- I_{1} is the subgroup of $\operatorname{Aut}(W)$ consisting of those inner automorphisms corresponding to transformation by elements of the base group \mathscr{F}.
- B^{*} is defined as in Proposition 3.5.

2. The group K can be written as $A^{*} H$, where

- A^{*} is defined as in Proposition 3.6.
- H is the subgroup of $\operatorname{Aut}(W)$ consisting of those automorphisms which leave both B and diagonal element wise fixed

3. The subgroups $A^{*} H I_{1}, H I_{1} B^{*}, H I_{1}$, and I_{1} are normal in $\operatorname{Aut}(W)$ and $\operatorname{Aut}(W)$ is splitting extension of $A^{*} H I_{1}$ by B^{*}. Furthermore, A^{*} intersects $H B^{*}$ trivially.

In the following it is assumed that $W_{1}=A_{1} w r B_{1}$ and $W_{2}=A_{2} w r B_{2}$ are two standard wreath products of groups.

Theorem 3.8. If $X=\left(W_{1}, W_{2}, \partial\right)$ is an n-complete crossed module, then A_{i} is at most n-complete, for $i=1,2$.

Proof.

If $(\alpha, \beta) \in K_{n}(X)$, then $\alpha \in K_{n}\left(A_{1}\right)$ and $f \in A_{1}^{B_{1}}$. Hence, $f^{\alpha^{*}}(x)=(f(x))^{\alpha}=f(x) u_{x}$ for $x \in B_{1}$ and $u_{x} \in$ $\gamma_{n+1}\left(A_{1}\right)$. If $g_{1} \in A_{1}^{B_{1}}, g_{1}(x)=u_{x}$ for all $x \in B_{1}$, then $f^{\alpha^{*}}(x)=\left(f g_{1}(x)\right)$ for all $x \in B_{1}$. Therefor, $f^{\alpha^{*}}=f g_{1}$, where $g_{1} \in \gamma_{n+1}\left(W_{1}\right)$. Since W_{1} is n-complete, it follows that $K_{n}\left(W_{1}\right) \leq I\left(W_{1}\right)$ and so $\alpha^{*} \in I\left(W_{1}\right)$. But according to [9], $\alpha^{*} \in I\left(W_{1}\right)$ if and only if $\alpha \in I\left(A_{1}\right)$. Hence, $K_{n}\left(A_{1}\right) \leq I\left(A_{1}\right)$. The proof for $K_{n}\left(A_{2}\right) \leq I\left(A_{2}\right)$ is similar.

Theorem 3.9. If $X=\left(W_{1}, W_{2}, \partial\right)$ is an n-complete crossed module, then B_{i} is nilpotent of class at most n, for $i=1,2$.

Proof.

If $L\left(B_{1}\right)$ and $L\left(B_{2}\right)$ are the left regular representation of the groups B_{1}, B_{2} respectively, then for each element $l_{b} \in L\left(B_{1}\right), b \in B_{1}$, there corresponds an automorphism l_{b}^{*} of W_{1} defined by $(c f)^{l}{ }_{b}^{*}=c f_{b}^{l_{b}^{*}}$ for all $c \in B_{1}$, $f \in A_{1}{ }^{B_{1}}$, where $f^{l_{b}^{*}}(x)=f(b x)$ for all $x \in B_{1}$.
If $f_{1} \in A_{1}{ }^{B_{1}}$ such that $f_{1}(1)=a, f_{1}(x)=1$ for all $x \in B_{1}, x \neq 1$ and $b \in B_{1}, b \neq 1$, then $f_{1}^{l_{b}^{*}}\left(b^{-1}\right)=f_{1}(1)=a$ and $f_{1}^{l_{b}^{*}}(x)=f_{1}(b x)=1$ for all $x \neq b^{-1}$.
Moreover, we obtain $f_{1}^{l_{b}^{*}}=f_{1} g$, where $g(1)=a^{-1}, g\left(b^{-1}\right)=a, g(x)=1$ for all $x \in B, x \neq 1, b^{-1}$. Also, by [10] for the element $g \in A_{1}^{B_{1}}, g=\left[b^{-1}, \varphi\right]$, where $\varphi \in A_{1}^{B_{1}}$ with $\varphi(1)=g(1)$ and $\varphi(x)=1$ for all $x \neq 1$.
Now, if $X_{i} \in B_{1}$, we define the element $f_{x_{i}} \in A_{1}^{B_{1}}$ by $f_{x_{i}}\left(x_{i}\right)=a$ and $f_{x_{i}}(d)=1$ for all $d \in B, d \neq x_{i}$, then $\left(f_{x_{i}}\right)^{l_{b}^{*}}=f_{x_{i}} g^{x_{i}}$. If $b \in \gamma_{n}\left(B_{1}\right)$, then l_{b}^{*} belongs to the group $K_{n}\left(W_{1}\right) \leq I\left(W_{1}\right)$. But $b \in Z\left(B_{1}\right)$ if and only if $l_{b}^{*} \in I\left(W_{1}\right)$. So, the group B_{1} is nilpotent of class at most n, and similarly B_{2} is nilpotent of class at most n.

Theorem 3.10. If $X=\left(W_{1}, W_{2}, \partial\right)$ is an n-complete crossed module, and B_{i} is nilpotent of class n, for $i=1,2$, then A_{i} is directly indecomposable.

Proof.

Suppose that $A_{i}=U_{i} \times V_{i}$ is a non trivial direct decomposition of A_{i} for $i=1,2$. If $f \in A_{1}^{B_{1}}$, then $f(x)=u_{1 x} v_{1 x}$ for all $x \in B_{1}$, where $u_{1 x} \in U_{1}$ and $v_{1 x} \in V_{1}$. If $g_{f} \in A_{1}^{B_{1}}, g_{f}(x)=u_{1 x}$ for all $x \in B_{1}$ and $x \in \gamma_{n}\left(B_{1}\right) \leq Z\left(B_{1}\right), z \neq 1$, then $\eta: W_{1} \rightarrow W_{1}$ by $(b f)^{\eta}=b f\left[g_{f}, z\right]$ is a map. Since $g_{f h}=g_{f} g_{h}$ and $g_{f}^{y}=g_{f}$ for all $f, h \in A_{1}^{B_{1}}, y \in B_{1}$, it follows that η is an outer automorphism of W_{1} with $\eta \in K_{n}\left(W_{1}\right)$ and is a contradiction.

Theorem 3.11. If $X=\left(W_{1}, W_{2}, \partial\right)$ is an n-complete crossed module, where A_{i} is finite nilpotent and B_{i} is nilpotent of class n, then A_{i} is a p_{i}-group, (p_{i} is prime) for $i=1,2$.

Proof.

By Theorem 3.10, the proof is straightforward.
Theorem 3.12. Let $X=\left(W_{1}, W_{2}, \partial\right)$ is an n-complete crossed module, where A_{i} is nilpotent and B_{i} is nilpotent of class n, for $i=1,2$. If A_{i} is abelian group, then it is cyclic of order p_{i}.

Proof.

By Theorem 3.11, A_{i} is p_{i}-group. But A_{i} is abelian, and so A_{i} is cyclic of order p^{r} for some positive integer r. Now, we show that $r=1$.

If r is not equal to 1 , we choose an element $x \in \gamma_{n}\left(B_{1}\right), x \neq 1$ and we define a mapping $\eta: W_{1} \rightarrow W_{1}$ by $(b f)^{\eta}=b f[f, x]^{p}, \eta$ is an automorphism of W_{1} belonging to the group $K_{n}\left(W_{1}\right)$ by [9]. Since $r>1$ and η is an outer automorphism, it follows that W_{1} is not n-complete. Hence, $r=1$, and A_{2} is cyclic of order p_{i}, accordingly.

Corollary 3.13. If $X=\left(W_{1}, W_{2}, \partial\right)$ is an n-complete crossed module and A_{i} is finite nilpotent and B_{i} nilpotent of class n, for $i=1,2$, then A_{i} is cyclic of prime order.

Now, we give examples of non n-complete crossed module. Let $W=A w r B$ be the restricted wreath product of A by B. The set $\sigma(f)=\{x \in B \mid f(x) \neq 1\}$ is the support of $f \in A^{B}$. Map $\pi: A^{B} \rightarrow \frac{A}{A^{\prime}}$ given by

$$
\pi(f)=\prod_{x \in \sigma(f)} f(x) A^{\prime}
$$

is well defined and obviously a homomorphism satisfying $\pi\left(f^{b}\right)=\pi(f)$ for all $b \in B$.
Proposition 3.14. [10] The derived subgroup W^{\prime} of W is $W^{\prime}=B^{\prime} M$, where $M=\operatorname{Ker} \pi$.
Theorem 3.15. If $W_{i}=C_{p} w r C_{2}$, where p is prime with $p>3, i=1,2$, then $X=\left(W_{1}, W_{2}, \partial\right)$ is not n-complete crossed module.

Proof.

If $W_{1}=A_{1} w r B_{1}$, then $W_{1}^{\prime}=B_{1}^{\prime} M_{1}$, where $M_{1}=\left\{f \mid f \in A_{1}^{B_{1}}, \pi(f) \in A_{1}^{\prime}\right\}$. But $B_{1}=C_{2},\left.\left|M_{1}\right|| | A_{1}\right|^{\left|B_{1}\right|}=p^{2}$ and so $\left|M_{1}\right|=p . W_{1}$ is not nilpotent and thus $\gamma_{n}\left(W_{1}\right)=M_{1}$ for all $n \in Z^{+}, n \geq 2$. If $A_{1}=C_{p}=<a>, B_{1}=C_{2}=$, then $f_{1}=\left(a^{p-1}, a^{2}\right), f_{2}=\left(a^{2}, a^{p-1}\right), g_{1}=(a, 1), g_{2}=(1, a)$, instill the mapping $g_{1} \rightarrow f_{1}, g_{2} \rightarrow f_{2}$ which can be extended to an automorphism γ of $A_{1}^{B_{1}}$, which commutes with the automorphism of $A_{1}^{B_{1}}$ induced by the element $b \in B_{1}$, since $A_{1}^{B_{1}}=<f_{1}, f_{2}>=<g_{1}, g_{2}>$ and $A_{1}^{B_{1}}$ is elementary abelian of rank 2 and $p \neq 3$. Thus, the automorphism γ can be extended to an automorphism of W_{1}, which fixes B_{1} element wise [8]. On the other hand, we have

$$
\begin{aligned}
& g_{1}^{\gamma}=(a, 1)^{\gamma}=\left(a^{p-1}, a^{2}\right)=(a, 1)\left(a^{p-2}, a^{2}\right), \\
& g_{2}^{\gamma}=(1, a)^{\gamma}=\left(a^{2}, a^{p-1}\right)=(1, a)\left(a^{2}, a^{p-2}\right),
\end{aligned}
$$

and $\left(a^{p-2}, a^{2}\right),\left(a^{2}, a^{p-2}\right) \in M_{1}=\gamma_{n}\left(W_{1}\right), n \geq 2$, so $\gamma \in K_{n}\left(W_{1}\right), n \geq 2$ and γ is an outer automorphism. Hence $W_{1}=C_{p} w r C_{2}$ is not n-complete. Therefore, $X=\left(W_{1}, W_{2}, \partial\right)$ is not n-complete crossed module.

Theorem 3.16. If $W_{i}=C_{p} w r B_{i}$, where p is prime with $p>3, i=1,2$, and B_{i} is nilpotent of class n with $k_{i}=\left|B_{i}\right| \geq 3, i=1,2$, then $X=\left(W_{1}, W_{2}, \partial\right)$ is not n-complete crossed module.

Proof.

The group $A_{i}^{B_{i}}$ is an elementary abelian p-group, since A_{i} is $A_{i}=C_{p}=<a_{i}>$. The set $g_{x_{i}} \in A_{i}^{B_{i}}$ for all $x_{i} \in B_{i}=\left\{x_{1}, \ldots, x_{k_{j}}\right\}$ with $g_{x_{i}}\left(x_{i}\right)=a_{i}, g_{x_{i}}\left(x_{j}\right)=1, x_{j} \neq x_{i}$ is a basis of $A_{i}^{B_{i}}$. Now, if we consider the mapping
$g_{x_{i}} \rightarrow f_{x_{i}}=g_{x_{i}}\left[b_{1}, g_{x_{i}}\right]=g_{x_{i}}{ }^{2}\left(g_{x_{i}}{ }^{-1}\right)^{b_{1}}$ for all $x_{i} \in B_{i}$, where $b_{1} \in \gamma_{n}\left(B_{i}\right)$, then this mapping is extended to an automorphism $\bar{\gamma}$ of $A_{i}^{B_{i}}$, since the set $f_{x_{i}}, x_{i} \in B_{i}$ is a basis of $A_{i}^{B_{i}}$. On the other hand, since $C_{p} \cong Z_{p}$ and $p>3$, it follows that the determinant of matrix

$$
\left[\begin{array}{cccccccc}
2 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \\
0 & 2 & \cdots & -1 & 0 & 0 & \cdots & 0 \\
& & & & \ddots & & & \\
0 & 0 & \cdots & -1 & 0 & 0 & \cdots & 2
\end{array}\right]
$$

is not zero in Z_{p}, where the element 2 is in the main diagonal and in each row and column we have once the element -1 . But $\bar{\gamma}$ can be extended to an automorphism γ of the group W_{i}, which fixes B_{i} element wise, since the automorphism $\bar{\gamma}$ of $A_{i}^{B_{i}}$ commutes with the automorphisms of $A_{i}^{B_{i}}$ which are induced by the elements of the group B_{i}. The automorphism γ is an outer automorphism with $\gamma \in K_{n}\left(W_{i}\right)$. So, $X=$ (W_{1}, W_{2}, ∂) is not n-complete crossed module.

Proposition 3.17. [11] The wreath product $W=C_{2} w r B$ is not n-complete, where B is finite abelian with $m=|B| \geq 4$ and m is an odd number.

Theorem 3.18. If $W_{i}=C_{2} w r B_{i}$, where B_{i} is finite abelian with $m_{i}=\left|B_{i}\right| \geq 4, i=1,2$, and m_{i} is an odd number, then $X=\left(W_{1}, W_{2}, \partial\right)$ is not n-complete crossed module.

Proof.

By Proposition 3.17, the proof is straightforward.
We have assumed up to this point that subgroup A^{B} is characteristic in $W=A w r B$. Now, we investigate the case of W in which A is a special dihedral group and B is of order 2. At this case A^{B} is not characteristic in W. We recall that D_{m} is $D_{m}=<a, b \mid a^{m}=1, b^{2}=1,(a b)^{2}=1>$.

Theorem 3.19. [11] The standard wreath product $W=D_{n} w r C_{2}$ is semi complete if and only if $n=3$.
Theorem 3.20. Let $W=D_{m} w r C_{2}$, where $m=2 k+1, k \in N$, and C_{2} is the cyclic group of order 2 . Then, the crossed module $X=(W, W, i)$ is n-complete if and only if $m=3$.

Proof.

In this case, we know that for the lower central series of the group D_{m}, is $\gamma_{k+1}\left(D_{m}\right)=<a^{2^{k}}>$, for all $k=$ $1,2, \ldots$. Since m is an odd number, it follows that

$$
\gamma_{2}\left(D_{m}\right)=\gamma_{3}\left(D_{m}\right)=\cdots=\gamma_{k}\left(D_{m}\right)=\gamma_{k+1}\left(D_{m}\right)=\cdots
$$

If the crossed module (W, W, i) is n-complete, then by Theorem 3.8, the group D_{m} is at most n-complete. This means that D_{m} is semi complete [12], and this is true if and only if $m=3$.

References

[1] J. H. C. Whitehead, Combinatorial homotopy II, Bulletin of the American Mathematical Society, 55, (1949) 453-496.
[2] M. Alp, Actor of crossed modules of algebroids, proc. 16th International Conference of Jangjeon Mathematical Society, 16, (2005), 6-15.
[3] K. Norrie, Actions and automorphisms of crossed modules, Bulletin de la Societe Mathematique de France, 118, (1990) 129-146.
[4] D. Conduche and C. Rodriguez-Fernandez, Non-abelian tensor and exterior products module q and universal q-center relative extension, Journal of Pure and Applied Algebra, 78(2), (1992) 139-160.
[5] J. L. Doncel-Juurez, A. R.-Crondjeanl.-Valcarcel, q-perfect crossed modules, Journal of Pure and Applied Algebra, 81, (1992) 279-292.
[6] M. Alp, C. D. Wenseley, Automorphisms and homotopies of groupoids and crossed modules, Applied Categorical Structures, 18, (2010) 473-504.
[7] R. Brown, Higher-dimensional group theory. Low-dimensional topology (Bangor, 1979), pp. 215-238, London Mathematical Society Lecture Note Series, 48, Cambridge University Press, Cambridge-New York, 1982.
[8] C. Houghton, On the automorphisms groups of certain wreath products, Publicationes Mathematicae Debrecen, 9, (1963) 307-313.
[9] J. Panagopoulos, Groups of automorphisms of standard wreath products, Archiv der Mathematik, 37, (1981) 499-511.
[10] P. M. Neumann, On the structure of standard wreath products of groups, Mathematische Zeitschrift, 84, (1964) 343-373.
[11] J. Panagopoulos, A semicomplete standard wreath products, Archiv der Mathematik, 43, (1984) 301-302.
[12] J. Panagopoulos, The groups of central automorphisms of the standard wreath products, Archiv der Mathematik, 45, (1985) 411-417.

[^0]: ${ }^{1}$ dehghani19@yahoo.com ; ${ }^{2}$ davvaz@yazd.ac.ir(Corresponding Author)
 ${ }^{1}$ Department of Mathematics, Yazd University, and Department of Electrical and Computer Engineering, Faculty of Sadooghi, Yazd Branch, Technical and Vocational University(TVU), Yazd, Iran
 ${ }^{2}$ Department of Mathematics, Yazd University, Yazd, Iran
 Article History: Received: 08 Apr 2021 - Accepted: 24 Apr 2021 - Published: 30 Apr 2021

