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Abstract: In this study, the dynamic stability analysis of the laminated composite single-bay and two-bay 

curved frame structures has been investigated. For this purpose, a computer code is written in MATLAB to 

evaluate the natural frequency values, critical buckling load, and first unstable regions of the laminated 

composite curved frames. The effects of radii of curvature and stacking order on the static and dynamic 

stability of both single and two bay arch frame structures are investigated. Besides, the effects of the 

stacking order are investigated by considering five different stacking sequences. The results of the present 

study are compared with the results obtained numerically via ANSYS for validation. It is concluded that 

the radius of curvature has a small effect on the first five natural frequency values, buckling loads, first 

unstable regions of the structure, whereas the fiber orientation considerably has a considerable impact on 

such static and dynamic properties. 
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Katmanlı Eğri Kompozit Çerçeve Yapıların Dinamik Kararlılık Analizi 

 

Öz: Bu çalışmada tek ve iki bölütlü tabakalı eğri kompozit çerçeve yapıların dinamik kararlılık analizleri 

incelenmiştir. Bunun için, MATLAB ortamında yazılan bir bilgisayar kodu vasıtasıyla tabakalı kompozit 

eğri çerçeve yapıların doğal frekansları, kritik burkulma yükü ve birinci kararsızlık bölgeleri ele alınmıştır. 

Bu kapsamda hem tek bölütlü hem de çift bölütlü yapının eğrilik yarıçapının statik ve dinamik kararlılığı 

üzerine olan etkileri araştırılmıştır. Ayrıca, beş farklı fiber açısı düzeni dikkate alınarak farklı fiber 

açılarının da bu özellikler üzerindeki etkisi incelenmiştir. Kullanılan sonlu eleman modelinin doğruluğu 

aynı yapının ANSYS ortamında modellenmesi ve analizinden elde edilen sonuçlarla karşılaştırılarak 

sağlanmıştır. Çalışmanın sonucunda eğrilik yarıçapının yapının ilk beş doğal frekansı, kritik burkulma yükü 

ve birinci kararsızlık bölgesi üzerinde küçük bir etkisinin olduğu gözlemlenirken elyaf oryantasyonunun 

bu özellikler üzerinde kayda değer bir etki oluşturduğu tespit edilmiştir. 
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1. INTRODUCTION 

Laminated composite structures are widely used in aerospace, automotive, civil engineering, 

marine applications because of their various advantages such as design flexibility, perfect 

corrosion and fatigue resistance, and high strength to weight ratio.  On the other hand, these 

structures have to design and analyzed meticulously since they may not operate under desired 

conditions. Dynamic and static instabilities are the phenomenon that may occur under periodic 

and static loading conditions,  which may lead the structure to fail. Considering a structure that 

operates under a static or dynamic load, determining such a structure’s dynamic and static 

characteristics.  One of the well-known studies about the dynamic stability problem is Bolotin’s 

approach (Bolotin, 1964), where the effect of an elastic foundation on the critical buckling loads 

and natural frequency values of a Bernoulli-Euler beam hinged from both ends is investigated. 

Marur and Kant (1996) presented three higher-order refined displacement models to perform free 

vibration analysis of sandwich and composite beams using finite element modeling. Hodges, et 

al. (1991) presented various methods to determine the natural frequencies and mode shapes of 

composite beams. Ozturk (2015) investigated free vibration analysis of pre-stressed curved 

symmetric and asymmetric composite beams under fixed from two ends boundary conditions.  Vo 

et al. (2017) presented free vibration of axially loaded composite beams using a four-unknown 

shear and normal deformation theory by employing a two-node C1 beam element. Vo-Duy et al. 

(2019) performed a free vibration analysis of laminated functionally graded carbon nanotube-

reinforced composite beams using the finite element method. Eken (2019) investigated the free 

vibration analysis of composite aircraft wings by considering them as thin-walled beams with 

NACA airfoil sections. Alambeigi et al. (2020) conducted free and forced vibration analysis of 

sandwich beam having shape memory alloy embedded composite face layers and functionally 

graded porous core. They considered Hamilton’s principle and first-order shear deformation 

theory to derive the governing equations of motions of the beam which is rested on Vlasov’s 

foundation. Qin et al. (2020) examined the vibration characteristics of the composite curved 

beams. For this purpose, they considered elliptical, parabolic, hyperbolic, and circular curved 

beams. Besides, they also measured the effects of the boundary conditions and fiber orientations 

on the natural frequencies of curved composite beam structures. Lee and Kim (2002) investigated 

the lateral buckling analysis of laminated thin-walled channel-section composite beams using 

classical lamination theory. Goyal and Kapania (2007) presented a 21 degree of freedom element 

to perform buckling and vibration analysis of laminated composite beams. For this purpose, they 

employed the first-order shear deformation theory. Zabihollah and Ganesan (2010) investigated 

the buckling behavior of tapered composite beams using higher-order finite element formulation. 

He and Yang (2014) studied buckling analysis of two-layer composite Timoshenko beams using 

the finite element method based on the higher-order beam theory. Wang, et al. (2015) investigated 

the buckling analysis of laminated composite beams under different boundary conditions using 

the isogeometric finite element method based on non-uniform rational b-splines. Kahya (2016) 

studied finite element buckling analysis of laminated composite and sandwich beams using 

multilayered beam elements whose degrees of freedom vary to the number of layers of the 

composite and sandwich beams. Huang and Qiao (2020) performed buckling analysis of thin-

walled curved composite beams with I-section. They presented a closed-form solution to 

determine the buckling load of the structure under bending moment and compression.Tsai and 

Chen (2002) conducted a dynamic stability analysis of the shape memory alloy wire reinforced 

composite beam using the finite element method and harmonic balance method. Yeh and Kuo 

(2004) investigated the dynamic stability of composite plates under parametric excitation 

considering the effects of the length, width, thickness, and fiber orientation of the beam on 

instability. Ozturk et al. (2006) employed the Finite Element Method to investigate the in-plane 

stability analysis of curved beams with non-uniform cross-section. Machado and Cortínez (2009) 

studied the dynamic stability of periodically excited thin-walled composite beams using a seven 

degree of freedom shear deformable beam theory. Saravia et al. (2011) investigated the dynamic 
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stability of thin-walled rotating composite beams by employing the finite element method based 

on Bolotin’s approach. Ke et al. (2013) performed the dynamic stability analysis of functionally 

graded nanocomposite beams by using the Timoshenko Beam Theory. They used Bolotin’s 

method to determine the unstable regions of the nanocomposite beams. Goren Kiral et al. (2015) 

performed a stability analysis for delaminated woven and laminated composite cantilever beams 

with different stacking sequences  Smolijanović et al. (2020) utilized two numerical models, 

which are Model L and Model N, in the dynamic stability analysis of beam structures. They 

employed these numerical models with Y-FDEM, which is an open-source finite discrete element 

package. Glabisz et al. (2020) presented a universal algorithm to analyze the stability of Euler-

Bernoulli nanobeams subjected to arbitrary loads. They conducted the analysis by considering the 

exact solutions of each prismatic nanobeam segment. 

In this study, the dynamic stability of the laminated composite arch frame structures has been 

examined. The Finite Element Method is employed with Classical Plate Theory (CPT).  The 

effects of the radius of curvature and stacking order of the single-bay and two-bay structures on 

the first five natural frequencies, critical buckling load, and unstable first regions are investigated. 

Although there are many studies reported in the literature covering the dynamic stability analysis 

of various composite structures mentioned above, the dynamic stability of curved frame structures 

has not been investigated. In this study, the vibration, buckling, and first unstable regions of 

curved frames are investigated to fill this gap. Besides, the effects of the stacking order and radius 

of curvature on such dynamic characteristics are examined. 

 

2. MATHEMATICAL MODEL 

 

2.1. Theory of the Dynamic Stability 

Figures 1 and 2 show the laminated composite arch (curved) frame subjected to periodically 

compressive distributed load, W(t). Such a loading case can be defined in terms of static and time-

dependent loads as 

 

𝑊(𝑡) = 𝑃 + 𝑃𝑡𝑐𝑜𝑠𝜆𝑡 = 𝛼𝑃𝑐𝑟 + 𝛽𝑃𝑐𝑟𝑐𝑜𝑠𝜆𝑡, 𝛼 =
𝑃

𝑃𝑐𝑟
, 𝛽 =

𝑃𝑡
𝑃𝑐𝑟

 (1) 

where λ is the excitation frequency, P and Pt are the amplitudes of the static and time-variant 

periodic compressive load, respectively. Those two force components of the compressive load 

can be written by dividing them to the static buckling load Pcr as given in Equation (1) (Goren 

Kiral et al., 2015) where α and β denote the static and dynamic load factors, respectively. 
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Figure 1: 

Distributed loading condition of single-bay laminated composite arch (curved) frame structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: 

Distributed loading condition of two-bay laminated composite arch (curved) frame structure 

 

The dynamic response of the laminated composite arch (curved) frame can be formulated 

through Lagrange’s equation of motion. Hence, the governing equation of motion is 

 

 

𝑴𝒒̈ + 𝑲𝒒−𝑊(𝑡)𝑲𝒈𝒒 = 0 (2) 

 

where q is the generalized displacement coordinates. M, K, and Kg are the mass matrix, 

elastic stiffness, matrix, and geometric stiffness matrix of the structure, respectively. Substituting 

Equation (1) into Equation (2) gives 
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𝑴𝒒̈ + (𝑲− 𝛼𝑃𝑐𝑟𝑲𝒈𝒔𝒕 − (𝛽𝑃𝑐𝑟𝑐𝑜𝑠𝜆𝑡) 𝑲𝒈𝒕)𝒒 = 0 (3) 

 

Kgst and Kgt represent the effect of the static and time-variant force components, P and Pt, 

respectively. Equation (3) reflects a second-order differential equation system, including periodic 

components of the Mathieu-Hill expression. Kgst and Kgt become identical when the static and 

dynamic components of the subjected compressive load are applied in the same way. Therefore, 

Equation (3) can be written as, 

 

𝑴𝒒̈ + (𝑲 − 𝑃cr(𝛼 + 𝛽cosλt)𝑲𝒈)𝒒 = 0 (4) 

Equation (4) can be solved by using the finite element method, as explained below. 

 

2.2. Finite Element Method 

To solve the eigenvalue problem given in Equation (4), the Finite Element Method is 

employed with Classical Plate Theory (CPT). the moment equation for unit length is (Petyt, 2010), 

 

{

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

} = [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

]

{
  
 

  
 
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2

2
𝜕2𝑤

𝜕𝑥𝜕𝑦}
  
 

  
 

 

{
  
 

  
 
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2

2
𝜕2𝑤

𝜕𝑥𝜕𝑦}
  
 

  
 

= [

𝐷11
∗ 𝐷12

∗ 𝐷16
∗

𝐷12
∗ 𝐷22

∗ 𝐷26
∗

𝐷16
∗ 𝐷26

∗ 𝐷66
∗
] {

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

} 

(5) 

 

where Mxx, Myy, and Mxy are the moments, D*
ij denotes the inverse of the Dij, which is the 

components of the bending stiffness matrix. Dij is given by 

 

𝐷𝑖𝑗 =
1

3
∑𝑄𝑖𝑗

𝑘 (𝑧𝑘+1
3 − 𝑧𝑘

3), 𝑖, 𝑗 = 1, 2, 6

𝑁𝐿

𝑘=1

 (6) 

 

where NL is the number of laminates, Qij is the stiffnesses given in Appendix A, and z is the 

variable of the coordinate of the kth laminate, shown in Figure 3. It is assumed that Myy=Mxy=0 for 

laminated beam theory (Ozturk, 2015). Hence, 

 

𝜕2𝑤

𝜕𝑥2
= 𝐷11

∗ 𝑀𝑥𝑥 (7) 
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Figure 3: 

Laminated composite material 

 

Equation (7) can be written in a form that is well-known in Euler-Bernoulli beam theory as 

 

𝑀 = 𝑏𝑀𝑥𝑥 ,  𝑀𝑥𝑥 = 𝐸𝑥𝑥𝐼 
𝜕2𝑤

𝜕𝑥2
,     𝐸𝑥𝑥 = 𝐸𝑒𝑓𝑓 =

12

ℎ3𝐷11
∗  (8) 

 

where Exx or Eeff is the effective flexural modulus, b, and h  are the width and thickness of the 

finite element. Figure 4 shows the frame element having 3 degrees of freedom (DOF) to perform 

finite element analysis where u, w, and θ denote the longitudinal displacement, bending 

displacement, and slope of the laminated composite arch (curved) frame structure, respectively. 

 

 

 

 

 

 

Figure 4: 

Frame element 

Equation (9) denotes the displacement equations of the frame element (Petyt, 2010). 

 

𝑢 = 𝑎1 + 𝑎2𝑥 

𝑤 = 𝑎3 + 𝑎4𝑥 + 𝑎5𝑥
2 + 𝑎6𝑥

3 

𝜃 =
𝑑𝑤

𝑑𝑥
 

(9) 

 

The generalized displacement vector of the frame element is given in  Equation (10). 

 

{𝑞} = [𝑢1   𝑤1  𝜃1  𝑢2   𝑤2  𝜃2] (10) 
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Equations (11) and (12) give the strain and kinetic energy equations of the frame element, 

respectively (Petyt, 2010). 

 

𝑈𝑒 =
1

2
𝐸𝑒𝑓𝑓𝐼 ∫

𝜕2𝑤

𝜕𝑥2

𝐿

0

𝑑𝑥 +
1

2
𝐸𝑒𝑓𝑓𝐴∫

𝜕2𝑢

𝜕𝑥2

𝐿

0

𝒅𝒙 (11) 

 

𝑇𝑒 =
1

2
∫𝜌𝐴(𝑢̇2 + 𝑤̇2)

𝐿

0

𝑑𝑥 (12) 

 

where I is the second moment of inertia, A denotes the cross-sectional area of the arch 

(curved) frame structure, and ρ represents the density. Equations (11) and (12) can be written in 

matrix form as 

 

𝑈𝑒 =
1

2
𝒒𝑻𝒌𝒆𝒒 (13) 

 

 

𝑇𝑒 =
1

2
𝒒𝑻𝒎𝒆𝒒 (14) 

 

where ke and me are the element elastic stiffness and mass matrices, respectively. The work 

done by the perpendicular distributed load (Goren Kiral et al., 2015) is 

 

𝑉𝑒 =
1

2
𝑊∫(

𝜕𝑣

𝜕𝑥
)
2

𝐿

0

𝑑𝑥 (15) 

 

The matrix form of Equation (15) can be written as, 

 

𝑉𝑒 =
1

2
𝒒𝑻𝒌𝒈𝒆𝒒 (16) 

 

where kge is the element geometric stiffness matrix. Since the laminated composite arch 

(curved) frame structure is composed of straight frame beam elements, element mass, elastic 

stiffness, and geometric stiffness matrices are needed to be transformed in therms of reference 

coordinates as is shown in Figure 5. Hence, those matrices are transformed considering the 3-

DOF element by using Equation (17). 
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Figure 5: 

Transformation of local coordinates 

 

𝒌̅𝒆 = 𝑻
𝑻𝒌𝒆𝑻    

𝒎̅𝒆 = 𝑻
𝑻𝒎𝒆𝑻  

𝒌̅𝒈𝒆 = 𝑻
𝑻𝒌𝒈𝒆𝑻 

(17) 

 

where T is the transformation matrix for 3DOF, which is, 

 

𝑻 = [
cos𝜃 sin𝜃 0
−sin𝜃 cos𝜃 0
0 0 1

] (18) 

Bolotin (1964) indicated that considering 2T= π/λ as period provides significant importance 

since the widths of the unstable regions are generally larger than those solved with period T = 

2π/λ. Hence, performing a periodic solution considering the period as 2T on Equation (19) gives 

the eigenvalue problem of dynamic stability analysis as 

 

[𝑲 − 𝑃𝑐𝑟(𝛼 ∓ 0.5𝛽)𝑲𝒈 −
𝜆2

4
𝑴]𝒒 = 0 (20) 

 

3. NUMERICAL RESULTS 

 

The Finite Element Method is employed to obtain the static and dynamic characteristics of 

the single-bay and two-bay laminated composite arch (curved) frame structures. The material and 

geometrical properties of such structures are given in Table 1 (Gay, 2014). All analyses are 

performed under fixed from all ends boundary conditions. The convergence analyses, given in 

Figure 6  and Table 2, are performed for 100, 150, 200, and 250  frame elements to check the 

validity of the mathematical model of the frame structure having C1 stacking order and Rxx=2Lb 

radius of curvature. The number of elements considered for the ANSYS model is set as 30. The 

best results are obtained for 250 frame elements.  

 The buckling analysis is conducted via MATLAB by considering the loading cases shown 

in Figures. 1  and 2. The dynamic characteristics of the laminated arch frame structures are 

performed considering five different stacking orders. For simlicity, those stacking orders are 

presented as 
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C1 = [(00)4], C2 = [(900/00)2]s, C3 = [(00/900)2]s, 

C4 = [00/450/-450/00], and C5 = [00/600/-600/00]. 

 

 

Table 1. Material properties and geometry of the structure of laminated composite arch 

(curved) frames 

Property Symbol Quantity 

Longitudinal Elasticity Modulus Ex 45 GPa 

Transverse Elasticity Modulus Ey 12 GPa 

Density ρ 2080 kg/m3 

Poisson Ratio ν 0.33 

Geometric Properties of the Structure 

Beam Length Lb 1000 mm 

Radius of Curvature (Standard) Rxx 2Lb 

Cross-section 
h Lb/100 

b 

 

Lb/100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: 

Convergence analysis results of free vibration analysis of the C1 single-bay structure 

 

 

 

 

 

 

 



Daş O., Öztürk H., Gönenli C.: Dynamic Stabil. Analys. of the Laminated Compos. Curved Frame Struc. 

 

638 

Table 2. The convergence analysis results of the buckling analysis of the single-bay 

laminated composite arch frame structure having Rxx=2Lb radius of curvature and C1 

stacking order 

Number of Elements 
Critical Buckling Load (N) 

PS ANSYS Error (%) 

100 593.850 546.550 8.65% 

150 578.120 546.550 5.78% 

200 572.590 546.550 4.76% 

250 567.800 546.550 3.89% 

 

2.3. The Single-Bay Structure 

Table 3 gives the first five natural frequencies and the critical buckling load values of the 

single-bay arch (curved) frame structure having C1 stacking order and different radius of 

curvature values. 

 

Table 3. Free vibration results of the C1 laminated composite single-bay arch frame 

structure having different radius of curvatures 

Natural Frequency (Hz) Rxx=1.5Lb Rxx=2Lb Rxx=2.5Lb Rxx=3Lb 

λ1 6.952 6.986 7.002 7.012 
λ2 26.427 26.830 27.039 27.164 
λ3 44.445 44.737 44.890 44.984 

λ4 50.324 50.121 49.960 49.837 

λ5 95.571 96.738 97.305 97.630 

Critical Buckling Load  (N) 566.350 567.800 568.450 568.800 

According to the results given in Table 3, the first three and the fifth natural frequency values 

increase slightly as the radius of curvature of the laminate composite arch (curved) frame structure 

increases. In contrast, the fourth natural frequency decreases as the radius of the curvature of the 

structure increases. The critical buckling load changes in the same way as the radius of curvature 

changes. Figures. 7 and 8 show the instability region of the laminated composite arch (curved) 

frame structure with C1 stacking order and four different radii of curvatures for α=0 and α=0.5, 

respectively. It is inferred from Figures. 7 and 8 that increasing the radius of the curvature of the 

arch (curved) frame structure does not considerably affect the instability region. Thus, the 

difference between the first unstable regions of different curvatures is so small that it can be 

neglected. Besides, the unstable region widens as the dynamic load factor increases. These 

conditions are observed for structures having different stacking orders and the two-bay arch 

(curved) frame structures. 
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Figure 7: 

The first unstable regions for α=0 under different radius of curvatures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: 

The first unstable regions for α=0.5 under different radius of curvatures 

 

Table 4 gives the first five natural frequency results of the laminated composite arch frames 

having five different stacking orders.  It is seen from Table 4 that the fiber angle of the second 

and the third layers, or in other words the mid-layers, do not affect the natural frequency values 

and the critical buckling load considerably. However, even the change is small,  the natural 

frequencies and critical buckling load values decrease as the fiber angle of the mid-layers 

increases. On the other hand, the fiber angles of the first and the last layers have the most impact 

on the natural frequency and critical buckling load values. Such values decrease significantly as 

the fiber angles of the first and the last layers increases from 00 to 900. Such an incident occurs 

since those layers are subjected to bending forces more than the mid-layers. 
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Table 4. Free vibration and buckling analysis results of the laminated composite single-

bay arch frame structure having different stacking orders for Rxx=2Lb 

Natural Frequency (Hz) C1 C2 C3 C4 C5 

λ1  6.986  4.191  6.673  6.741  6.687  

λ2 26.830  16.097  25.628  25.889  25.682  

λ3 44.737  26.840  42.732  43.168  42.823  

λ4 50.121  30.070  47.875  48.363  47.976  

λ5 96.738  58.037  92.402  93.344  92.597  

Critical Buckling Load  (N) 567.800 204.370 518.040 528.660 520.230 

 

 

Figures 9 and 10 show the dynamic instability region of the laminated composite arch 

(curved) frame structures having different stacking orders. It is concluded that the unstable region 

is almost the same for arch (curved) frame structures having C1, C3, C4, and C5. The distance of 

the unstable regions to the origin can be ordered from the closest to farthest as C2, C3, C5, C4, 

and C1, respectively. Although the unstable regions of C1, C3, C4, and C5 are similar, the 

unstable region of C2 is quite different. Such difference occurs since the fiber angles first and last 

layers of C2 are 900 degrees which lower the stiffness of the structure considerably. When the 

static load factor decreases, the unstable region becomes wider and moves further from the origin 

regardless of stacking orders. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: 

The first unstable regions for α=0 under different fiber orientations 
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Figure 10: 

The first unstable regions for α=0.5 under different fiber orientations 

 

2.4. The Two-Bay Structure 

Table 5 gives the first five natural frequencies and the critical buckling load values of the 

laminated composite two-bay arch frame structure having C1 stacking order considering four 

different radii of curvatures. 

 

Table 5. Free vibration and buckling analyses results of the C1 laminated composite two-

bay curved frame structure having different radius of curvatures 

Natural Frequency (Hz) Rxx=1.5Lb Rxx=2Lb Rxx=2.5Lb Rxx=3Lb 

λ1 6.169 6.197 6.210 6.521 

λ2 25.823 26.171 26.337 26.505 

λ3 33.243 33.773 34.001 32.901 

λ4 41.510 41.642 41.736 45.499 
λ5 50.098 50.073 49.935 49.925 
Critical Buckling Load  (N) 799.980 801.560 802.210 875.860 

 

According to the natural frequency results given in Table 5, the first four natural frequency 

values increase, while the fifth natural frequency value decreases as the curvature of the frame 

structure increases. The critical buckling load increases as the radius of curvature of the two-bay 

laminated composite curved frame structure increases. Similar behaviors are seen for all stacking 

orders. Table 6 gives the first five natural frequency and critical buckling load values of the two-

bay laminated composite arch frame structure having different stacking orders. It is seen from 

Table 6 that the stacking order has the same impact on the natural frequency and critical buckling 

load values as in the single-bay structure. Apart from the fifth natural frequency value, the natural 

frequency values decrease slightly when compared with the single-bay structure. The fifth natural 

frequency, on the other hand, falls significantly due to the shifts and changes in mode shapes of 

the structure shown in Appendices B and C. 
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Table 5. Free vibration and buckling analysis results of the laminated composite two-bay 

curved frame structure having different stacking orders for Rxx=2Lb 

Natural Frequency (Hz) C1 C2 C3 C4 C5 

λ1  6.197 3.718 5.919 5.979 5.932 

λ2 26.171 15.701 24.998 25.253 25.051 

λ3 33.773 20.262 32.259 32.588 32.328 

λ4 41.642 24.983 39.776 40.182 39.860 

λ5 50.073 30.041 47.829 48.317 47.930 

Critical Buckling Load  (N) 801.560 288.500 731.320 746.310 734.410 

 

Figures 11 and 12 show the first unstable regions of the laminated composite arch (curved) 

two-bay frame structures having different stacking orders. It is seen from Figures 11 and 12 that 

the first unstable regions of two-bay arch (curved) frame structures have the same behavior as 

those of the single-bay structure. Likewise, the unstable region reaches its closest distance to the 

origin as the structure has C2 stacking order. The unstable regions move toward the origin and 

become narrow as the static load factor increases. Comparing with the first unstable regions 

obtained for the single-bay structure, the unstable regions of the two-bay structure move slightly 

towards origin because of being a two-bay structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: 

The first unstable regions of the two-bay structure for α=0 under different fiber 

orientations 
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Figure 11: 

The first unstable regions of the two-bay structure for α=0.5 under different fiber 

orientations 

The mode shapes of single-bay and two-bay laminated composite arch (curved) frame 

structure, shown in Appendices B and C, are similar to each other except for the fifth and fourth 

modes, which are shifted to each other when the structure has two-bay instead of single-bay. 

Besides, the stacking order does not affect the mode shapes of both single-bay and two-bay arch 

(curved) frame structures. It is inferred from the results given in this section that the fiber angles 

of the first and the last laminate have the most impact on natural frequency values, whereas the 

effect of the fiber angles of the middle laminates is quite small. Hence considering Rxx=2Lb, the 

ranking of the fundamental natural frequency values and critical buckling load of the 

corresponding stacking order from the lowest to the highest value is C2, C3, C5, C4, and C1, 

respectively. As a result, the change in the radius of curvature of the laminated composite arch 

frame structures does not affect the first five natural frequencies and critical buckling load of the 

structure considerably. On the other hand, the stacking order has a significant impact on the 

natural frequencies and critical buckling load value of the structure. However, both changing the 

radius of curvature or the stacking order does not shift the mode shapes, as seen from Appendices 

B and C. 

 

4. CONCLUSIONS 

 

This study has investigated the dynamic analysis of laminated composite arch (curved) frame 

structures using the finite element method. Classical Plate Theory is employed to satisfy the stress 

and strain conditions of the arch (curved) frame structure. According to the results of this work, 

the following conclusions are drawn. 

 

• The changes in the radius of curvature affect slightly the natural frequency values, critical 

buckling values, and the instability region of the laminated composite arch (curved) frame 

structures. 

• The first three and fifth natural frequency values of single-bay laminated composite arch 

(curved) frame structures increase. In contrast, the fourth natural frequency decreases as the radius 

of curvature of the frame structure increases. For the two-bay arch (curved) frame structure, the 
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first four natural frequency values increase while the fifth natural frequency decreases as the 

radius of curvature of the structure increases. 

• The single-bay and two-bay structures differ from each other in terms of their response to the 

variations in the radius of curvature due to the shift between mode shapes (see Appendices B and 

C). 

• The mode shapes do not change with respect to the stacking order or the radius of curvature 

of the single-bay and two-bay laminated composite arch (curved) frame structures. 

• The critical buckling load values increase as the radius of curvature of the laminated composite 

arch (curved) frame structure increases, no matter which stacking order the arch (curved) frame 

structures have. 

• The unstable region moves slightly towards the origin as the radius of curvature of the 

laminated composite arch (curved) frame structure decreases.  

• It is inferred from the numerical results that the fiber angle has a significant effect on the 

natural frequency values, critical buckling load values, and first unstable regions of both single 

and two-bay structures. The highest impact on such properties is caused by the fiber angle of the 

material’s first and the last layer.  Hence, the effect of C1, C3, C4, and C5 on the dynamical and 

buckling characteristics of laminated composite arch (curved) frame structures is negligible, 

whereas the effect of C2 is considerable. 

• It is concluded from the numerical results that applying C2 as the stacking order for laminated 

composite arch (curved) frame structure decreases the natural frequency values and critical 

buckling loads, narrows and moves the unstable region to the origin when compared with other 

stacking orders C1, C3, C4, and C5. 
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Appendix A  

 

 

𝑄11 = 𝑞11𝑐
4 + 2(𝑞12 + 2𝑞16)𝑠

2𝑐2 + 𝑞22𝑠
4 

𝑄12 = (𝑞11 + 𝑞22 − 4𝑞66)𝑠
2𝑐2 + 𝑞12(𝑠

4 + 𝑐4) 

𝑄22 = 𝑞22𝑐
4 + 2(𝑞12 + 2𝑞16)𝑠

2𝑐2 + 𝑞11𝑠
4 

𝑄16 = (𝑞11 − 𝑞22 − 2𝑞66)𝑠𝑐
3 + (𝑞12 − 𝑞22 + 2𝑞66𝑠

3𝑐) 

𝑄26 = (𝑞11 − 𝑞22 − 2𝑞66)𝑠
3𝑐 + (𝑞12 − 𝑞22 + 2𝑞66𝑠𝑐

3) 

𝑄66 = (𝑞11 + 𝑞22 − 2𝑞12 − 2𝑞66)𝑠
2𝑐2 + 𝑞66(𝑠

4 + 𝑐4) 

c=cosθ and s=sinθ where θ is the fiber angle 

𝑞11 =
𝐸𝑥

1 − 𝜗𝑥𝑦𝜗𝑦𝑥
 

 

𝑞12 =
𝜗𝑥𝑦𝐸𝑦

1 − 𝜗𝑥𝑦𝜗𝑦𝑥
 

 

𝑞12 =
𝐸𝑦

1 − 𝜗𝑥𝑦𝜗𝑦𝑥
 

 

𝑞66 = 𝐺𝑥𝑦  

 

𝐸𝑥𝜗𝑥𝑦 = 𝐸𝑦𝜗𝑦𝑥 

 

where Ex and Ey are the modulus of elasticity in x- and y- direction, respectively, and, 

𝜗𝑥𝑦: Strain value in the x-direction because of the unit strain in y-direction 

𝜗𝑦𝑥: Strain value in the y-direction because of the unit strain in x-direction 
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Appendix B  
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Appendix C  
 


