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Abstract. Cancer formation is one of the pathologies whose frequency has

increased in the recent years. In the literature, the compartment models,
which are non-linear, are used for such problems. In nonlinear compartment

models, nonlinear state space models and the extended Kalman filter (EKF)

are used to estimate the parameter and the state vector. This paper presents
a discrete-time Gompertz model (DTGM) for the transfer of optical contrast

agent, namely indocyanine green (ICG), in the presence of tumors between
the plasma and extracellular extravascular space (EES) compartments. The

DTGM, which is proposed for ICG and the estimation of ICG densities used

in the vascular invasion of tumor cells of the compartments and in the mea-
surement of migration from the intravascular area to the tissues, is obtained

from the experimental data of the study. The ICG values are estimated on-

line (recursive) using the DTGM and the adaptive Kalman filter (AKF) based
on the experimental data. By employing the data, the results show that the

DTGM in conjunction with the AKF provides a good analysis tool for model-

ing the ICG in terms of mean square error (MSE), mean absolute percentage
error (MAPE) and R2. When the results obtained from the compartment

model used in the reference [9] are compared with the results obtained with

the DTGM, the DTGM gives better results in terms of MSE, MAPE and R2

criteria. The DTGM and the AKF compartment model require less numerical

processing when compared to the EKF, which indicates that DTGM is a less
complicated model. In the literature, EKF is used for such problems.

1. Introduction

In recent years the use of optical contrast agents and advanced medical imag-
ing techniques to analyze and diagnose tissue abnormalities has become almost a
standard procedure [1]. The existence of tumors is one of the main causes of tissue
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abnormalities, and in [2] it is shown that tumor vessel permeability to macromolec-
ular blood solutes correlates with tumor growth as well as vascular growth. ICG
is a blood pool agent that binds to globulin proteins (predominantly albumin) in
blood [3], and because of its ability to bind to plasma proteins, it behaves as a
macromolecular contrast agent with a low or no vascular permeability. Once in-
jected, ICG rapidly and completely binds to albümin. Its macromolecular behavior
results in a slow leakage which permits application of a pharmacokinetic model that
in return allows for the determination of individual vascular parameters, such as
capillary permeability. Compartmental analysis is a method of bio-mathematical
modeling which assumes that a biological system can be divided into a series of
homogeneous compartments which interact by exchanging material. For compart-
mental models used in pharmacokinetics, the material concentration varies with
time depending on individual pharmacokinetics parameters [4]. If the appropri-
ate parameters are known, the concentration level in a particular compartment
can be predicted by applying suitable pharmacokinetic equations. Thus, a robust
method of identifying and estimating individual parameters is required. The pa-
rameter identification is a common nonlinear estimation problem. In essence, it
is the problem of estimating a model parameter that occurs as a coefficient of a
dynamic system state variable - either as a dynamic coefficient or as measurement
sensitivity. When this estimation problem is solved simultaneously with the state
estimation problem (via state vector augmentation), the linear model becomes non-
linear. The extended Kalman filter (EKF) is one of the most popular and intensively
investigated estimation technique for the nonlinear state estimation. It consists of
applying the standard Kalman filter equations to the first-order approximation of
the nonlinear model of the last estimate [5]. This study addresses the most com-
monly used growth models, the DTGM to estimate the ICG level without resorting
to nonlinear models. The growth curves are used for modelling the increase in the
number of plants, bacteria or viruses in an environment. The rest of this article
is organized as follows. In Section 2, information about The ICG Compartment
Model is presented. In Section 3, the mathematical and computational method-
ologies of DTGM are specified and the mathematical equations, that are aimed to
be used further in the study are given, and the modeling analysis and estimation
results are also presented. Finally, Section 4 concludes the study.

2. The Icg Compartment Model

If there is a tumor in any tissue, the given ICG passes through the vessel into
the tumor tissue area. There is also a return to the vein from the tumor tissue.
In accordance with this physiological structure, a two-compartment model can be
considered. In this compartment model, Cp indicates ICG concentration in the
vessel, Ce indicates ICG concentration in tumor tissue. k1 ratio is the ratio of
ICG passing from the vessel to the tumor tissue, k2 is the ratio of ICG passing
from the tumor area into the vessel, and k3 is the ratio of ICG passing from the
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plasma to the liver and kidney. Since the mentioned ratio is quite small, this ratio
is ignored while creating the mathematical model. The ICG density in the tumor
tissue tend to increase as the k1 ratio increase of the ICG density in the vessel
(since there are transitions from here) and tend to decrease as the k2 ratio of its
own density. Accordingly, the change in ICG density in the tumor tissue per unit
time is expressed as in Equation 1,

dCe(t)

dt
= k1Cp(t)− k2Cθ(t) (1)

As mentioned above, its rate can be ignored, and the change in ICG density in
the tumor tissue per unit time is defined as in Equation 2,

dCp(t)

dt
= −k1Cp(t) + k2Ce(t) (2)

Because the ratio of ICG concentration, which is only in the vessel, is expected to
be transferred to the tumor tissue per unit time. k1 and k2 show the permeability
parameters mentioned before. According to the model, there is no information
about the permeability parameters and there is no need for their estimates. When
the differential equation system given by equations 1-2 are made discrete, nonlinear
discrete time-state space model is obtained. In this model, both the parameter and
the state vector are required to be estimated simultaneously. In the literature, the
EKF is used for such problems [6]- [11].

3. Discrete-Time Gompertz Model

In this study, DTGM, one of the growth models, is used to estimate the ICG
level without considering the nonlinear models.

The growth curves are used for modelling the increase in the number of plants,
bacteria or viruses in an environment. Expressing the growth of an organism or
an increase in the number of viruses temporally is called ”growth”. The identifica-
tion of the complex growth process is aimed at using the growth curves [12]- [14].
DTGM is well known and widely used model in many sub-fields of biology [15]-
[18]. Numerous parametrizations and re-parametrizations of the DTGM can be
found in the literature [17]. DTGM was originally recommended to explain human
mortality curves Gompertz [12], and it has been further used in the description of
growth processes, for example, growing of bacterial colonies [15] and tumors [16].
The model, a stochastic version of the DTGM, can be transformed into a linear
Gaussian state-space model for the convenient fitting to time-series data. In this
study, ICG values are estimated online using the DTGM and the AKF based on
the experimental data. By employing the data, the results show that the DTGM
in conjunction with AKF provides a good analysis tool for modeling the ICG in
terms of mean square error (MSE), mean absolute percentage error (MAPE), and
R2 . When the results obtained from the compartment model used in the refer-
ence [9] are compared with the results obtained with the DTGM, the DTGM gives
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better results in terms of MSE, MAPE and R2 criteria. The DTGM and the AKF
compartment model require less numerical processing when compared to the EKF,
which indicates that DTGM is a less complicated model.

Let nt denote ICG level at time t. The process model is as:

nt = nt−1exp(a+ blnnt−1 + et) (3)

where a and b are constants, and et is a random variable distributed as et N(0, σ2
1).

The random variables e1, . . . , en are assumed to be uncorrelated. On the logarith-
mic scale, the DTGM is a linear autoregressive time-series model of order 1 [AR(1)
process] defined as equation 4.

yt = yt−1 + a+ byt−1 + et = a+ cyt−1 + et (4)

where, yt = lnnt and c = b+ 1. For statistical properties of DTGM, see [18].
The model has a long history in density-dependence modeling see [19]- [21]. A

freguently seen alternative is a stochastic version of the Moran-Ricker model [21],
which uses nt−1 instead of lnnt−1 in the exponential function; in comparative
data analysis studies, the Gompertz model has performed as well as the Moran-
Ricker [22]. The probability distribution of nt−1 is a normal distribution with mean
and variance that change as functions of time. If −1 < c < 1, the probability distri-
bution of nt eventually approaches a time-independent stationary distribution that
is a normal distribution with a mean of a/(1 − c) and a variance of σ2

1/
(
1− c2

)
.

The stationary distribution is the stochastic version of an equilibrium in the deter-
ministic model, and is an important statistical manifestation of density dependence
in the population growth model Dennis [18]. In equation 4, a is the intrinsic growth
rate, b is the density-dependent influence [18].

3.1. Mathematical and Computational Methodologies. The optimum linear
filtering and estimation methods introduced by Kalman [31] have been considered
as one of the greatest achievements in estimation theory. Discrete-time linear state-
space models and Kalman filtering (KF) have been employed since the 1960s, mostly
in the control and signal processing areas. The KF has been extensively employed
in many areas of estimation. The extensions and applications of discrete-time linear
state-space models can be found in almost all disciplines [20]- [28]. In this study,
KF has been used to estimate the time-varying parameter of the DTGM. KF is a
recursive estimator to estimate the time-varying parameters. If a = 0 in Eq.(4), nt

takes the case counts observed until t and yt = lnnt. Then the equation

yt = cyt−1 + et (5)

is acquired. In the case that the parameter c in Eq.(5) is time-varying and
presumed as random walk process, that is . Then state-space model,

yt = ctyt−1 + et (6)
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ct = ct−1 + wt (7)

is obtained and wt is distributed as wt N(0, σ2
2). The random variables w1, w2, . . . , wn

are assumed to be uncorrelated. Here, the state variable is unobservable, time-
varying, and can be estimated through AKF (explanation regarding AKF is given
in the Appendix section). If this time-varying parameter is estimated using on-line
AKF, the ICG level in times t+1,t+2, ... can be estimated via this online-estimated
parameter. When the models given in equations (6) and (7) are compared with the
state space model given in the Appendix, the following equations are obtained.

xt = ct, Ft = 1, Gt = 1, Ht = yt−1, Rt = σ1, Qt = σ2 (8)

3.2. Application of DTGM. Details of the experimental setup, and how the
data were collected can be found in [23]. Data is given in Table 1. Since this
study deals with the collected data, here only a very brief discussion regarding the
experiments is given in order to put more emphasis on the mathematical represen-
tation, along with parameter estimation. In the experiments, bolus injections of
the optical contrast agent ICG were administered to the rat through the tail vein.
The measurements were collected by placing the probe normal to the tumor surface
and probing the whole tissue including plasma. After injection, ICG rapidly and
completely binds to albumin, after which the kinetics of ICG are governed by the
temporal dynamics of albumin in and between the vascular compartment and the
EES.

3.3. Estimation (AKF) Algorithm. The steps of the AKF algorithm using to
estimate the parameter in DTGM are as follows. The code is written in Matlab
program for the estimation algorithm.

Step 1. Initial values ĉ0 = 0.9, P0 = 1, Rt = σ1 = std (yt) , t = 1, 2, . . . , n,Qt =
σ2 = 0.01, t = 1, 2, . . . , n, α = 1.0001

Step 2. ĉt|t−1 = ĉt−1 Predicted (a priori) state estimate
Step 3. Pt|−1 = α (Pt−1t−1 + σ2) Predicted (a priori) estimate covariance

Step 4. Kt = Pt|t−1yt−1

(
yt−1Pt|t−1yt−1 + σ1

)−1
Optimal Kalman gain

Step 5. Pt= = [I −Ktyt−1]Ptt-1 Updated (a posteriori) estimate covariance
Step 6. ĉt = ĉt|t−1 +Kt

(
yt − yt−1ĉt|t−1

)
Updated (a posteriori) state estimate

In the experiment, the ICG concentration in the lump space, i.e. EES and
plasma, was monitored for 500 seconds. According to the estimation results ob-
tained by using the ICG level in DTGM, the MSE, MAPE, R2 and values are
calculated (see Table 2). These calculated values indicate that the compatibility of
the model with real data is quite high. This tells us estimating the ICG level via
DTGM is a reliable method. Since estimation using the AR(1) stochastic process
does not require any other model assumption. As for AKF, utilizing only the ob-
servation in time and the preceding estimation is the most advantageous aspect of
this method.
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Table 1. Collected data.

Time Observed value Time Observed value Time Observed value Time Observed value Time Observed value Time Observed value
0 -0.0237 45 0.623 90 0.749 135 0.682 180 0.603 225 0.532
1 -0.0269 46 0.632 91 0.752 136 0.677 181 0.596 226 0.533
2 -0.0282 47 0.645 92 0.753 137 0.678 182 0.594 227 0.534
3 -0.0251 48 0.65 93 0.751 138 0.683 183 0.594 228 0.533
4 -0.0249 49 0.66 94 0.747 139 0.684 184 0.591 229 0.527
5 -0.0224 50 0.665 95 0.739 140 0.685 185 0.592 230 0.531
6 -0.0236 51 0.671 96 0.741 141 0.688 186 0.586 231 0.528
7 -0.0243 52 0.682 97 0.743 142 0.686 187 0.587 232 0.527
8 -0.0232 53 0.685 98 0.748 143 0.688 188 0.591 233 0.525
9 0.0265 54 0.688 99 0.747 144 0.685 189 0.594 234 0.521
10 0.139 55 0.688 100 0.742 145 0.671 190 0.587 235 0.523
11 0.216 56 0.691 101 0.739 146 0.661 191 0.579 236 0.523
12 0.255 57 0.696 102 0.741 147 0.657 192 0.576 237 0.522
13 0.275 58 0.704 103 0.738 148 0.66 193 0.579 238 0.514
14 0.282 59 0.711 104 0.738 149 0.662 194 0.576 239 0.513
15 0.286 60 0.716 105 0.738 150 0.658 195 0.575 240 0.516
16 0.295 61 0.717 106 0.735 151 0.653 196 0.574 241 0.513
17 0.305 62 0.729 107 0.739 152 0.652 197 0.574 242 0.508
18 0.316 63 0.737 108 0.739 153 0.654 198 0.573 243 0.503
19 0.324 64 0.739 109 0.731 154 0.653 199 0.572 244 0.504
20 0.337 65 0.729 110 0.734 155 0.653 200 0.57 245 0.502
21 0.352 66 0.725 111 0.734 156 0.646 201 0.568 246 0.504
22 0.365 67 0.726 112 0.737 157 0.648 202 0.567 247 0.503
23 0.381 68 0.732 113 0.733 158 0.654 203 0.569 248 0.503
24 0.399 69 0.728 114 0.734 159 0.652 204 0.566 249 0.497
25 0.413 70 0.722 115 0.736 160 0.645 205 0.566 250 0.5
26 0.426 71 0.725 116 0.727 161 0.639 206 0.566 251 0.5
27 0.439 72 0.732 117 0.724 162 0.635 207 0.565 252 0.501
28 0.45 73 0.731 118 0.723 163 0.631 208 0.568 253 0.5
29 0.466 74 0.731 119 0.719 164 0.629 209 0.564 254 0.504
30 0.477 75 0.732 120 0.718 165 0.623 210 0.557 255 0.501
31 0.49 76 0.736 121 0.711 166 0.62 211 0.553 256 0.499
32 0.503 77 0.74 122 0.699 167 0.62 212 0.551 257 0.491
33 0.513 78 0.738 123 0.702 168 0.623 213 0.554 258 0.489
34 0.524 79 0.743 124 0.699 169 0.623 214 0.546 259 0.486
35 0.537 80 0.743 125 0.7 170 0.622 215 0.543 260 0.49
36 0.553 81 0.751 126 0.699 171 0.621 216 0.54 261 0.486
37 0.569 82 0.755 127 0.697 172 0.62 217 0.541 262 0.482
38 0.579 83 0.756 128 0.696 173 0.623 218 0.538 263 0.478
39 0.579 84 0.754 129 0.702 174 0.626 219 0.538 264 0.477
40 0.58 85 0.747 130 0.697 175 0.624 220 0.537 265 0.477
41 0.589 86 0.747 131 0.691 176 0.617 221 0.535 266 0.476
42 0.597 87 0.749 132 0.684 177 0.608 222 0.537 267 0.477
43 0.605 88 0.749 133 0.681 178 0.609 223 0.532 268 0.479
44 0.613 89 0.745 134 0.679 179 0.607 224 0.531 269 0.476
270 0.48 315 0.441 360 0.419 405 0.396 450 0.382 495 0.374
271 0.478 316 0.438 361 0.417 406 0.395 451 0.378 496 0.377
272 0.477 317 0.437 362 0.414 407 0.397 452 0.381 497 0.375
273 0.474 318 0.437 363 0.409 408 0.396 453 0.383 498 0.374
274 0.471 319 0.438 364 0.409 409 0.395 454 0.381 499 0.376
275 0.474 320 0.441 365 0.409 410 0.396 455 0.381 500 0.372
276 0.473 321 0.437 366 0.409 411 0.397 456 0.383 501 0.371
277 0.471 322 0.434 367 0.407 412 0.396 457 0.382 502 0.369
278 0.467 323 0.433 368 0.405 413 0.391 458 0.383 503 0.368
279 0.468 324 0.434 369 0.408 414 0.391 459 0.38 504 0.37
280 0.467 325 0.432 370 0.407 415 0.389 460 0.382
281 0.464 326 0.433 371 0.406 416 0.391 461 0.378
282 0.468 327 0.43 372 0.408 417 0.391 462 0.376
283 0.462 328 0.43 373 0.409 418 0.391 463 0.38
284 0.465 329 0.429 374 0.411 419 0.393 464 0.379
285 0.465 330 0.432 375 0.405 420 0.394 465 0.379
286 0.463 331 0.433 376 0.407 421 0.392 466 0.377
287 0.462 332 0.434 377 0.409 422 0.393 467 0.376
288 0.46 333 0.429 378 0.406 423 0.396 468 0.376
289 0.462 334 0.427 379 0.407 424 0.393 469 0.378
290 0.465 335 0.423 380 0.408 425 0.395 470 0.377
291 0.461 336 0.423 381 0.407 426 0.391 471 0.379
292 0.454 337 0.422 382 0.41 427 0.392 472 0.383
293 0.452 338 0.424 383 0.406 428 0.389 473 0.38
294 0.45 339 0.421 384 0.4 429 0.391 474 0.38
295 0.452 340 0.423 385 0.396 430 0.387 475 0.378
296 0.448 341 0.421 386 0.398 431 0.39 476 0.378
297 0.45 342 0.418 387 0.399 432 0.391 477 0.38
298 0.447 343 0.418 388 0.395 433 0.388 478 0.378
299 0.446 344 0.419 389 0.393 434 0.384 479 0.377
300 0.448 345 0.417 390 0.394 435 0.387 480 0.372
301 0.442 346 0.419 391 0.393 436 0.385 481 0.373
302 0.448 347 0.415 392 0.392 437 0.385 482 0.373
303 0.447 348 0.419 393 0.397 438 0.386 483 0.372
304 0.447 349 0.42 394 0.395 439 0.387 484 0.375
305 0.446 350 0.419 395 0.398 440 0.388 485 0.374
306 0.449 351 0.417 396 0.397 441 0.39 486 0.375
307 0.447 352 0.416 397 0.395 442 0.389 487 0.373
308 0.443 353 0.418 398 0.395 443 0.388 488 0.374
309 0.441 354 0.416 399 0.397 444 0.387 489 0.375
310 0.441 355 0.415 400 0.395 445 0.386 490 0.373
311 0.437 356 0.417 401 0.397 446 0.384 491 0.374
312 0.44 357 0.418 402 0.395 447 0.382 492 0.374
313 0.439 358 0.417 403 0.394 448 0.382 493 0.375
314 0.438 359 0.418 404 0.395 449 0.384 494 0.376
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Table 2. Calculated R2, MSE, MAPE.

Model MSE R2 MAPE
DTGM 0.0001 0.9973 5.7385
Compartment Models 0.0004 0.9826 19.2059

Figure 1 depicts the observed ICG concentration and the model fit obtained
through the use of DTGM. Figure 2 depicts the observed ICG concentration and
the model fit obtained through the use of compartment models [9]. Figure 3 depicts
the observed ICG concentration and the model fit obtained through the use of
compartment models and DTGM. It is clearly seen that the DTGM mathematical
model provides a rather good fit to the observations, which indicates the correctness
of the model.

Figure 1. DTGM: Observed ICG concentration and the model fit.

4. Conclusion

In this study, we introduced a DTGM representing the metabolic elimination
and transfer of ICG between compartments in rat tumors, and presented a method
for the quantitative analysis of experimentally obtained ICG concentration data.
This will be useful in the analysis of tumor cell behavior patterns in cancerous
tissues. In this study, ICG concentration data have been estimated online using
DTGM and AKF. The ICG concentration data is modeled with DTGM, and the
time-varying parameters of the obtained AR(1) stochastic time series are estimated
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Figure 2. Compartment Models: Observed ICG concentration
and the model fit.

Figure 3. Compartment Models and DTGM: Observed ICG con-
centration and the model fit.

by the on-line AKF. The estimation by the acquired data shows that employing
the DTGM model and the AKF in terms of MSE, MAPE, and R2 provide efficient
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analysis for modeling the ICG concentration data. It is proposed that using the
DTGM and the AKF will be appropriate. It is quite a simple method to model the
ICG concentration time series data with the time-varying parameter AR(1) sto-
chastic process and to estimate the time-varying parameter with the online AKF.
When the results obtained from the compartment model used in the reference [9]
are compared with the results obtained with the DTGM, the DTGM offers bet-
ter results according to MSE, MAPE and R2 criteria. The DTGM and the AKF
compartment model require less numerical processing compared to the EKF, and
DTGM is a simpler model. In the literature, the EKF is used for such problems.
As far as we know no other method has been used before.

Appendix

State-Space Model and Adaptive Kalman Filter (AKF)
Let us consider a general discrete-time stochastic system represented by the state

and measurement models given as:

xt+1 = Ftxt +Gtwt

yt = Htxt + vt

where xt is an n×1 system vector, yt is an m×1 observation vector, Ft is an n×n
system matrix, Ht is an m×n matrix, wt an n× 1 vector of zero mean white noise
sequence and vt is an m× 1 measurement error vector assumed to be a zero mean
white sequence uncorrelated with the wt sequence. The covariance matrices wt

and wt are defined by wt ∼ N (0, Qt) , vt ∼ N (0, Rt). The filtering problem is the
problem of determining the best estimate of its xt condition, given its observations
Yt = (y0, y1, . . . , yt) [14−20]. When Yt = (y0, y1, . . . , yt) observations are given, the
estimation of state xt with

x̂t = E (xt | y0, y1, . . . , yt) = E (xt | Yt)

and the covariance matrix of the error with

Pt|t = E
[(
xt − x̂t|

)
(xt − x̂tt )

′ | Yt

]
when Yt−1 = (y0, y1, . . . , yt−1) observations are given, the estimation of state xt

with x̂t|t−1 = E (xt | y0, y1, . . . , yt−1) = E (xt | Yt−1)
and the covariance matrix of the error are shown with

Pt|t−1 = E
[(
xt − x̂t|−1

) (
xt − x̂t|t−1

)′ | Yt−1

]
.

Let the initial state be assumed to have a normal distribution in the form of
x0 ∼ N(x̄0,P0).

The optimum update equations for KF are,

x̂t|−1 = Ft−1x̂t−1

Pt|t−1 = Ft−1Pt−4t−1F
′
t−1 +Gt−1Qt−1G

′
t−1
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Kt = Pt|t−1H
′
t(HtPt|t−1H

′
t +Rt)

−1

Pt|t = [I −KtHt]Pt|t−1

x̂t = x̂t|t−1 +Kt

(
yt −Htx̂t|t−1

)
In the above equations, X̂t|t−1 is the a priori estimation and X̂t is the a posteriori

estimation of xt. Also, Pt|t−1 and Pt|t are the covariance of a priori and a posteriori
estimations respectively [24]- [33]. In some cases, divergence problems may ocur
in the KF due to the incorrect installation of the model. In order to eliminate
divergence in the KF, adaptive methods are used [5], [32], [33]. One of these is the
use of the forgetting factor. A forgetting factor is proposed by [32].

Pt|t−1 = α
(
Ft−1Pt−1|−1F

′
t−1 +Gt−1Qt−1G

′
t−1

)
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