
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 70, Number 2, Pages 1085–1098 (2021)
DOI:10.31801/cfsuasmas.915412
ISSN 1303-5991 E-ISSN 2618-6470

https://communications.science.ankara.edu.tr

Research Article; Received:April 13, 2021; Accepted: June 25, 2021
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Abstract. In this paper, different estimation methods are considered for the
parameters of the inverse weighted Lindley (IWL) distribution introduced by

Ramos et al.(2019). Parameters of the IWL are estimated by the method of

maximum likelihood (ML), least squares (LS), weighted least squares (WLS),
Cramér-von Mises (CVM) and Anderson Darling (AD). The performances of

the estimators are compared using Monte Carlo simulation study via bias,

mean square error and deficiency (Def) criteria. Finally, a real data set is
analyzed for illustrative purposes.

1. Introduction

Lindley distribution presented by Lindley [7] is an important distribution in
statistics and many applied areas because of its flexible mathematical properties.
Furthermore, Lindley distribution is more preferable than the exponential distri-
bution in many cases (see [5]). Different generalizations are considered in the lit-
erature such as given in [15], [1], [3] to add more flexibility to Lindley distribution.
Weighted distributions can extend and provide more flexibility to standard distribu-
tions (see [11]). Two-parameter weighted Lindley (WL) distribution is introduced
by Ghitany et al. [4]. Mazucheli et al. [3] study on the finite sample properties of
the parameters of the WL distribution using four methods. Wang and Wang [14]
propose bias-corrected maximum likelihood (bias-corrected ML) estimators for the
parameters of the WL distribution. Ramos and Louzada [13] introduce three pa-
rameters generalized weighted Lindley distribution. Ramos et al. [12] propose the
inverse weighted Lindley (IWL) distribution. The IWL distribution is a component
of two mixture model with upside-down bathtub hazard rate function. The IWL
distribution is flexible to model data sets in the presence of heterogeneity (see [12]).
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For example, if we are interested in life time of products in a group, it can be consid-
ered that the group is heterogeneous. Since the observed failure times of products
could be different. In this case, the IWL distribution can be appropriate to describe
the heterogeneity in the data.

The IWL distribution is specified by the probability density function (pdf)

f(t) =
λϕ+1

(ϕ+ λ)Γ(ϕ)
t−ϕ−1

(
1 +

1

t

)
e−λt−1

, (1)

for all t > 0, ϕ > 0 and λ > 0 where Γ(ϕ) is the gamma function which is computed
by Γ(ϕ) =

∫∞
0
e−xxϕ−1dx is the gamma function. The corresponding cumulative

distribution function (cdf) is given by

F (t) =
Γ(ϕ, λt−1)(λ+ ϕ) + (λt−1)ϕe−λt−1

(λ+ ϕ)Γ(ϕ)
(2)

where Γ(x, y) =
∫∞
x
wy−1e−xdw is the upper incomplete gamma. The survival

function and hazard function of the IWL distribution are defined as follows

S(t) =
γ(ϕ, λt−1)(λ+ ϕ)− (λt−1)ϕe−λt−1

(λ+ ϕ)Γ(ϕ)
, (3)

h(t) =
λϕ+1t−ϕ−1(1 + t−1)e−λt−1

γ(ϕ, λt−1)(λ+ ϕ)− (λt−1)ϕe−λt−1 , (4)

respectively. Here γ(y, x) =
∫ x

0
wy−1e−wdw is the lower incomplete gamma func-

tion. Hazard function plots of the IWL distribution for some selected values of
parameters (ϕ, λ) are presented in Figure 1.

We refer to [12] for the further details about the IWL distribution.
Ramos et al. [12] present the ML and Bias-corrected ML estimators for the pa-

rameters of the IWL distribution for both complete and censored data and examine
the efficienct of bias correction via Monte Carlo simulation.

To the best of our knowledge, parameters of the IWL distribution have not been
estimated using different methods, namely, least square (LS), weighted least squares
(WLS), Cramér-von Mises (CVM) and Anderson Darling (AD) methods.

In this paper, we propose ML, LS, WLS, CVM and AD estimators for parameters
of the IWL distribution. CVM and AD estimators are in the class of minimum
distance estimators which are based on minimizing distance between the estimated
and empirical cdf with respect to the parameters of interest. Minimum distance
estimators are also called as goodness of fit estimators. See [2] and [8] for the further
details of goodness of fit estimators. We carry out Monte Carlo simulation study in
order to compare performances of the proposed estimators in terms of bias, mean
squared error (MSE) and deficiency (Def) criteria.

The rest of paper is organized as follows. Brief descriptions of ML, LS, WLS,
CVM and AD methods are given in Section 2. In Section 3, an extensive Monte
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Figure 1. Hazard function plots of the IWL distribution for some
selected values of parameters (ϕ, λ).

Carlo simulation study is carried out to compare the performances of the estimators
for parameters of the IWL distribution. In Section 4, we give real data application
to illustrate the implementation of the proposed methodology. In the final section,
the concluding remarks are given.

2. Estimation methods

In this section, we give a brief information of the estimation methods, called as
ML, LS, WLS, CVM and AD used to estimate parameters of the IWL in this study.
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2.1. Maximum likelihood estimators. Let T1, T2, ..., Tn be a random sample
from the IWL(ϕ, λ) distribution. Then, the log-likelihood function (l) of the ob-
served sample is

l = n(ϕ+ 1)logλ− nlog(λ+ ϕ)− nlogΓ(ϕ)− λ

n∑
i=1

1

ti
− (ϕ+ 1)

n∑
i=1

log(ti). (5)

The ML estimators of the parameters ϕ and λ are obtained from the following
likelihood equations:

∂l

∂ϕ
= nlog(λ)−

n∑
i=1

log(ti)−
n

λ+ ϕ
− nψ(ϕ) = 0 (6)

∂l

∂λ
=

n(ϕ+ 1)

λ
−

n∑
i=1

1

ti
− n

λ+ ϕ
= 0 (7)

where ψ(k) = ∂
∂k logΓ(k) =

Γ′(k)
Γ(k) is the digamma function. The ML estimate of λ

is obtained from equation (7) as

λ̂ML =
−ϕ̂ML(ξ(t)− 1) +

√
(ϕ̂ML(ξ(t)− 1))2 + 4ξ(t)(ϕ̂

2

ML + ϕ̂ML)

2ξ(t)
(8)

where ξ(t) =
∑n

i=1(nti)
−1. It is obvious that (6) cannot be solved explicitly.

Therefore, for computing the ML estimator of ϕ, numerical methods should be
performed. See [12] for more details about the ML estimators of the parameters of
the IWL distribution.

2.2. Least Squares Estimation Method. Let x(i), i = 1, 2, ..., n be the order
statistics of a random sample from the IWL distribution. Since F (x(i)) behaves as
the i-th order statistic of a sample size from U(0, 1), expected value and variance
of F (x(i)) are given as follows:

E[F (x(i))] =
i

n+ 1
and V ar[F (x(i))] =

i(n− i+ 1)

(n+ 1)2(n+ 2)
, (9)

respectively. The LS estimators of the parameters of the IWL distribution are
obtained by minimizing the following function with respect to the parameters ϕ
and λ.

S =

n∑
i=1

(
F (x(i))−

i

n+ 1

)2

. (10)

Here F (.) is the cdf of the IWL given in (2). LS estimators of ϕ and λ are obtained
by solving following equations:

∂S

∂ϕ
=

n∑
i=1

(
F (x(i);ϕ, λ)−

i

n+ 1

)
Λ1(x(i);ϕ, λ) = 0,
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∂S

∂λ
=

n∑
i=1

(
F (x(i);ϕ, λ)−

i

n+ 1

)
Λ2(x(i);ϕ, λ) = 0, (11)

where

Λ1(x(i);ϕ, λ) =

(
Γ(ϕ,λt−1)+γ1(ϕ+λ)+(λt−1)ϕln(λt−1)e−λt−1

)(
(λ+ϕ)Γ(ϕ)

)
(

(λ+ϕ)Γ(ϕ)

)2

−

(
Γ(ϕ,λt−1)(λ+ϕ)+(λt−1)ϕe−λt−1

)(
λγ3+Γ(ϕ)+ϕγ3

)
(

(λ+ϕ)Γ(ϕ)

)2 , (12)

Λ2(x(i);ϕ, λ) =

(
Γ(ϕ,λt−1)+γ2(λ+ϕ)+t−1e−λt−1

(ϕ(λt−1)ϕ−1−(λt−1)ϕ)

)
(

(λ+ϕ)Γ(ϕ)

)2

×

(
(λ+ ϕ)Γ(ϕ)

)
−

(
Γ(ϕ,λt−1)(λ+ϕ)+(λt−1)ϕe−λt−1

)
Γ(ϕ)(

(λ+ϕ)Γ(ϕ)

)2 , (13)

respectively. It is obvious that, since equations given in (11) include nonlinear
functions, numerical methods should be performed to obtain LS estimators of ϕ
and λ.

2.3. Weighted Least Squares Estimators. The WLS estimators of the param-
eters ϕ and λ are obtained by minimizing the following function:

Sw =

n∑
i=1

wi

(
F (x(i))−

i

n+ 1

)2

(14)

where wi denotes the weight and computed by

wi =
1

Var(F (X(i)))
=

(n+ 1)2(n+ 2)

i(n− i− 1)
, i = 1, 2, ..., n.
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The WLS estimators of ϕ and λ are obtained by solving the following nonlinear
equations:

∂Sw

∂ϕ
=

n∑
i=1

wi

(
F (x(i);ϕ, λ)−

i

n+ 1

)
Λ1(x(i);ϕ, λ) = 0,

∂Sw

∂λ
=

n∑
i=1

wi

(
F (x(i);ϕ, λ)−

i

n+ 1

)
Λ2(x(i);ϕ, λ) = 0, (15)

respectively. Here Λ1 and Λ2 are given in (13). It is clear that WLS estimators
should also be obtained using numerical methods, since equations given in (15)
cannot be solved explicitly.

2.4. Cramér-von Mises estimators. CVM estimators of the parameters of the
IWL distribution are obtained by minimizing the following equation with respect
to the parameters ϕ and λ.

CVM =
1

12n
+

n∑
i=1

(
F (x(i), ϕ, λ)−

2i− 1

2n

)2

(16)

To obtain the CVM estimators of the parameters, we have to solve the following
equations by using numerical methods.

∂CVM

∂ϕ
=

n∑
i=1

(
F (x(i);ϕ, λ)−

2i− 1

2n

)
Λ1(x(i);ϕ, λ) = 0,

∂CVM

∂λ
=

n∑
i=1

(
F (x(i);ϕ, λ)−

2i− 1

2n

)
Λ2(x(i);ϕ, λ) = 0. (17)

Here, Λ1 and Λ2 are given in (13).

2.5. Anderson Darling estimators. The AD estimators of ϕ and λ are obtained
by minimizing the following equation with respect to the parameters of interest.

A = −n− 1

n

n∑
i=1

(2i− 1)

{
log

[
F (x(i))

(
1− F (x(j))

)]}
, (18)

where j = n − i + 1. The AD estimators of ϕ and λ are obtained by solving the
nonlinear equations

∂A

∂ϕ
=

n∑
i=1

(2i− 1)

[
Λ1(x(i), ϕ, λ)

F (x(i), ϕ, λ)
−

Λ1(x(j), ϕ, λ)

F (x(j), ϕ, λ)

]
= 0

∂A

∂λ
=

n∑
i=1

(2i− 1)

[
Λ2(x(i), ϕ, λ)

F (x(i), ϕ, λ)
−

Λ2(x(j), ϕ, λ)

F (x(j), ϕ, λ)

]
= 0, (19)

respectively. Here, Λ1 and Λ2 are given in (13). Nonlinear equations given in (19)
can be solved by using numerical methods.
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3. Simulation study

In this section, we conduct a Monte-Carlo simulation study to compare the
performance of the different estimation methods discussed in the previous section.
The bias, MSE and Def criteria are used in the comparisons. The bias and MSE
are respectively formulated as follows:

Bias(θ̂) = E(θ − θ̂) and MSE(θ̂) = E(θ − θ̂)2

where θ = (ϕ, λ). The mathematical expression of the Def criterion used in this
study to compare joint efficiencies of the parameters is given as

Def = MSE(ϕ̂) +MSE(λ̂),

see [6] for the further details on DEF. In simulation study, we generate random
data from the IWL distribution using the algorithm given by Ramos et al. [12]. The
simulation study is performed considering the values: (ϕ, λ) = (0.5, 0.5), (0.5, 2),
(2, 0.5), (2, 4) and n = (20, 50, 100, 200, 500).
For all the numerical computations, we use the R statistical software environment.
The ML, LS, WLS, CVM and AD estimators of the parameters are obtained by
using “optim” function. Simulation results are given in Table 1-Table 4.

It is observed from Table 1 and Table 2 that the ML estimators of ϕ and λ have
the smallest bias for all sample sizes. The ML estimator is also the most efficient
one for both ϕ and λ parameters with the smallest MSE values for all cases. The
AD estimators of ϕ and λ outperform LS, WLS and CVM estimators in terms
of bias and MSE criteria. Overall, the ML estimators of parameters of the IWL
distribution is the best estimator in terms of Def criterion. It is followed by AD
estimators.

It is observed from Table 3 that the ML estimators of ϕ and λ perform better
than the others in terms of bias and MSE criterion in most cases. However AD
estimators of ϕ and λ outperform the ML, LS, WLS and CVM estimators in terms
of both bias and MSE criteria, when n = 20. According to Def, the AD estimator
has the best performance for n = 20. Otherwise the ML estimator can be preferred.

It is observed from Table 4 that the ML estimators of ϕ and λ have the smallest
bias and MSE values in most cases. On the other hand, the bias values of all
estimators are close to each other. The AD is the best for n = 20 and followed by
WLS and LS estimators.

The simulation results show that ML has the best performance with the lowest
deficiency almost in all cases. However, AD has a little bit smaller deficiency than
the ML when n = 20, ϕ = 2 and λ = 4. Also, ML has higher deficiency than LS,
WLS and AD when n = 20, ϕ = 2 and λ = 0.5.

Overall, we suggest using the ML methodology for estimating the parameters
of the IWL distribution because of its superior performance. Also for the small
sample size, the AD estimators can be preferred. It can be also said that CVM
estimators of ϕ and λ demonstrate the weakest performance for all cases.
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Table 1. Simulated biases, MSEs and Def values of the ML, LS,
WLS, CVM and AD estimators for ϕ = 0.5, λ = 0.5.

ϕ λ
n Method Bias MSE Bias MSE Def

20

ML -0.1784 0.0019 -1.5279 0.3212 0.3231
LS -0.2345 0.0028 -2.3822 0.4274 0.4302

WLS -0.2291 0.0025 -2.7214 0.3867 0.3892
CVM -0.2608 0.0031 -2.5854 0.6440 0.6471
AD -0.2096 0.0025 -1.9553 0.3501 0.3526

50

ML -0.1784 0.0018 -1.4903 0.3138 0.3157
LS -0.2341 0.0026 -2.3477 0.4117 0.4144

WLS -0.2291 0.0023 -2.6822 0.3645 0.3668
CVM -0.2519 0.0029 -2.4238 0.6248 0.6277
AD -0.2073 0.0022 -1.9289 0.3421 0.3443

100

ML -0.1669 0.0017 -1.4630 0.3103 0.3120
LS -0.2314 0.0025 -2.3501 0.4013 0.4038

WLS -0.2240 0.0023 -2.5933 0.3528 0.3551
CVM -0.2497 0.0028 -2.3878 0.6209 0.6237
AD -0.2072 0.0021 -1.9823 0.3419 0.3441

200

ML -0.1518 0.0015 -1.4334 0.3067 0.3082
LS -0.2294 0.0023 -2.3326 0.4002 0.4025

WLS -0.2233 0.0022 -2.4987 0.3312 0.3334
CVM -0.2474 0.0026 -2.3512 0.6076 0.6102
AD -0.2022 0.0021 -1.9663 0.3353 0.3374

500

ML -0.1364 0.0011 -1.4280 0.2952 0.2964
LS -0.2234 0.0020 -2.3293 0.3982 0.4002

WLS -0.2212 0.0021 -2.4574 0.3166 0.3187
CVM -0.2469 0.0024 -2.3367 0.5825 0.5849
AD -0.2019 0.0019 -1.9356 0.3285 0.3304

4. Application

In this section, we analyse a real data set taken from the literature to show the
implementation of the proposed methods. The data set in Table 5 consist of the
failure stresses (in GPa) of 65 single carbon fiber of length 50mm. This data set
is taken from Mazucheli et al. [9] in which weighted Lindley (WL) distribution is
used.

To fit the IWL distribution to the data set, we use Q-Q plot technique which is
one of the well-known and widely used graphical techniques. It is observed from
Figure (2) that IWL distribution provides good fit to model the failure stresses data
set.
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Figure 2. IWL QQ plot for the failure stresses data set.

In this study, we use Kolmogorov-Simirnov (KS) test which is a well-known
goodness of fit test to test whether the IWL distribution is appropriate for the
data.

Furthermore, to identify the parameter estimation methods providing a better
fit to the data set, we use Akaike information criterion (AIC), Bayesian information
criterion (BCI), the root mean square error (RMSE) and coefficient of determination
(R2) criteria.

We present the estimates of the IWL parameters, AIC, BIC, RMSE, R2 and
p-values obtained from Kolmogrov-Smirnov test are given in Table 6 for the failure
stresses data set.

Acording to the results of the KS test given in Table 6, it can be concluded that
the IWL distribution with the ML, LS, WLS, CVM and AD estimators of ϕ and λ
works quite well to fit the failure stresses data set. However, It is clear from Table
6 that the ML is more desirable according to p-values for the IWL distribution.

It is also obvious from Table 6 that the ML estimates is the most appropriate
model among the others. They are followed by the AD estimates. Since it is known
that the model having the lowest AIC, the lowest BIC, the lowest RMSE and the
highest R2 value among the models provides better fitting to the data.
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Table 2. Simulated biases, MSEs and Def values of the ML, LS,
WLS, CVM and AD estimators for ϕ = 0.5, λ = 2.

ϕ λ
n Method Bias MSE Bias MSE Def

20

ML -0.0884 0.0022 0.2936 0.1503 0.1541
LS -0.1597 0.0056 0.6346 0.1749 0.1805

WLS -0.1227 0.0038 0.3956 0.2276 0.2298
CVM -0.1989 0.0044 0.5366 0.2196 0.2240
AD -0.1346 0.0029 0.2968 0.1589 0.1617

50

ML -0.0863 0.0021 0.2930 0.1485 0.1519
LS -0.1582 0.0051 0.6312 0.1702 0.1753

WLS -0.1223 0.0034 0.3956 0.2208 0.2229
CVM -0.1972 0.0041 0.5226 0.2112 0.2153
AD -0.1340 0.0026 0.2913 0.1429 0.1455

100

ML -0.0855 0.0019 0.2857 0.1376 0.1396
LS -0.1578 0.0048 0.5947 0.1673 0.1720

WLS -0.1219 0.0030 0.3346 0.2189 0.2220
CVM -0.1906 0.0039 0.4985 0.2098 0.2138
AD -0.1324 0.0024 0.2791 0.1320 0.1344

200

ML -0.0846 0.0018 0.2680 0.1296 0.1314
LS -0.1566 0.0046 0.5747 0.1573 0.1618

WLS -0.1187 0.0027 0.3298 0.2056 0.2083
CVM -0.1893 0.0037 0.4757 0.1945 0.1982
AD -0.1310 0.0022 0.2587 0.1256 0.1279

500

ML -0.0838 0.0016 0.2297 0.1172 0.1188
LS -0.1487 0.0043 0.5493 0.1494 0.1536

WLS -0.1174 0.0025 0.3086 0.1986 0.2011
CVM -0.1876 0.0035 0.4328 0.1942 0.1977
AD -0.1306 0.0020 0.2328 0.1128 0.1148

5. Conclusion

In this paper, we focus different estimation methods of the unknown parame-
ters of the IWL distribution. We consider ML, LS and WLS as classical methods
and CVM and AD as minimum distance methods. As far as we know, LS, WLS,
AD and CVM methods have not been used for estimating the parameters of the
IWL distribution previously. We compare the performance of the estimators via
Monte Carlo simulation study in terms of bias, MSE and Def criteria. The results
of simulation study show that among the mentioned estimators, ML has the best
performance in most of the cases. Also, it can be concluded that ML is followed by
AD especially for small sample sizes. Overall, we suggest using ML methodology
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Table 3. Simulated biases, MSEs and Def values of the ML, LS,
WLS, CVM and AD estimators for ϕ = 2, λ = 0.5.

ϕ λ
n Method Bias MSE Bias MSE Def

20

ML 0.2831 0.0273 -0.7123 0.1688 0.1961
LS 0.2457 0.0236 -0.6542 0.1583 0.1819

WLS 0.2396 0.0253 -0.6288 0.1221 0.1474
CVM 0.3139 0.0295 -0.7245 0.1747 0.2042
AD 0.1946 0.0217 -0.6125 0.1174 0.1391

50

ML 0.1912 0.0207 -0.6073 0.1049 0.1256
LS 0.2231 0.0225 -0.6456 0.1466 0.1691

WLS 0.2065 0.0219 -0.6207 0.1207 0.1426
CVM 0.3056 0.0278 -0.7098 0.1653 0.1931
AD 0.1915 0.0212 -0.6098 0.1122 0.1334

100

ML 0.1905 0.0199 -0.5877 0.0972 0.1171
LS 0.2178 0.0217 -0.6325 0.1352 0.1570

WLS 0.1976 0.0205 -0.6140 0.1195 0.1400
CVM 0.2945 0.0266 -0.6947 0.1573 0.1838
AD 0.1911 0.0201 -0.5927 0.1002 0.1203

200

ML 0.1877 0.0188 -0.5614 0.0954 0.1141
LS 0.2046 0.0202 -0.6245 0.1294 0.1496

WLS 0.1912 0.0197 -0.6076 0.1124 0.1321
CVM 0.2818 0.0242 -0.6544 0.1407 0.1648
AD 0.1893 0.0193 -0.5706 0.0998 0.1191

500

ML 0.1763 0.0164 -0.5533 0.0826 0.0990
LS 0.1932 0.0192 -0.6126 0.1122 0.1314

WLS 0.1846 0.0187 -0.5973 0.1042 0.1229
CVM 0.2666 0.0211 -0.6286 0.1376 0.1588
AD 0.1786 0.0176 -0.5683 0.0919 0.1095

to obtain estimators of the IWL distribution. AD gives relatively good results and
it is also preferable.

Declaration of Competing Interests The author declares that they have no
known competing financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.
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Table 4. Simulated biases, MSEs and Def values of the ML, LS,
WLS, CVM and AD estimators for ϕ = 2, λ = 4.

ϕ λ
n Method Bias MSE Bias MSE Def

20

ML 0.1105 0.0106 2.5729 0.3218 0.3324
LS 0.1127 0.0134 2.6473 0.3457 0.3591

WLS 0.1110 0.0108 2.6126 0.3462 0.3571
CVM 0.1312 0.0153 2.7390 0.3959 0.4112
AD 0.1057 0.0097 2.4957 0.2562 0.2659

50

ML 0.1026 0.0092 2.4559 0.2452 0.2544
LS 0.1103 0.0128 2.5927 0.3419 0.3547

WLS 0.1098 0.0095 2.5919 0.3404 0.3499
CVM 0.1276 0.0146 2.6514 0.3727 0.3872
AD 0.1033 0.0095 2.4627 0.2496 0.2590

100

ML 0.0956 0.0087 2.4227 0.2383 0.2470
LS 0.1097 0.0117 2.5569 0.3293 0.3411

WLS 0.1024 0.0093 2.5224 0.3221 0.3314
CVM 0.1222 0.0123 2.6007 0.3656 0.3779
AD 0.1002 0.0090 2.4316 0.2392 0.2483

200

ML 0.0899 0.0083 2.3723 0.2251 0.2334
LS 0.0977 0.0107 2.4928 0.3118 0.3226

WLS 0.0965 0.0089 2.4791 0.3076 0.3165
CVM 0.1152 0.0115 2.5817 0.3422 0.3537
AD 0.0926 0.0087 2.3917 0.2286 0.2373

500

ML 0.0823 0.0083 2.3357 0.2119 0.2202
LS 0.0943 0.0107 2.4129 0.3066 0.3173

WLS 0.0931 0.0089 2.4057 0.2915 0.3004
CVM 0.1016 0.0115 2.5517 0.3166 0.3282
AD 0.0893 0.0087 2.3620 0.2148 0.2235

Table 5. The failure stresses (in GPa) of 65 single carbon fibers
of length 50 mm.

1.339 1.434 1.549 1.574 1.589 1.613 1.746 1.753 1.7646 1.807 1.812 1.840 1.852
1.852 1.862 1.864 1.931 1.952 1.974 2.019 2.051 2.055 2.058 2.088 2.125 2.162
2.171 2.172 2.18 2.194 2.211 2.270 2.272 2.280 2.299 2.308 2.335 2.349 2.356
2.386 2.390 2.410 2.430 2.431 2.458 2.471 2.497 2.514 2.558 2.577 2.593 2.601
2.604 2.620 2.633 2.670 2.682 2.699 2.705 2.735 2.785 3.020 3.042 3.116 3.174
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Table 6. Estimates of the parameters, AIC, BIC, RMSE, R2 and
D values for failure stress data set.

Method ϕ̂ λ̂ AIC BIC RMSE R2 p-value
ML 1.6499 3.3788 250.2429 254.5917 0.1307 0.6023 0.8919
LS 1.6361 4.8553 255.3739 259.7227 0.1393 0.5834 0.8608

WLS 1.6435 4.8799 255.2037 259.5525 0.1393 0.5830 0.8208
CVM 1.6363 4.8553 255.3570 259.7057 0.1393 0.5834 0.8301
AD 1.6196 4.5039 252.1279 256.4767 0.1350 0.5956 0.8624
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