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Abstract. In this paper, the extension of N-soft sets, which is a very important mathematical model in non-binary
evaluations to overcome uncertainty, under neutrosophic logic are studied and neutrosophic N-soft sets are intro-
duced and are motivated. This new mathematical model, which deals with neutrosophic logic and N-soft set, which
have been studied extensively in recent years to overcome uncertainty, aims to express the uncertainty situations en-
countered in the best way and thus approach the ideal in decision making. Moreover, some fundamental properties,
products and useful operations are given for this new mathematical model. Then, we defined distance measures be-
tween two neutrosophic N-soft sets and expressed similarity measures based on decision making problem. Finally,
an application is given that illustrates how uncertainty situations can be expressed in a decision-making problem by
using the suggested similarity measures.
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1. Introduction

Many problems in areas such as medical, social, economic, environmental, where the human factor is effective,
involve uncertainty imprecision, or subjectivity. That’s why, many researchers have worked on different mathematical
models to express and solve this type of problems. The first of the mathematical models put forward to express the
uncertainty problems correctly is the fuzzy set (briefly FS) theory put forward by Zadeh [52] in 1965. Indeed, although
many other mathematical models such as rough set theory [42], intuitionistic fuzzy set theory [10] and neutrosophic
set theory [49] have been introduced in the literature since 1965, yet the soft set (briefly SS) theory introduced by
Molodsov [41] in 1999 is strong enough, which leads all models presented so far to deal with uncertainty. The reason
why this set theory proposed by Molodsov against uncertainty is so powerful is that it can eliminate the deficiency of a
parameterization tool which is not present in other set theories and is very convenient in expressing the decision-making
process. Thanks to its success in expressing the uncertainty problems encountered, this set theory has been easily ap-
plied to many areas such as theory of measurement, smoothness of functions, Riemann Integration and game theory.
The application area and diversity of the soft set theory brought to the literature by Molodsov is rapidly increasing due
to its success in expressing uncertainty [8,9,18,20,24–26,35]. To give a few examples, Maji et al. [36,37] first defined
concepts of complement, subset, equality, absolute SS and null SS for SSs. In addition, they proposed an application of
SSs to solve the uncertainty problems encountered in a near ideal way. Chen et al. [16] and Kong et al. [34] worked on
parameter reduction and normal parameter reduction methods for SSs, respectively. Then, Ali et al. [7] defined some
new operations between SSs and Qin and Hong [43] defined concept of soft equality. Çağman and Enginoğlu [17]

*Corresponding Author
Email addresses: naimedemirtas@mersin.edu.tr (N. Demirtaş), orhandlk952495@hotmail.com (O. Dalkılıç)

https://orcid.org/0000-0003-4137-4810
https://orcid.org/0000-0003-3875-1398
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studied on products of SSs by redefining the operations between the two SSs. Especially in recent years, interest in
SS theory has been increased greatly, and many interesting applications of this theory have been expanded by embed-
ding the ideas of mathematical models such as FS (e.g. [19, 20, 28]), rough set (e.g. [25, 29]) , intuitionistic fuzzy set
(e.g. [32, 38]), neutrosophic set (briefly NS) (e.g. [39, 40]).

Another mathematical model introduced to the literature as a result of the effort to express uncertainty situations in
an ideal way is the neutrosophic set theory proposed by Smarandache [47]. Obviously; the concept of neutrosophy,
a branch of philosophy that studies the nature, origin and scope of neutralities, as well as their interactions with dif-
ferent ideational spectra, was influential in the construction of this theory. Neutrosophy considers a theory, concept,
proposition, event, or entity < A > in relation to its opposite < antiA >, and with their neutral < neutA >. Moreover,
neutrosophy is the basis of neutrosophic statistics, neutrosophic probability, neutrosophic logic (briefly NL) and NS.
Here, NL is a general framework for unification of many logics, such as paraconsistent logic, fuzzy logic, intuitionistic
logic, intuitionistic fuzzy logic etc. NL aims is to characterize each logical statement in a 3D-neutrosophic space, where
each dimension of the space represents respectively the truth (T), the falsehood (F), and the indeterminacy (I) of the
statement under consideration, where T, I, F are not necessarily any connection between them. The articles [47–49,51]
can be examined for more detailed information on this subject. After the NL and consequently the NS theory by con-
sidering a truth membership function, an indeterminacy membership function and a falsity membership function was
suggested by Smarandache, it was thought that it could be used as an effective tool in the fight against uncertainty by
many researchers. One of the most important reasons for this is that NSs are a generalization of mathematical models
such as classical sets, conventional FS [52], interval-valued fuzzy set [30, 31, 46, 53], intuitionistic fuzzy set [10, 21],
interval-valued intuitionistic fuzzy set [11]. In other words, NS generalizes the existing ideas. For example; the NS
handles indeterminate data whereas FS and intuitionistic fuzzy set failed when the relation is indeterminate. Single
valued neutrosophic set was developed by Smarandache [47] and Wang et al. [51] in order to easily express uncer-
tainty problems encountered in fields such as engineering and scientific in the following years. Then, neutrosophic soft
set [40] have been brought to the literature by combining NS and SS theories, which are very successful in expressing
uncertainty problems. In this way, studies on the neutrosophic soft sets have begun to be examined more by many
researchers (e.g. [1, 12, 13, 45, 50]). Some more literature on neutrosophy, NL, NS, neutrosophic soft set can be found
in [14, 15, 22, 23, 33].

SS theory provide binary evaluation of the objects and mathematical models such as FSs, intuitionistic fuzzy sets
and NSs associate values in the interval [0, 1]. However, these mathematical models fail to associate non-binary evalu-
ations of uncertainty problems encountered. These evaluations are expected in ranking or rating positions. The ranking
can be expressed in multinary values such as grades, number of stars, dots. In 2018, Fatimah et al. [27] proposed N-soft
set (briefly N-SS) theory, which is an extended mathematical model of SSs, for non-binary evaluations encountered in
uncertainty problems. They also gave some properties and algebraic definitions for the proposed theory. Moreover,
they gave some examples that prove that N-SSs are a convincing mathematical model for binary and non-binary evalu-
ations in decision-making problems, and proposed some decision-making algorithm based on N-SSs. After the N-SSs
were introduced into the literature, many studies were carried out to solve the decision making problems in set types
such as hesitant N-soft set [3], fuzzy N-soft set [2], intuitionistic fuzzy N-soft rough sets [6], hesitant fuzzy N-soft
set [4], N-soft topology [44], interval-valued hesitant fuzzy N-soft set [5], and so on.

We mentioned above that researchers have developed many hybrid set models, considering that the uncertainty sit-
uations encountered in daily life can be quite complex for N-SSs. In this paper, we examined the extension of N-SSs
with NL and introduced the concept of neutrosophic N-soft set (briefly NN-SS). In other words, the theory of this new
concept was developed by examining the N-SS theory under NL and propose a decision support technique with the
help of similarity measurements based on distance measurements.

The organization of this paper is as follows. In the second section, some mathematical models for the construction
of N-SSs are reminded and the general construction of the proposed theory is mentioned. In the third section, some
algebraic properties and basic operations of NN-SSs are introduced. The fourth section describes similarity measure
based on the distance measures of NN-SSs. The fifth section is devoted to a method for the decision-making problem



Neutrosophic Extension of N-soft Set 296

by means of the similarity measures between NN-SSs. The final section consists of the conclusion of the paper.

Throughout this study, let E = {x1, x2, ..., xn} be a set of parameters andU = {u1, u2, ..., um} be a universe of objects.
Also, let |U| be the number of objects inU and 2U denote the power set ofU.

2. Preliminaries

In this section, we define the NN-SS. For this, firstly let’s remind the concepts of SS and N-SS.

Molodtsov [41] defined SS in the following way,

Definition 2.1. [41] A pair (F ,E) is called a SS overU, where F is a mapping given by F : E → 2U . In other words,
a SS overU is a parameterized family of subsets ofU for x ∈ E, F (x) may be considered as the set of x-approximate
elements of (F ,E).

Let’s recall the N-SS theory, an extended mathematical model of SSs proposed by Fatimah et al. [27]. The most im-
portant advantage of this set theory is that it is a convincing mathematical model for binary and non-binary evaluations
encountered in uncertainty problems. The definition of N-SSs given by Fatimah et al. [27] is as follows:

Definition 2.2. [27] Let R = {0, 1, 2, ...,N −1} be a collection of ordered grades, where N = {2, 3, ...}. Then, the triplet
(F̂,E,N) is called an N-SS onU if F̂ is a mapping F̂ : E → 2U×R where for each x ∈ E,

F̂(x) =
{(

uk, ℘
k
EF̂

)
: uk ∈ U and ℘k

EF̂
∈ R is the grade o f uk

}
such that there is a unique grade ℘k

EF̂
for each uk ∈ U.

Now, we define the NN-SS as follows:

Definition 2.3. Let K = 〈T, I, F〉 = {〈t, i, f 〉 : t ∈ T, i ∈ I, f ∈ F} be a set of ordered neutrosophic grades, where T =

{0, 1, 2, ...,N − 1} = I = F, denote grades of truth membership information, indeterminacy-membership information
and falsity-membership information for N = {2, 3, ...}. A triplet (Γ,E,N) is called a NN-SS over U if Γ is a mapping
Γ : E → 2UN×K where for each x ∈ E andUN = U × N,

Γ(x) =
{(

uk,
〈
tk
Γx
, ikΓx

, f k
Γx

〉)
: uk ∈ U and

〈
tk
Γx
, ikΓx

, f k
Γx

〉
∈ K is neutrosophic grade o f uk

}
such that

(Γ,E,N) =
{(

xl,
(
uk,

〈
tk
Γx
, ikΓx

, f k
Γx

〉)
: uk ∈ U

)
: xl ∈ E

}
there is a unique neutrosophic grade

〈
tk
Γx
, ik

Γx
, f k

Γx

〉
for each uk ∈ U.

State that the set of all NN-SSs onU is denoted by NN − S S (U).

Definition 2.4. Let (Γ,E,N) ∈ NN − S S (U) Then the neutrosophic N-soft matrix for the NN-SS (Γ,E,N) is MΓ,
where

MΓ =


ΛΓ

11 ΛΓ
12 . . . ΛΓ

1n
ΛΓ

21 ΛΓ
22 . . . ΛΓ

2n
...

...
. . .

...
ΛΓ

m1 ΛΓ
m2 . . . ΛΓ

mn


m×n

.

Each component in the expressed neutrosophic N-soft matrix for (Γ,E,N) is made up of triples in the form of ΛΓ
kl =〈

tk
Γxl
, ik

Γxl
, f k

Γxl

〉
for 1 ≤ k ≤ m and 1 ≤ l ≤ n.

Example 2.5. Let’s say that a person is considering buying a house. Also, he/she determines the parameters as
E = {x1 : Luxurious, x2 : Economic, x3 : Large garden, x4 : Com f ortable}. The person who examines the houses
owned by the realtor determines three houses as a result of the preliminary evaluation. Their opinions about these
houses are expressed as follows with the help of the N5-SS (Γ,E, 5).

(Γ,E, 5) =


(x1, (u1, 〈4, 2, 3〉), (u2, 〈4, 1, 2〉), (u3, 〈3, 2, 0〉), (u4, 〈1, 3, 2〉)),
(x2, (u1, 〈0, 2, 4〉), (u2, 〈3, 1, 4〉), (u3, 〈2, 4, 1〉), (u4, 〈2, 4, 1〉)),
(x3, (u1, 〈3, 4, 2〉), (u2, 〈4, 3, 1〉), (u3, 〈2, 3, 4〉), (u4, 〈3, 3, 2〉))

 .



N. Demirtaş, O. Dalkılıç, Turk. J. Math. Comput. Sci., 13(2)(2021), 294–309 297

Here, the ordered triple 〈2, 4, 1〉 means the truth-membership (information) grade, indeterminacy-membership (infor-
mation) grade and falsity-membership (information) grade of the house u3 with respect to the parameter x2 : Economic.

The opinions given in (Γ,E, 5) can be expressed more clearly with MΓ. The matrix representation of the N5-SS
(Γ,E, 5) is given as follows:

MΓ =


〈4, 2, 3〉 〈0, 2, 4〉 〈3, 4, 2〉
〈4, 1, 2〉 〈3, 1, 4〉 〈4, 3, 1〉
〈3, 2, 0〉 〈2, 4, 1〉 〈2, 3, 4〉
〈1, 3, 2〉 〈2, 4, 1〉 〈3, 3, 2〉

 .
Unless otherwise noted in the definitions, properties and remarks to be given hereafter, it will be accepted as

(Γ,E, 5) ∈ NN − S S (U) and 〈T, I, F〉 such that T = {0, 1, 2, ...,N − 1} = I = F.

Definition 2.6. A null NN-SS on U is defined by (Γ∅,E,N), where Γ∅ : E → 2UN×〈0,N,N〉 with property Γ∅(x) =

{(uk, 〈0,N − 1,N − 1〉) : ∀uk ∈ U} for each x ∈ E.

Definition 2.7. A absolute NN-SS onU is defined by (ΓU ,E,N), where ΓU : E → 2UN×〈N,0,0〉 with property ΓU(x) =

{(uk, 〈N − 1, 0, 0〉) : ∀uk ∈ U} for each x ∈ E.

Example 2.8. Let U = {u1, u2, u3} be the set of three cars under consideration, E = {x1 : Fuel e f f icient, x2 :
Costly, x3 : Luxurious} be the set of parameters, then the null N8-SS and the absolute N8-SS defined on U are given
in the matrix representation MΓ∅ and MΓU , respectively,

MΓ∅ =

 〈0, 7, 7〉 〈0, 7, 7〉 〈0, 7, 7〉〈0, 7, 7〉 〈0, 7, 7〉 〈0, 7, 7〉
〈0, 7, 7〉 〈0, 7, 7〉 〈0, 7, 7〉

 ,
MΓU =

 〈7, 0, 0〉 〈7, 0, 0〉 〈7, 0, 0〉〈7, 0, 0〉 〈7, 0, 0〉 〈7, 0, 0〉
〈7, 0, 0〉 〈7, 0, 0〉 〈7, 0, 0〉

 .
Definition 2.9. (Γ1,E,N) is neutrosophic N-soft subset of (Γ2,E,N) if for every x ∈ E, tk

Γ1x
≤ tk

Γ2x
, ik

Γ1x
≥ ik

Γ2x
and

f k
Γ1x
≥ f k

Γ2x
for all uk ∈ U, where

〈
tk
Γ1x
, ik

Γ1x
, f k

Γ1x

〉
and

〈
tk
Γ2x
, ik

Γ2x
, f k

Γ2x

〉
represent the neutrosophic grades of Γ1(x) and

Γ2(x), respectively. It is symbolized by (Γ1,E,N) v (Γ2,E,N).

Definition 2.10. (Γ1,E,N) and (Γ2,E,N) are equal NN-SSs if for every x ∈ E, tk
Γ1x

= tk
Γ2x

, ik
Γ1x

= ik
Γ2x

and f k
Γ1x

= f k
Γ2x

for

all uk ∈ U, where
〈
tk
Γ1x
, ik

Γ1x
, f k

Γ1x

〉
and

〈
tk
Γ2x
, ik

Γ2x
, f k

Γ2x

〉
represent the neutrosophic grades of Γ1(x) and Γ2(x), respectively.

It is symbolized by (Γ1,E,N) = (Γ2,E,N).

Example 2.11. LetU = {u1, u2, u3} be an universe and E = {x1, x2, x3, x4} be a set of parameters. Consider the N8-SSs
onU as given in the matrix representation MΓ1 and MΓ2 . It is clear that (Γ1,E, 8) v (Γ2,E, 8).

MΓ1 =

 〈5, 2, 7〉 〈3, 5, 6〉 〈4, 1, 4〉 〈5, 4, 6〉〈4, 3, 6〉 〈2, 6, 1〉 〈3, 3, 2〉 〈3, 5, 3〉
〈6, 1, 4〉 〈4, 6, 3〉 〈5, 6, 3〉 〈1, 4, 4〉

 ,
MΓ2 =

 〈6, 1, 5〉 〈4, 3, 3〉 〈6, 0, 3〉 〈6, 2, 4〉〈7, 2, 3〉 〈3, 2, 0〉 〈4, 2, 1〉 〈4, 3, 1〉
〈7, 0, 2〉 〈5, 4, 2〉 〈6, 3, 2〉 〈5, 2, 3〉

 .
Proposition 2.12. Let (Γ,E,N), (Γ1,E,N), (Γ2,E,N), (Γ3,E,N) ∈ NN − S S (U). Then,
i. (Γ∅,E,N) v (Γ,E,N) v (ΓU ,E,N).
ii. If (Γ1,E,N) v (Γ2,E,N) and (Γ2,E,N) v (Γ3,E,N), then (Γ1,E,N) v (Γ3,E,N).
iii. If (Γ1,E,N) = (Γ2,E,N) and (Γ2,E,N) = (Γ3,E,N), then (Γ1,E,N) = (Γ3,E,N).

Proof. It is clear from Definitions 2.6, 2.7, 2.9 and 2.10. �
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3. Some Basic Operations on NN-SSs

In this section, we describe some basic operations on the NN-SSs.

Definition 3.1. A complement of NN-SS (Γ,E,N) is defined by (Γ,E,N)c = (Γc,E,N), where

Γc(x) =
{(

uk :
〈
tk
Γc

x
, ikΓc

x
, f k

Γc
x

〉)
: uk ∈ U

}
for every x ∈ E such that tk

Γc
x

= f k
Γx

, ik
Γc

x
= (N − 1) − ik

Γx
and f k

Γc
x

= tk
Γx

for all uk ∈ U.

Example 3.2. Consider the N5-SS (Γ,E, 5) as given in Example 2.5. Then its complement is given in MΓc .

MΓc =


〈3, 2, 4〉 〈4, 2, 0〉 〈2, 0, 3〉
〈2, 3, 4〉 〈4, 3, 3〉 〈1, 1, 4〉
〈0, 2, 3〉 〈1, 0, 2〉 〈4, 1, 2〉
〈2, 1, 1〉 〈1, 0, 2〉 〈2, 1, 3〉

 .
Proposition 3.3. Let (Γ,E,N), (Γ1,E,N), (Γ2,E,N) ∈ NN − S S (U). Then,
i. (Γ∅,E,N)c = (ΓU ,E,N) and (ΓU ,E,N)c = (Γ∅,E,N).
ii. (Γc,E,N)c = ((Γ,E,N)c)c = (Γ,E,N).
iii. If (Γ1,E,N) v (Γ2,E,N), then (Γ2,E,N)c v (Γ1,E,N)c.

Proof. It is clear from Definitions 2.9 and 3.1. �

Definition 3.4. Other types of complement are as follows:
i. The weak complement of NN-SS (Γ,E,N) is defined by (Γ,E,N)w = (Γw,E,N), where

Γw(x) =
{(

uk :
〈
tk
Γw

x
, ikΓw

x
, f k

Γw
x

〉)
: uk ∈ U

}
for every x ∈ E such that tk

Γw
x
, tk

Γx
, ik

Γw
x
, ik

Γx
and f k

Γw
x
, f k

Γx
for all uk ∈ U.

ii. The top weak complement of NN-SS (Γ,E,N) is defined by (Γ,E,N)tw = (Γtw,E,N), where

Γtw(x) =
{(

uk :
〈
tk
Γtw

x
, ik

Γtw
x
, f k

Γtw
x

〉)
: uk ∈ U

}
for every x ∈ E such that

tk
Γtw

x
=

{
0 if tk

Γx
= N − 1

N − 1 otherwise
,

ik
Γtw

x
=

{
N − 1 if ik

Γx
= 0

0 otherwise
,

and

f k
Γtw

x
=

{
N − 1 if f k

Γx
= 0

0 otherwise
for all uk ∈ U.
iii. The bottom weak complement of NN-SS (Γ,E,N) is defined by (Γ,E,N)bw = (Γbw,E,N), where

Γbw(x) =
{(

uk :
〈
tk
Γbw

x
, ik

Γbw
x
, f k

Γbw
x

〉)
: uk ∈ U

}
for every x ∈ E such that

tk
Γbw

x
=

{
N − 1 if tk

Γx
= 0

0 otherwise
,

ik
Γbw

x
=

{
0 if ik

Γx
= N − 1

N − 1 otherwise
,

and

f k
Γbw

x
=

{
0 if f k

Γx
= N − 1

N − 1 otherwise
for all uk ∈ U.
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Example 3.5. Consider the N5-SS (Γ,E, 5) as given in Example 2.5. Then their week complement, top weak comple-
ment and bottom weak complement are given in MΓw , MΓtw and MΓbw respectively,

MΓw =


〈3, 1, 4〉 〈4, 3, 0〉 〈2, 0, 3〉
〈2, 3, 4〉 〈2, 3, 2〉 〈1, 0, 4〉
〈0, 1, 3〉 〈3, 0, 2〉 〈4, 1, 2〉
〈2, 1, 1〉 〈1, 0, 2〉 〈2, 1, 3〉

 ,

MΓtw =


〈0, 0, 0〉 〈4, 0, 0〉 〈4, 0, 0〉
〈0, 0, 0〉 〈4, 0, 0〉 〈0, 0, 0〉
〈4, 0, 4〉 〈4, 0, 0〉 〈4, 0, 0〉
〈4, 0, 0〉 〈4, 0, 0〉 〈4, 0, 0〉

 ,

MΓbw =


〈0, 4, 4〉 〈4, 4, 0〉 〈0, 0, 4〉
〈0, 4, 4〉 〈0, 4, 0〉 〈0, 4, 4〉
〈0, 4, 4〉 〈0, 0, 4〉 〈0, 4, 0〉
〈0, 4, 4〉 〈0, 0, 4〉 〈0, 4, 4〉

 .
Proposition 3.6. Let (Γ,E,N), (Γ1,E,N), (Γ2,E,N) ∈ NN − S S (U). Then, for j = tw, bw
i. (Γ∅,E,N) j = (ΓU ,E,N) and (ΓU ,E,N) j = (Γ∅,E,N).
ii. If (Γ1,E,N) v (Γ2,E,N), then (Γ2,E,N) j v (Γ1,E,N) j.
iii. ((Γ,E,N) j)wt = ((Γ,E,N) j)wb = ((Γ,E,N) j)c.
iv. (((Γ,E,N) j)m)l = (Γ,E,N) j for m = tw, bw, c and l = tw, bw, c.

Proof. The proof of i. and ii. follows from Definitions 2.9, 3.1 and 3.4.
iii. Assume that j = tw, then the value of tk

Γtw
x

is either N − 1 or 0. If tk
Γtw

x
= N − 1, then tk

(Γtw)tw
x

= tk
(Γtw)tb

x
= tk

(Γtw)c
x

= 0. On

the other hand, if tk
Γtw

x
= 0, then tk

(Γtw)tw
x

= tk
(Γtw)tb

x
= tk

(Γtw)c
x

= N − 1. By adopting the same way, we can complete the case

for jk
Γtw

x
and f k

Γtw
x

. Similarly, we can check for the remaining part for j = bw and hence the proof of iii..
iv. Straightforward. �

Definition 3.7. An addition of NN-SS (Γ1,E,N) and (Γ2,E,N) is defined by (Γ1,E,N) ⊕ (Γ2,E,N) = (Γ1 ⊕ Γ2,E,N),
where (Γ1 ⊕ Γ2)(x) =

{(
uk :

〈
tk
(Γ1⊕Γ2)x

, ik(Γ1⊕Γ2)x
, f k

(Γ1⊕Γ2)x

〉)
: uk ∈ U

}
for every x ∈ E such that

tk
(Γ1⊕Γ2)x

=

{
tk
Γ1x

+ tk
Γ2x

if 0 ≤ tk
Γ1x

+ tk
Γ2x

< N − 1
N − 1 otherwise

ik(Γ1⊕Γ2)x
=

{
ik
Γ1x

+ ik
Γ2x

if 0 < ik
Γ1x

+ ik
Γ2x
≤ N − 1

0 otherwise

f k
(Γ1⊕Γ2)x

=

{
f k
Γ1x

+ f k
Γ2x

if 0 < f k
Γ1x

+ f k
Γ2x
≤ N − 1

0 otherwise

for all uk ∈ U.

Definition 3.8. A subtraction of NN-SS (Γ1,E,N) and (Γ2,E,N) is defined by (Γ1,E,N)	 (Γ2,E,N) = (Γ1 	Γ2,E,N),
where (Γ1 	 Γ2)(x) =

{(
uk :

〈
tk
(Γ1	Γ2)x

, ik(Γ1	Γ2)x
, f k

(Γ1	Γ2)x

〉)
: uk ∈ U

}
for every x ∈ E such that

tk
(Γ1	Γ2)x

=

{
tk
Γ1x
− tk

Γ2x
if tk

Γ1x
> tk

Γ2x

0 otherwise

ik(Γ1	Γ2)x
=

{
ik
Γ1x
− ik

Γ2x
if ik

Γ1x
> ik

Γ2x

N − 1 otherwise

f k
(Γ1	Γ2)x

=

{
f k
Γ1x
− f k

Γ2x
if f k

Γ1x
> f k

Γ2x

N − 1 otherwise

for all uk ∈ U.



Neutrosophic Extension of N-soft Set 300

Example 3.9. Let’s consider the N8-SSs (Γ3,E, 8) given below and (Γ2,E, 8) of Example 2.11. Then their addition
and subtraction are given in MΓ3⊕Γ2 and MΓ3	Γ2 ,respectively,

MΓ3 =

 〈7, 7, 4〉 〈1, 4, 2〉 〈7, 3, 2〉 〈7, 1, 3〉〈1, 5, 5〉 〈2, 1, 4〉 〈2, 1, 5〉 〈2, 2, 3〉
〈3, 3, 3〉 〈7, 3, 1〉 〈7, 2, 1〉 〈1, 5, 1〉

 ,

MΓ3⊕Γ2 =

 〈7, 0, 0〉 〈5, 7, 5〉 〈7, 3, 5〉 〈7, 3, 7〉〈7, 7, 0〉 〈5, 3, 4〉 〈6, 3, 6〉 〈7, 5, 4〉
〈7, 3, 5〉 〈7, 7, 3〉 〈7, 5, 3〉 〈6, 7, 4〉

 ,
MΓ3	Γ2 =

 〈1, 6, 7〉 〈0, 1, 7〉 〈1, 3, 7〉 〈1, 7, 7〉〈0, 3, 2〉 〈0, 7, 4〉 〈0, 7, 4〉 〈0, 7, 2〉
〈0, 3, 1〉 〈2, 7, 7〉 〈1, 7, 7〉 〈0, 3, 7〉

 .
Proposition 3.10. Let (Γ,E,N), (Γ1,E,N), (Γ2,E,N), (Γ3,E,N) ∈ NN − S S (U). Then,
i. (Γ1,E,N) ⊕ (Γ2,E,N) = (Γ2,E,N) ⊕ (Γ1,E,N).
ii. [(Γ1,E,N) ⊕ (Γ2,E,N)] ⊕ (Γ3,E,N) = (Γ1,E,N) ⊕ [(Γ2,E,N) ⊕ (Γ3,E,N)].
iii. (Γ,E,N) ⊕ (ΓU ,E,N) = (ΓU ,E,N).
iv. (Γ,E,N) ⊕ (Γ∅,E,N) = (Γ,E,N).
v. (Γ,E,N) 	 (Γ∅,E,N) = (Γ,E,N).
vi. If (Γ1,E,N) v (Γ2,E,N), then (Γ1,E,N) 	 (Γ2,E,N) = (Γ∅,E,N).

Proof. The proofs of i.-v. follow from Definition 3.7 and 3.8.
vi. Let x ∈ E. From our assumption, tk

Γ1x
≤ tk

Γ2x
, ik

Γ1x
≥ ik

Γ2x
and f k

Γ1x
≥ f k

Γ2x
for all uk ∈ U. It implies that tk

(Γ1	Γ2)x
= 0,

ik(Γ1	Γ2)x
= N − 1 and f k

(Γ1	Γ2)x
= N − 1 for all uk ∈ U, and hence proof of vi.. �

Example 3.11. The results i. and ii. of Proposition 3.10 are not true when we replace ⊕ by 	. Consider the N8-NSs
(Γ1,E,N), (Γ2,E,N) of Example 2.11 and (Γ3,E,N) of Example 3.9. It can be easily verified that
• if Λ

Γ1	Γ2
11 = 〈0, 1, 2〉 , 〈1, 7, 7〉 = Λ

Γ2	Γ1
11 , then (Γ1,E,N) 	 (Γ2,E,N) , (Γ2,E,N) 	 (Γ1,E,N).

• if Λ
(Γ1	Γ2)	Γ3
11 = 〈0, 7, 7〉 , 〈5, 7, 6〉 = Λ

Γ1	(Γ2	Γ3)
11 , then [(Γ1,E,N)	 (Γ2,E,N)]	 (Γ3,E,N) , (Γ1,E,N)	 [(Γ2,E,N)	

(Γ3,E,N)].

Unless otherwise stated in the remainder of the study, the following information will not be repeated for NN-SSs: Let
(Γh,E,Nh) be the NNh-SS for h ≥ 1. Also, it is assumedKh =

〈
T h, Ih, Fh

〉
such that T h = {0, 1, 2, ...,Nh−1} = Ih = Fh.

Definition 3.12. A union of NN-SS (Γ1,E,N1) and (Γ2,E,N2) is defined by

(Γ1,E,N1) t (Γ2,E,N2) = (Γ1 t Γ2,E,max{N1,N2}),

where

(Γ1 t Γ2)(x) =
{(

uk :
〈
tk
(Γ1tΓ2)x

, ik(Γ1tΓ2)x
, f k

(Γ1tΓ2)x

〉)
: uk ∈ U

}
for every x ∈ E such that tk

(Γ1tΓ2)x
= max

{
tk
(Γ1)x

, tk
(Γ2)x

}
, ik(Γ1tΓ2)x

= min
{
ik(Γ1)x

, ik(Γ2)x

}
and f k

(Γ1tΓ2)x
= min

{
f k
(Γ1)x

, f k
(Γ2)x

}
for all

uk ∈ U.

Definition 3.13. An intersection of NN-SS (Γ1,E,N1) and (Γ2,E,N2) is defined by

(Γ1,E,N1) u (Γ2,E,N2) = (Γ1 u Γ2,E,max{N1,N2}),

where

(Γ1 u Γ2)(x) =
{(

uk :
〈
tk
(Γ1uΓ2)x

, ik(Γ1uΓ2)x
, f k

(Γ1uΓ2)x

〉)
: uk ∈ U

}
for every x ∈ E such that tk

(Γ1uΓ2)x
= min

{
tk
(Γ1)x

, tk
(Γ2)x

}
, ik(Γ1uΓ2)x

= max
{
ik(Γ1)x

, ik(Γ2)x

}
and f k

(Γ1uΓ2)x
= max

{
f k
(Γ1)x

, f k
(Γ2)x

}
for

all uk ∈ U.
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Example 3.14. Let’s consider the (Γ4,E, 7) given below and (Γ3,E, 8) of Example 3.9. Then their union and intersec-
tion are given in M(Γ3tΓ4) and M(Γ3uΓ4) ,respectively,

MΓ4 =

 〈5, 5, 2〉 〈4, 3, 5〉 〈3, 3, 4〉 〈6, 1, 4〉〈3, 4, 6〉 〈5, 2, 3〉 〈5, 2, 6〉 〈5, 3, 6〉
〈4, 5, 1〉 〈6, 1, 2〉 〈1, 2, 5〉 〈3, 5, 5〉

 ,
M(Γ3tΓ4) =

 〈7, 2, 2〉 〈4, 3, 2〉 〈7, 3, 2〉 〈7, 1, 3〉〈3, 4, 5〉 〈5, 1, 3〉 〈5, 1, 5〉 〈5, 2, 3〉
〈4, 3, 1〉 〈7, 1, 1〉 〈7, 2, 1〉 〈3, 5, 1〉

 ,
M(Γ3uΓ4) =

 〈5, 7, 4〉 〈1, 4, 5〉 〈3, 3, 4〉 〈6, 1, 4〉〈1, 5, 6〉 〈2, 2, 4〉 〈2, 2, 6〉 〈2, 3, 6〉
〈3, 5, 3〉 〈6, 3, 2〉 〈1, 2, 5〉 〈1, 5, 5〉

 .
Proposition 3.15. Let (Γ1,E,N1), (Γ2,E,N2), (Γ3,E,N3) ∈ NN − S S (U). Then,
i. (Γ1,E,N1) ? (Γ1,E,N1) = (Γ1,E,N1) for each ? ∈ {t,u}.
ii. (Γ1,E,N1) ? (Γ2,E,N2) = (Γ2,E,N2) ? (Γ1,E,N1) for each ? ∈ {t,u}.
iii. (Γ1,E,N1) ? [(Γ2,E,N2) ? (Γ3,E,N3)] = [(Γ1,E,N1) ? (Γ2,E,N2)] ? (Γ3,E,N3) for each ? ∈ {t,u}.
iv. If (Γ1,E,N1) v (Γ2,E,N2), then (Γ1,E,N1) t (Γ2,E,N2) = (Γ2,E,N2).
v. If (Γ1,E,N1) v (Γ2,E,N2), then (Γ1,E,N1) u (Γ2,E,N2) = (Γ1,E,N1).
vi. (Γ1,E,N1)? [(Γ2,E,N2)? (Γ3,E,N3)] = [(Γ1,E,N1)? (Γ2,E,N2)] ∗ [(Γ1,E,N1)? (Γ3,E,N3)] for each ? ∈ {t,u}.
vii. [(Γ1,E,N1) ? (Γ2,E,N2)]c = (Γ1,E,N1)c ∗ (Γ2,E,N2)c for each ? ∈ {t,u} such that ? , ∗.

Proof. The proof is clear from Definitions 2.9, 3.1, 3.12 and 3.13. �

Definition 3.16. An Or-product of NN-SS (Γ1,E,N1) and (Γ2,E,N2) is defined by (Γ1,E,N1) ∨ (Γ2,E,N2) = (Γ1 ∨

Γ2,E × E,max{N1,N2}), where

(Γ1 ∨ Γ2)(xr, xs) =
{(

uk :< tk
(Γ1∨Γ2)( xr ,xs), i

k
(Γ1∨Γ2)( xr ,xs), f k

(Γ1∨Γ2)( xr ,xs) >
)

: uk ∈ U
}

for every (xr, xs) ∈ E × E such that tk
(Γ1∨Γ2)( xr ,xs)

= max
{[

t1
(Γ1)xr

]k
,
[
t2
(Γ2)xs

]k
}
, ik(Γ1∨Γ2)( xr ,xs)

= min
{[

i1(Γ1)xr

]k
,
[
i2(Γ2)xs

]k
}

and

f k
(Γ1∨Γ2)( xr ,xs)

= min
{[

f 1
(Γ1)xr

]k
,
[
f 2
(Γ2)xs

]k
}

for all uk ∈ U. Also,

i. The Or-Top-Not-product of (Γ1,E,N1) and (Γ2,E,N2) is defined as

(Γ1,E,N1)∨tw(Γ2,E,N2) = (Γ1,E,N1) ∨ (Γ2,E,N2)tw.

ii. The Or-Bottom-Not-product of (Γ1,E,N1) and (Γ2,E,N2) is defined as

(Γ1,E,N1)∨bw(Γ2,E,N2) = (Γ1,E,N1) ∨ (Γ2,E,N2)bw.

iii. The Or-Not-product of (Γ1,E,N1) and (Γ2,E,N2) is defined as

(Γ1,E,N1)∨(Γ2,E,N2) = (Γ1,E,N1) ∨ (Γ2,E,N2)c.

Example 3.17. Let U = {u1, u2, u3} be a universal set and E = {x1, x2} be a parameter set. We consider the N5-SS
(Γ?,E, 5) in MΓ? and the N6-SS (Γ∗,E, 5) in MΓ∗ .

MΓ? =

 〈3, 1, 4〉 〈1, 0, 2〉〈4, 2, 3〉 〈4, 2, 3〉
〈2, 3, 1〉 〈3, 2, 4〉

 MΓ∗ =

 〈5, 0, 3〉 〈1, 0, 5〉〈3, 4, 2〉 〈5, 4, 5〉
〈1, 3, 5〉 〈4, 3, 2〉


MΓtw

∗
=

 〈0, 5, 0〉 〈5, 5, 0〉〈5, 0, 0〉 〈0, 0, 0〉
〈5, 0, 0〉 〈5, 0, 0〉

 MΓbw
∗

=

 〈0, 5, 5〉 〈0, 5, 0〉〈0, 5, 5〉 〈0, 5, 0〉
〈0, 5, 0〉 〈0, 5, 5〉


MΓc

∗
=

 〈3, 5, 5〉 〈5, 5, 1〉〈2, 1, 3〉 〈5, 1, 5〉
〈5, 2, 1〉 〈2, 2, 4〉

 .
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Then their the Or-product, Or-Top-Not-product, Or-Bottom-Not-product and Or-Not-product are given in (Γ∗ ∨Γ∗,E×
E, 6), (Γ∗∨twΓ∗,E × E, 6), (Γ∗∨bwΓ∗,E × E, 6) and (Γ∗∨Γ∗,E × E, 6), respectively,

(Γ∗ ∨ Γ∗,E × E, 6) =


((x1, x1), (u1, 〈5, 0, 3〉), (u2, 〈4, 2, 2〉), (u3, 〈2, 3, 1〉)),
((x1, x2), (u1, 〈3, 0, 4〉), (u2, 〈5, 2, 3〉), (u3, 〈4, 3, 1〉)),
((x2, x1), (u1, 〈5, 0, 2〉), (u2, 〈4, 2, 2〉), (u3, 〈3, 2, 4〉)),
((x2, x2), (u1, 〈1, 0, 2〉), (u2, 〈5, 2, 3〉), (u3, 〈4, 2, 2〉))

 ,

(Γ∗∨twΓ∗,E × E, 6) =


((x1, x1), (u1, 〈3, 1, 0〉), (u2, 〈5, 0, 0〉), (u3, 〈5, 0, 0〉)),
((x1, x2), (u1, 〈5, 1, 0〉), (u2, 〈4, 0, 0〉), (u3, 〈5, 0, 0〉)),
((x2, x1), (u1, 〈1, 0, 0〉), (u2, 〈5, 0, 0〉), (u3, 〈3, 2, 4〉)),
((x2, x2), (u1, 〈5, 0, 0〉), (u2, 〈4, 0, 0〉), (u3, 〈5, 0, 0〉))

 ,

(Γ∗∨bwΓ∗,E × E, 6) =


((x1, x1), (u1, 〈3, 1, 4〉), (u2, 〈4, 2, 3〉), (u3, 〈2, 3, 0〉)),
((x1, x2), (u1, 〈3, 1, 0〉), (u2, 〈4, 2, 0〉), (u3, 〈2, 3, 1〉)),
((x2, x1), (u1, 〈1, 0, 2〉), (u2, 〈4, 2, 3〉), (u3, 〈3, 2, 4〉)),
((x2, x2), (u1, 〈1, 0, 0〉), (u2, 〈4, 2, 0〉), (u3, 〈3, 2, 2〉))

 ,

(Γ∗∨Γ∗,E × E, 6) =


((x1, x1), (u1, 〈3, 1, 4〉), (u2, 〈4, 1, 3〉), (u3, 〈5, 2, 1〉)),
((x1, x2), (u1, 〈5, 1, 1〉), (u2, 〈5, 1, 3〉), (u3, 〈2, 2, 1〉)),
((x2, x1), (u1, 〈3, 0, 2〉), (u2, 〈4, 1, 3〉), (u3, 〈5, 2, 1〉)),
((x2, x2), (u1, 〈5, 0, 1〉), (u2, 〈5, 1, 3〉), (u3, 〈3, 2, 4〉))

 .
Definition 3.18. An And-product of NN-SS (Γ1,E,N1) and (Γ2,E,N2) is defined by (Γ1,E,N1) ∧ (Γ2,E,N2) = (Γ1 ∧

Γ2,E × E,max{N1,N2}), where

(Γ1 ∧ Γ2)(xr, xs) =
{(

uk :< tk
(Γ1∧Γ2)( xr ,xs), i

k
(Γ1∧Γ2)( xr ,xs), f k

(Γ1∧Γ2)( xr ,xs) >
)

: uk ∈ U
}

for every (xr, xs) ∈ E × E such that tk
(Γ1∧Γ2)( xr ,xs)

= min
{[

t1
(Γ1)xr

]k
,
[
t2
(Γ2)xs

]k
}
, ik(Γ1∧Γ2)( xr ,xs)

= max
{[

i1(Γ1)xr

]k
,
[
i2(Γ2)xs

]k
}

and

f k
(Γ1∧Γ2)( xr ,xs)

= max
{[

f 1
(Γ1)xr

]k
,
[
f 2
(Γ2)xs

]k
}

for all uk ∈ U. Also,

i. The And-Top-Not-product of (Γ1,E,N1) and (Γ2,E,N2) is defined as

(Γ1,E,N1)∧tw(Γ2,E,N2) = (Γ1,E,N1) ∧ (Γ2,E,N2)tw.

ii. The And-Bottom-Not-product of (Γ1,E,N1) and (Γ2,E,N2) is defined as

(Γ1,E,N1)∧bw(Γ2,E,N2) = (Γ1,E,N1) ∧ (Γ2,E,N2)bw.

iii. The And-Not-product of (Γ1,E,N1) and (Γ2,E,N2) is defined as

(Γ1,E,N1)∧(Γ2,E,N2) = (Γ1,E,N1) ∧ (Γ2,E,N2)c.

Example 3.19. Consider the N5-SS (Γ?,E, 5) and the N6-SS (Γ?,E, 6) as given in Example 3.17. Then their the
And-product, And-Top-Not-product, And-Bottom-Not-product and And-Not-product are given in (Γ∗ ∧ Γ∗,E × E, 6),
(Γ∗∧twΓ∗,E × E, 6), (Γ∗∧bwΓ∗,E × E, 6) and (Γ∗∧Γ∗,E × E, 6), respectively,

(Γ∗ ∧ Γ∗,E × E, 6) =


((x1, x1), (u1, 〈3, 1, 4〉), (u2, 〈3, 4, 3〉), (u3, 〈1, 3, 5〉)),
((x1, x2), (u1, 〈1, 1, 5〉), (u2, 〈4, 4, 5〉), (u3, 〈2, 3, 2〉)),
((x2, x1), (u1, 〈1, 0, 3〉), (u2, 〈3, 4, 3〉), (u3, 〈1, 3, 5〉)),
((x2, x2), (u1, 〈1, 0, 5〉), (u2, 〈4, 4, 5〉), (u3, 〈3, 3, 4〉))

 ,

(Γ∗∧twΓ∗,E × E, 6) =


((x1, x1), (u1, 〈0, 5, 4〉), (u2, 〈4, 2, 3〉), (u3, 〈2, 3, 1〉)),
((x1, x2), (u1, 〈3, 5, 4〉), (u2, 〈0, 2, 3〉), (u3, 〈2, 3, 1〉)),
((x2, x1), (u1, 〈0, 5, 2〉), (u2, 〈4, 2, 3〉), (u3, 〈3, 2, 4〉)),
((x2, x2), (u1, 〈1, 5, 2〉), (u2, 〈0, 2, 3〉), (u3, 〈3, 2, 4〉))

 ,

(Γ∗∧bwΓ∗,E × E, 6) =


((x1, x1), (u1, 〈0, 5, 5〉), (u2, 〈0, 5, 5〉), (u3, 〈0, 5, 1〉)),
((x1, x2), (u1, 〈0, 5, 4〉), (u2, 〈0, 5, 3〉), (u3, 〈0, 5, 5〉)),
((x2, x1), (u1, 〈0, 5, 5〉), (u2, 〈0, 5, 5〉), (u3, 〈0, 5, 4〉)),
((x2, x2), (u1, 〈0, 5, 2〉), (u2, 〈0, 5, 3〉), (u3, 〈0, 5, 5〉))

 ,
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(Γ∗∧Γ∗,E × E, 6) =


((x1, x1), (u1, 〈3, 5, 5〉), (u2, 〈2, 2, 3〉), (u3, 〈2, 3, 1〉)),
((x1, x2), (u1, 〈3, 5, 4〉), (u2, 〈4, 2, 5〉), (u3, 〈2, 3, 4〉)),
((x2, x1), (u1, 〈1, 5, 5〉), (u2, 〈2, 2, 3〉), (u3, 〈3, 2, 4〉)),
((x2, x2), (u1, 〈1, 5, 2〉), (u2, 〈4, 2, 5〉), (u3, 〈2, 2, 4〉))

 .
Proposition 3.20. Let (Γ1,E,N1), (Γ2,E,N2) ∈ NN − S S (U). Then we have the following only if N1 = N2.
i. [(Γ1,E,N1) ∨ (Γ2,E,N2)]c = (Γ1,E,N1)c ∧ (Γ2,E,N2)c.
ii. [(Γ1,E,N1) ∧ (Γ2,E,N2)]c = (Γ1,E,N1)c ∨ (Γ2,E,N2)c.

Proof. i. From Definitions 3.1, 3.16 and 3.18, we can write for every (xr, xs) ∈ E × E and for each uk ∈ U

tk
(Γ1∧Γ2)c

(xr ,xs )
= f k

(Γ1∧Γ2)(xr ,xs )
= min

{[
f 1
(Γ1)xr

]k
,
[
f 2
(Γ2)xs

]k
}

= min
{[

t1
(Γ1)c

xr

]k
,
[
t2
(Γ2)c

xs

]k
}

= tk
(Γc

1∨Γc
2)(xr ,xs )

ik(Γ1∧Γ2)c
(xr ,xs )

= (N − 1) − ik(Γ1∧Γ2)(xr ,xs )
= (N − 1) − min

{[
i1(Γ1)xr

]k
,
[
i2(Γ2)xs

]k
}

= max
{
(N − 1) −

[
i1(Γ1)c

xr

]k
, (N − 1) −

[
i2(Γ2)c

xs

]k
}

= ik(Γc
1∨Γc

2)(xr ,xs)

f k
(Γ1∧Γ2)c

(xr ,xs )
= tk

(Γ1∧Γ2)(xr ,xs )
= min

{[
t1
(Γ1)xr

]k
,
[
t2
(Γ2)xs

]k
}

= min
{[

f 1
(Γ1)c

xr

]k
,
[
f 2
(Γ2)c

xs

]k
}

= f k
(Γc

1∨Γc
2)(xr ,xs )

.

Therefore, the proof of i. is completed. The case ii. can be proved similar to i.. �

4. Similarity Measures of NN-SS

In this section we introduce similarity measure based on the distance measures of NNSSs.

Let two NN-SSs

(Λ,E,N1) =

{(
xl,

(
uk,

〈[
t1
Λx

]k
,
[
i1Λx

]k
,
[
f 1
Λx

]k
〉)

: uk ∈ U

)
: xl ∈ E

}
and

(Ω,E,N2) =

{(
xl,

(
uk,

〈[
t2
Ωx

]k
,
[
i2Ωx

]k
,
[
f 2
Ωx

]k
〉)

: uk ∈ U

)
: xl ∈ E

}
are defined overU for 1 ≤ l ≤ n and 1 ≤ k ≤ m. Then the following Hamming and Euclidean distances are defined on
(Λ,E,N1) and (Ω,E,N2).

Hamming Distance

D̃1((Λ,E,N1), (Ω,E,N2)) =
1
3n

∑
xl∈E

∑
uk∈U



∣∣∣∣∣[t1
Λx

]k
−

[
t2
Ωx

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Λx

]k
−

[
i2
Ωx

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Λx

]k
−

[
f 2
Ωx

]k
∣∣∣∣∣


.

Normalised Hamming Distance

D̃2((Λ,E,N1), (Ω,E,N2)) =
1

3nm

∑
xl∈E

∑
uk∈U



∣∣∣∣∣[t1
Λx

]k
−

[
t2
Ωx

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Λx

]k
−

[
i2
Ωx

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Λx

]k
−

[
f 2
Ωx

]k
∣∣∣∣∣


.
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Euclidean Distance

D̃3((Λ,E,N1), (Ω,E,N2)) =


1

3n

∑
xl∈E

∑
uk∈U



∣∣∣∣∣[t1
Λx

]k
−

[
t2
Ωx

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Λx

]k
−

[
i2
Ωx

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Λx

]k
−

[
f 2
Ωx

]k
∣∣∣∣∣





1/2

.

Normalised Euclidean Distance

D̃4((Λ,E,N1), (Ω,E,N2)) =


1

3nm

∑
xl∈E

∑
uk∈U



∣∣∣∣∣[t1
Λx

]k
−

[
t2
Ωx

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Λx

]k
−

[
i2
Ωx

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Λx

]k
−

[
f 2
Ωx

]k
∣∣∣∣∣





1/2

.

Lemma 4.1. For N1 ≥ N2, the following inequalities hold.
(i) D̃1((Λ,E,N1), (Ω,E,N2)) ≤ m(N1 − 1),
(ii) D̃2((Λ,E,N1), (Ω,E,N2)) ≤ (N1 − 1),
(iii) D̃3((Λ,E,N1), (Ω,E,N2)) ≤

√
m(N1 − 1),

(iv) D̃4((Λ,E,N1), (Ω,E,N2)) ≤
√

(N1 − 1).

Proof. Since
[
t1
Λx

]k
,
[
i1
Λx

]k
,
[
f 1
Λx

]k
∈ [0,N1 − 1] and

[
t2
Ωx

]k
,
[
i2
Ωx

]k
,
[
f 2
Ωx

]k
∈ [0,N1 − 1], the result holds as∣∣∣∣∣[t1

Λx

]k
−

[
t2
Ωx

]k
∣∣∣∣∣ ≤ [0,N1 − 1],

∣∣∣∣∣[i1Λx

]k
−

[
i2
Ωx

]k
∣∣∣∣∣ ≤ [0,N1 − 1] and

∣∣∣∣∣[ f 1
Λx

]k
−

[
f 2
Ωx

]k
∣∣∣∣∣ ≤ [0,N1 − 1] for N1 ≥ N2. �

Theorem 4.2. The above defined distances D̃i (i = 1, 2, 3, 4) are metrics.

Proof. We prove it for only one, as it can make similar proof for each distances.

Let (Λ1,E,N1), (Λ2,E,N2), (Λ3,E,N3) be any three NN-SSs. For D̃1,

(i) D̃1((Λ,E,N1), (Ω,E,N2)) ≥ 0.

If (Λ1,E,N1) = (Λ2,E,N2) ⇒ [
[
t1
Λ1 x

]k
=

[
t2
Λ2 x

]k
,
[
i1
Λ1 x

]k
=

[
i2
Λ2 x

]k
,
[
f 1
Λ1 x

]k
=

[
f 2
Λ2 x

]k
;∀xl ∈ E,∀uk ∈ U] ⇒

[
[
t1
Λ1 x

]k
−

[
t2
Λ2 x

]k
= 0,

[
i1
Λ1 x

]k
−

[
i2
Λ2 x

]k
= 0,

[
f 1
Λ1 x

]k
−

[
f 2
Λ2 x

]k
= 0;∀xl ∈ E,∀uk ∈ U]⇒ D̃1((Λ,E,N1), (Ω,E,N2)) = 0.

Conversely, let D̃1((Λ,E,N1), (Ω,E,N2)) = 0 ⇒
∣∣∣∣∣[t1

Λ1 x

]k
=

[
t2
Λ2 x

]k
∣∣∣∣∣ = 0,

∣∣∣∣∣[i1Λ1 x

]k
=

[
i2
Λ2 x

]k
∣∣∣∣∣ = 0,

∣∣∣∣∣[ f 1
Λ1 x

]k
=

[
f 2
Λ2 x

]k
∣∣∣∣∣ =

0 ⇒ (Λ1,E,N1) = (Λ2,E,N2) ⇒ [
[
t1
Λ1 x

]k
=

[
t2
Λ2 x

]k
,
[
i1
Λ1 x

]k
=

[
i2
Λ2 x

]k
,
[
f 1
Λ1 x

]k
=

[
f 2
Λ2 x

]k
;∀xl ∈ E,∀uk ∈ U] ⇒

(Λ1,E,N1) = (Λ2,E,N2).

(ii) Clearly, D̃1((Λ1,E,N1), (Λ2,E,N2)) = D̃1((Λ2,E,N2), (Λ1,E,N1)).

(iii) Finally, let’s check the triangle inequality,

3nD̃1((Λ1,E,N1), (Λ2,E,N2)) =
∑
xl∈E

∑
uk∈U



∣∣∣∣∣[t1
Λ1 x

]k
−

[
t2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Λ1 x

]k
−

[
i2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Λ1 x

]k
−

[
f 2
Λ2 x

]k
∣∣∣∣∣



=
∑
xl∈E

∑
uk∈U



∣∣∣∣∣[t1
Λ1 x

]k
−

[
t3
Λ3 x

]k
+

[
t3
Λ3 x

]k
−

[
t2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Λ1 x

]k
−

[
i3
Λ3 x

]k
+

[
i3
Λ3 x

]k
−

[
i2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Λ1 x

]k
−

[
f 3
Λ3 x

]k
+

[
f 3
Λ3 x

]k
−

[
f 2
Λ2 x

]k
∣∣∣∣∣
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≤
∑
xl∈E

∑
uk∈U



∣∣∣∣∣[t1
Λ1 x

]k
−

[
t3
Λ3 x

]k
∣∣∣∣∣ +

∣∣∣∣∣[t3
Λ3 x

]k
−

[
t2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Λ1 x

]k
−

[
i3
Λ3 x

]k
∣∣∣∣∣ +

∣∣∣∣∣[i3Λ3 x

]k
−

[
i2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Λ1 x

]k
−

[
f 3
Λ3 x

]k
∣∣∣∣∣ +

∣∣∣∣∣[ f 3
Λ3 x

]k
−

[
f 2
Λ2 x

]k
∣∣∣∣∣



=
∑
xl∈E

∑
uk∈U



∣∣∣∣∣[t1
Λ1 x

]k
−

[
t3
Λ3 x

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Λ1 x

]k
−

[
i3
Λ3 x

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Λ1 x

]k
−

[
f 3
Λ3 x

]k
∣∣∣∣∣


+

∑
xl∈E

∑
uk∈U



∣∣∣∣∣[t3
Λ3 x

]k
−

[
t2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[i3Λ3 x

]k
−

[
i2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 3

Λ3 x

]k
−

[
f 2
Λ2 x

]k
∣∣∣∣∣


= 3nD̃1((Λ1,E,N1), (Λ3,E,N3)) + 3nD̃1((Λ3,E,N3), (Λ2,E,N2)),

i.e., 3nD̃1((Λ1,E,N1), (Λ2,E,N2)) ≤ 3nD̃1((Λ1,E,N1), (Λ3,E,N3)) + 3nD̃1((Λ3,E,N3), (Λ2,E,N2)). Thus,

D̃1((Λ1,E,N1), (Λ2,E,N2)) ≤ D̃1((Λ1,E,N1), (Λ3,E,N3)) + D̃1((Λ3,E,N3), (Λ2,E,N2)).

�

Proposition 4.3. Let (Λ1,E,N1), (Λ2,E,N2) and (Λ3,E,N3) be three NN-SSs over U. If (Λ1,E,N1) v (Λ2,E,N2) v
(Λ3,E,N3), then

D̃k((Λ1,E,N1), (Λ2,E,N2)) ≤ D̃k((Λ1,E,N1), (Λ3,E,N3))
and

D̃k((Λ2,E,N2), (Λ3,E,N3)) ≤ D̃k((Λ1,E,N1), (Λ3,E,N3))
for k = 1, 2, 3, 4.

Proof. We only prove for k = 1, as the proofs are similar for the others.

Since (Λ1,E,N1) v (Λ2,E,N2) v (Λ3,E,N3) is given, the following inequalities are provided from Definition 2.9
for each xl ∈ E and uk ∈ U, [

t1
Λ1 x

]k
≤

[
t2
Λ2 x

]k
≤

[
t3
Λ3 x

]k
,[

i1Λ1 x

]k
≥

[
i2Λ2 x

]k
≥

[
i3Λ3 x

]k
,[

f 1
Λ1 x

]k
≥

[
f 2
Λ2 x

]k
≥

[
f 3
Λ3 x

]k
.

Therefore, we have ∣∣∣∣∣[t1
Λ1 x

]k
−

[
t2
Λ2 x

]k
∣∣∣∣∣ ≤ ∣∣∣∣∣[t1

Λ1 x

]k
−

[
t3
Λ3 x

]k
∣∣∣∣∣ , ∣∣∣∣∣[t2

Λ2 x

]k
−

[
t3
Λ3 x

]k
∣∣∣∣∣ ≤ ∣∣∣∣∣[t1

Λ1 x

]k
−

[
t3
Λ3 x

]k
∣∣∣∣∣ ,∣∣∣∣∣[i1Λ1 x

]k
−

[
i2Λ2 x

]k
∣∣∣∣∣ ≤ ∣∣∣∣∣[i1Λ1 x

]k
−

[
i3Λ3 x

]k
∣∣∣∣∣ , ∣∣∣∣∣[i2Λ2 x

]k
−

[
i3Λ3 x

]k
∣∣∣∣∣ ≤ ∣∣∣∣∣[i1Λ1 x

]k
−

[
i3Λ3 x

]k
∣∣∣∣∣ ,∣∣∣∣∣[ f 1

Λ1 x

]k
−

[
f 2
Λ2 x

]k
∣∣∣∣∣ ≤ ∣∣∣∣∣[ f 1

Λ1 x

]k
−

[
f 3
Λ3 x

]k
∣∣∣∣∣ , ∣∣∣∣∣[ f 2

Λ2 x

]k
−

[
f 3
Λ3 x

]k
∣∣∣∣∣ ≤ ∣∣∣∣∣[ f 1

Λ1 x

]k
−

[
f 3
Λ3 x

]k
∣∣∣∣∣ .

Hence 

∣∣∣∣∣[t1
Λ1 x

]k
−

[
t2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Λ1 x

]k
−

[
i2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Λ1 x

]k
−

[
f 2
Λ2 x

]k
∣∣∣∣∣


≤



∣∣∣∣∣[t1
Λ1 x

]k
−

[
t3
Λ3 x

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Λ1 x

]k
−

[
i3
Λ3 x

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Λ1 x

]k
−

[
f 3
Λ3 x

]k
∣∣∣∣∣


and 

∣∣∣∣∣[t2
Λ2 x

]k
−

[
t3
Λ3 x

]k
∣∣∣∣∣ +∣∣∣∣∣[i2Λ2 x

]k
−

[
i3
Λ3 x

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 2

Λ2 x

]k
−

[
f 3
Λ3 x

]k
∣∣∣∣∣


≤



∣∣∣∣∣[t1
Λ1 x

]k
−

[
t3
Λ3 x

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Λ1 x

]k
−

[
i3
Λ3 x

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Λ1 x

]k
−

[
f 3
Λ3 x

]k
∣∣∣∣∣


.
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Thus,
D̃k((Λ1,E,N1), (Λ2,E,N2)) ≤ D̃k((Λ1,E,N1), (Λ3,E,N3))

and
D̃k((Λ2,E,N2), (Λ3,E,N3)) ≤ D̃k((Λ1,E,N1), (Λ3,E,N3))

are proved for k = 1, 2, 3, 4. �

For the similarity measurements, we used the distance measures suggested in our study. Similarity measures
S̃1((Λ1,E,N1), (Λ2,E,N2)) and S̃2((Λ1,E,N1), (Λ2,E,N2)) between NN-SSs (Λ1,E,N1) and (Λ2,E,N2) are given be-
low for N1 ≥ N2,

S̃1((Λ1,E,N1), (Λ2,E,N2)) = (N1 − 1) −
1

3mn

∑
xl∈E

∑
uk∈U



∣∣∣∣∣[t1
Λ1 x

]k
−

[
t2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Λ1 x

]k
−

[
i2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Λ1 x

]k
−

[
f 2
Λ2 x

]k
∣∣∣∣∣


,

S̃2((Λ1,E,N1), (Λ2,E,N2)) =
√

N1 − 1 −


1

3mn

∑
xl∈E

∑
uk∈U



∣∣∣∣∣[t1
Λ1 x

]k
−

[
t2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Λ1 x

]k
−

[
i2
Λ2 x

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Λ1 x

]k
−

[
f 2
Λ2 x

]k
∣∣∣∣∣





1/2

.

Many of the features we provide for distance measurements can be preserved within similarity measurements, as we
create similarity measurements using the proposed distance measurements.

Proposition 4.4. The above defined similarity measurements S̃1 and S̃2 between NN-SSs (Λ1,E,N1), (Λ2,E,N2) and
(Λ3,E,N3) satisfy the following properties (S̃1 − 1, S̃1 − 4) for N1 ≥ N2 ≥ N3,

(S̃1 − 1) 0 ≤ S̃1((Λ1,E,N1), (Λ2,E,N2)) ≤ N1 − 1 and 0 ≤ S̃2((Λ1,E,N1), (Λ2,E,N2)) ≤
√

N1 − 1.

(S̃1 − 2) S̃1((Λ1,E,N1), (Λ2,E,N2)) = N1 − 1 iff (Λ1,E,N1) = (Λ2,E,N2) and S̃1((Λ1,E,N1), (Λ2,E,N2)) =
√

N1 − 1
iff (Λ1,E,N1) = (Λ3,E,N3).

(S̃1 − 3) S̃t((Λ1,E,N1), (Λ2,E,N2)) = S̃1((Λ2,E,N2), (Λ1,E,N1)) for t = 1, 2.

(S̃1 − 4) If (Λ1,E,N1) v (Λ2,E,N2) v (Λ3,E,N3), then S̃t((Λ1,E,N1), (Λ3,E,N3)) ≤ S̃1((Λ2,E,N2), (Λ1,E,N1))
and S̃t((Λ1,E,N1), (Λ3,E,N3)) ≤ S̃1((Λ2,E,N2), (Λ3,E,N3)) for t = 1, 2.

Proof. The proof is clear from Theorem 4.2 and Proposition 4.3. �

Definition 4.5. The two NN-SSs (Λ1,E,N1) and (Λ2,E,N2) are λ similar if and only if S̃1((Λ1,E,N1), (Λ2,E,N2)) ≥ λ
for N1 ≥ N2, i.e.,

(Λ1,E,N1) ≈λ (Λ2,E,N2)⇔ S̃1((Λ1,E,N1), (Λ2,E,N2)) ≥ λ, λ ∈ [0, (N1 − 1)].

(Λ1,E,N1) and (Λ2,E,N2) are significantly similar if S̃1((Λ1,E,N1), (Λ2,E,N2)) ≥ (N1 − 1)/2.

Definition 4.6. The two NN-SSs (Λ1,E,N1) and (Λ2,E,N2) are λ similar if and only if S̃2((Λ1,E,N1), (Λ2,E,N2)) ≥ λ
for N1 ≥ N2, i.e.,

(Λ1,E,N1) ≈λ (Λ2,E,N2)⇔ S̃2((Λ1,E,N1), (Λ2,E,N2)) ≥ λ, λ ∈ [0,
√

N1 − 1].

(Λ1,E,N1) and (Λ2,E,N2) are significantly similar if S̃2((Λ1,E,N1), (Λ2,E,N2)) ≥
√

N1 − 1/2.
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5. Application of Similarity Measurements for NN-SS

In this section, applying the similarity measures to decision making, we present a handling method for the decision-
making problem by means of the similarity measures between NN-SSs.

In the following example, we will try to estimate the most appropriate staff for the conditions expressed by a com-
pany. For this, we first construct a model NN-SS expressed by the company for the most appropriate staff and the
NN-SS for candidate staff. Then, we calculated the similarity measurements for the built NN-SSs. If the NN-SSs are
significantly similar, then we decide that the staff taken into evaluation will possibly be hired.

Now we consider a universal setU = {y = YES , n = NO} and the set of parameters
E = {x1 = determination to work, x2 = f oreign language pro f iciency, x3 = hardworking} is the set containing the
characteristics of the staff desired by the company. Our model NN-SS for the most suitable staff (Ω,E, 8) is given
below and this can be prepared with the help of a expert person:

(Ω,E, 8) =


(x1, (y, 〈6, 5, 7〉), (n, 〈6, 7, 5〉)),
(x2, (y, 〈6, 7, 6〉), (n, 〈6, 7, 7〉)),
(x1, (y, 〈7, 6, 5〉), (n, 〈6, 5, 7〉))

 .
Now, the three candidates applying to this company will be evaluated. The first candidate (C1) is represented by
(Ω1,E, 6) given below,

(Ω1,E, 6) =


(x1, (y, 〈5, 5, 4〉), (n, 〈5, 4, 5〉)),
(x2, (y, 〈4, 3, 5〉), (n, 〈4, 5, 5〉)),
(x1, (y, 〈4, 5, 4〉), (n, 〈5, 5, 4〉))

 .
Then we find the similarity measures of these two sets as:

S̃1((Ω,E, 8), (Ω1,E, 6)) = 7 −
1

3.2.3

∑
xl∈E

∑
uk∈U



∣∣∣∣∣[t1
Ωx

]k
−

[
t2
Ω1 x

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Ωx

]k
−

[
i2
Ω1 x

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Ωx

]k
−

[
f 2
Ω1 x

]k
∣∣∣∣∣


= 5.33 > 3.5,

S̃2((Ω,E, 8), (Ω1,E, 6)) =
√

7 −


1

3.2.3

∑
xl∈E

∑
uk∈U



∣∣∣∣∣[t1
Ωx

]k
−

[
t2
Ω1 x

]k
∣∣∣∣∣ +∣∣∣∣∣[i1Ωx

]k
−

[
i2
Ω1 x

]k
∣∣∣∣∣ +∣∣∣∣∣[ f 1

Ωx

]k
−

[
f 2
Ω1 x

]k
∣∣∣∣∣





1/2

= 1.35 >

√
7

2
≈ 1.32.

Hence the two NN-SSs are significantly similar. Therefore, we conclude that hiring the C1-candidate may be correct.
The C2-candidate with the following characteristics whose corresponding NN-SS (Ω2,E, 7) is given below:

(Ω2,E, 7) =


(x1, (y, 〈2, 6, 3〉), (n, 〈1, 2, 2〉)),
(x2, (y, 〈2, 1, 4〉), (n, 〈3, 6, 2〉)),
(x1, (y, 〈1, 0, 2〉), (n, 〈3, 3, 6〉))

 .
Then S̃1((Ω,E, 8), (Ω2,E, 7)) = 3.44 < 3.5 and S̃1((Ω,E, 8), (Ω2,E, 7)) = 0.76 < 1.32. Here the two NN-SSs are not
significantly similar. Therefore, we conclude that hiring the C1-candidate may not be correct. Finally, the C3-candidate
with the following characteristics whose corresponding NN-SS (Ω3,E, 7) is given below:

(Ω3,E, 7) =


(x1, (y, 〈6, 4, 2〉), (n, 〈4, 1, 6〉)),
(x2, (y, 〈5, 2, 4〉), (n, 〈3, 4, 2〉)),
(x1, (y, 〈6, 3, 5〉), (n, 〈1, 3, 6〉))

 .
Then S̃1((Ω,E, 8), (Ω3,E, 7)) = 4.44 > 3.5 and S̃1((Ω,E, 8), (Ω3,E, 7)) = 1.04 < 1.32. It is difficult to decide in
such cases. However, it may be useful to take advantage of another similarity measurement. Since each similarity
measurement may have different advantages, it may not be correct to do a ranking of superiority among them.
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6. Conclusion

This paper discusses N-soft sets, which is a generalized mathematical model of soft sets under the framework of
neutrosophic logic, and brings neutrosophic N-soft sets to the literature. With this new model taking neutrosphic
logic and soft sets that attract the attention of many researchers today, it offers a more ideal approach to uncertainty.
Moreover, a section has been created that examines some properties related to this concept. Then, some products and
useful operations on the neutrosophic N-soft sets are derived. In addition, we have given the similarity measures of the
neutrosophic N-soft sets by defining the Euclidean and Hamming distance measures between two neutrosophic N-soft
sets. Finally, an application is presented on how to take advantage of the similarity measures defined for a decision
making problem.

The researchers who will benefit from this paper in the future may be able to achieve more impressive results in
applying different mathematical models to their decision making problems regarding uncertainty situations. Thanks to
the success of neutrosophic logic and N-soft set especially in the area of uncertainty, we think that neutrosophic N-soft
set we are working on will be an important research contribution.
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