
Journal of Engineering Technology and Applied Sciences, 2021  e-ISSN: 2548-0391 
Received 1 May 2021, Accepted 24 August 2021  Vol. 6, No. 2, 91-109 
Published online 30 August 2021, Research Article doi: 10.30931/jetas. 931101 
 
 
Citation: Hadj-Brahim, A., Ali-Pacha, H., Ali-Pacha, A., Hadj-Said, N., "Cohabitation of Fibonacci and Galois 
Modes in One Linear Feedback Shift Register". Journal of Engineering Technology and Applied Sciences 6 (2) 
2021 : 91-109. 

 
 

COHABITATION OF FIBONACCI AND GALOIS MODES IN 
ONE LINEAR FEEDBACK SHIFT REGISTER  

 
 

Abderrahmene Hadj Brahim, Hana Ali-Pacha , Adda Ali-Pacha* ,  
Naima Hadj-Said  

 
Laboratory of Coding and Security of Information 

University of Sciences and Technology of Oran, Algeria Usto,  
PoBox 1505 El M’Naouer Oran 31000 Algeria 

hadj_94@hotmail.com {hana.alipacha, naima.hadjsaid}@univ-usto.dz, 
a.alipacha@gmail.com(*corresponding author) 

 
 
Abstract 
 
A linear feedback shift register (LFSR) is the basic element of the pseudo-random generators used to 
generate a sequence of pseudo-random values for a stream cipher. It consists of several cells; each cell 
is a flip-flop and a feedback function. The feedback function is a linear polynomial function; this 
function has a degree equal to the number of cells in the register. The basic elements of the register are 
connected to each other in two different ways, either in Fibonacci mode or in Galois mode. 
 
In this work, we propose the realization of a specific register which is cohabitation of these two modes 
(Fibonacci and Galois) in the same register and for the same feedback function, and which will be 
controlled by a random function for the selection of mode, which will be based on the chaotic logistics 
map. This specific register gave better results compared to registers with separate modes. 
 
 
Keywords: LFSR, cryptography, stream cipher, Pseudo-Random generation, Fibonacci mode, Galois 
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1. Introduction 

 
The stream cipher is becoming increasingly important in our daily lives[1]–[4]. Some of these 
systems use Linear Feedback Shift Register (LFSR) to produce a random sequence, which 
must be XORed with plaintext massages to give encrypted messages. LFSR is an electronic 
device (flip-flops connected in series)[5] that can be seen as software that produces a 
sequence of bits that can be seen as a recurring sequence on the Galois filed F₂ of 2 elements 
(0 and 1).  
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An LFSR is characterized by its feedback function, which connects its cells to each other in 
two different modes: Fibonacci and Galois. The most natural mode is the so-called Fibonacci 
mode. This is called because the Fibonacci sequence is represented in this mode. It updates 
the first cell of the register, which is on the left then operates by shift for the other cells. In 
2002, Goresky and Klapper introduced a completely different mode called the Galois mode 
[6]. The basic idea of the Galois mode is that the contents of the output cell are re-injected 
into the input cell and added to the contents of the other cells of the register, and then all the 
cells are shifted to the output. 
 
The critical difference between the two modes is how the feedback polynomial is interpreted. 
For a given feedback polynomial, the two modes produce different output sequences. Another 
difference is their implementation, if you implement an LFSR in a CPU or an FPGA [7], the 
Galois structure that is more computerized and its cells are updated simultaneously is 
probably faster and has less latency than Fibonacci mode. 
 
In the last few years, several algorithms have been used LFSR to generate pseudo random 
sequences such as [8]–[11]. Lv et Tong [8] Proposed a novel method of chaotic image 
encryption based on LFSR. In this algorithm, The LFSR is combined with chaotic system to 
generate the key stream where the polynomial of the LFSR has degree of 20. Ayoup et al [9] 
proposed an efficient selective image encryption. The LFSR in this algorithm is used to 
generate a matrix where the polynomial of the LFSR has degree of 8. After that this matrix is 
XORed with the Plain image to obtain the pre-encrypted image. Kareem Jumaa [10] designed 
a digital image encryption using AES and random number generator. To encrypt the plain 
image using AES, The LFSR is used to generate 128 bits of the input of the AES. The 
polynomial of the LFSR in this algorithm has degree of 5. Naim et al [11] proposed a novel 
satellite image encryption algorithm based on hyperchaotic systems and Josephus problem. 
The LFSR in this algorithm is used to generate a matrix which used to generate 512 bits of the 
hash function. Then, these 512 bits are used to generate the key of the whole algorithm. The 
polynomial of the LFSR in this algorithm has degree of 8. The main disadvantage in these 
algorithms that the LFSR has a low max period which cause a repetition in the value of the 
sequence of the LFSR. 
 
In order to improve the period and the complexity of the LFSR sequence, we propose the 
realization of a specific register, which is cohabitation of these two modes (Fibonacci and 
Galois) in an LFSR and for the same feedback polynomial; it will be controlled by a random 
function of mode selection, in our case, based on the logistics map. This specific register gave 
better results compared to the register with separate modes. 
 

2. Linear feedback shift register 
 
A linear feedback shift register is an electronic device that produces a sequence of random 
bits [12]. It consists of several cells each cell presented by a flip-flop, the particularity of the 
connection between cells called feedback function, looks like a linear function, so we can 
apply a mathematical structure. The LFSRs (Figure 1) have the following characteristics: 
 
 The output is the contents of the last cell on the right. 
 The period is the sequence length produced before it begins to repeat itself. 
 The feedback function is the sum of "exclusive" operations of some of the bits of the 
register, the list of these bits is called "the derivation sequence". It is obtained from a chosen 
polynomial. 
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 They are easy to make in hardware [13]. 
 

2.1 How an LFSR works 
 
LFSRs are used as pseudo-random number generators [5], [12]. When properly configured, 
they reach periods of maximum length; each state will be reached only once until all states are 
reached. Once each state has been reached, the period will be repeated [13]. 
In general, LFSRs are built with D flip-flops and, XOR operations. The initial value of the 
shift register and the feedback function determines the order of output [12]. 
 
An LFSR of length L is composed of a shift register containing a sequence of L bits (Si,..., 
Si+L−1) and a linear feedback function, as well as a clock controlling the movement data [12]. 
 
At each clock tick, the content of the rightmost cell is the output of the register and, the 
contents of the other cells are shifted to the right, a new bit is calculated by the feedback 
function and will be placed in the leftmost cell of the register: 
 
𝑆𝑆𝑡𝑡+𝐿𝐿 = 𝐶𝐶1𝑆𝑆𝑡𝑡+𝐿𝐿−1 + 𝐶𝐶2𝑆𝑆𝑡𝑡+𝐿𝐿−2 + ⋯+ 𝐶𝐶𝐿𝐿−1𝑆𝑆𝑡𝑡+1 + 𝐶𝐶𝐿𝐿𝑆𝑆𝑡𝑡           
(1) 
The coefficients 𝐶𝐶𝑖𝑖 are binary. 
 

 
Figure 1. LFSR of length L. 
 
 
Definition 2.1 [6]: An LFSR whose feedback function is given by the relation: 
𝑆𝑆𝑡𝑡+𝐿𝐿 = 𝐶𝐶1𝑆𝑆𝑡𝑡+𝐿𝐿−1 + 𝐶𝐶2𝑆𝑆𝑡𝑡+𝐿𝐿−2 + ⋯+ 𝐶𝐶𝐿𝐿−1𝑆𝑆𝑡𝑡+1 + 𝐶𝐶𝐿𝐿𝑆𝑆𝑡𝑡           
(2) 
Its feedback polynomial f is the following F2[X] polynomial: 
𝑓𝑓(𝑥𝑥) =1+𝐶𝐶1𝑥𝑥 + 𝐶𝐶2𝑥𝑥2 + ⋯+ 𝐶𝐶𝐿𝐿−1𝑥𝑥𝐿𝐿−1 + 𝐶𝐶𝐿𝐿𝑥𝑥𝐿𝐿                          (3) 
The sequence (𝑆𝑆𝑛𝑛)𝑛𝑛≥𝑛𝑛0 is produced by an LFSR whose feedback polynomial is: f (x) If and 
only if its formal serial development: 
𝑆𝑆(𝑥𝑥) = ∑  𝑆𝑆𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛≥0                         (4) 
Is written: 
𝑆𝑆(𝑥𝑥) = 𝑔𝑔(𝑥𝑥)

𝑓𝑓(𝑥𝑥)                                                
(5) 
Where g is a polynomial of 𝐹𝐹2[X] such that deg(g) < deg(f), and gcd(𝑔𝑔0,𝑓𝑓0)=1. In addition, the 
polynomial g is determined by the initial state of the register : 
𝑔𝑔(𝑥𝑥) = ∑ 𝑥𝑥𝑖𝑖 ∑ 𝐶𝐶𝑖𝑖−𝑗𝑗𝑆𝑆𝑗𝑗𝑖𝑖

𝑗𝑗=0
𝐿𝐿−1
𝑖𝑖=0                               

(6) 
It may be noted that such a sequence is ultimately periodic, that is to say, that there exists a 
pre-period 𝑛𝑛0  such that the sequence ((𝑆𝑆𝑛𝑛)𝑛𝑛≥𝑛𝑛0is periodic of period T ≤ 2𝐿𝐿 − 1  (there exists 
an integer 𝑖𝑖0 such that  𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖+T for all i ≥ i0) [6]. 
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The LFSRs have been studied since 1930 in their purely theoretical aspect and are mostly 
built on a finite field. From 1948 to 1969, LFSRs are used as generators of pseudo-random 
sequences in cryptosystems since they can generate binary sequences of maximum period. 
These sequences are called the m-sequences (maximum length sequences). The search for 
sequences with a very long period becomes a crucial problem in the 1950s. To ensure better 
security, we must respect three characteristics, in addition to having a maximum period, the 
m-sequences must verify all the random postulates that give them a good random quality. A 
pseudo-random generator used by cryptography must be able to [1]: 
 
- Generate sequences of bits that must satisfy the statistical characteristics of truly random 
sequences. 
- To guarantee that if an attacker knows all, or part of the sequence encrypting 𝑆𝑆0, 𝑆𝑆1, … , 𝑆𝑆𝑖𝑖  it 
is difficult (from a computational point of view) to find the seed. 
 

2.2 Presentation of LFSR modes: Fibonacci & Galois 
 

2.2.1 Fibonacci mode 

 
Figure 2. LFSR Fibonacci mode 
 
 
The Fibonacci model LFSR or just Fibonacci LFSR, named after the 12th century Italian 
mathematician Leonardo Fibonacci, is the most common used model of LFSR [7], [12] 
because of it is simple and lightweight hardware implementation which make it so popular in 
cryptographic systems. A Fibonacci LFSR consists of a number of stages that shift their 
values with each iteration and a feedback polynomial that returns new values in the first stage, 
see Figure 2. The memory stages who evaluated by the feedback polynomial are called the 
taps or tapped positions. 
 
The output sequence S of the LFSR of Figure 2 satisfies the linear recurrence: 
𝑆𝑆𝑡𝑡+𝑛𝑛 = 𝐶𝐶𝑛𝑛−1𝑆𝑆𝑡𝑡+𝑛𝑛−1 + 𝐶𝐶𝑛𝑛−2𝑆𝑆𝑡𝑡+𝑛𝑛−2 + +𝐶𝐶1𝑆𝑆𝑡𝑡+1 + 𝐶𝐶0𝑆𝑆𝑡𝑡            
(7) 
The feedback polynomial of the LFSR is equivalent to the inverse of the characteristic 
polynomial of the linear recurrence sequence above: 
𝑓𝑓(𝑥𝑥) =1+𝐶𝐶𝑛𝑛−1𝑥𝑥 + ⋯+ 𝐶𝐶1𝑥𝑥𝑛𝑛−1 + 𝐶𝐶0𝑥𝑥𝑛𝑛                     
(8) 
A Fibonacci LFSR of length n [12], with a feedback polynomial f (x) that updates at each 
clock interval of t in equation (9). 

         𝑄𝑄𝑡𝑡+1(𝑖𝑖) =  �    𝐶𝐶𝑛𝑛−1𝑄𝑄𝑡𝑡
(𝑛𝑛−1) + +𝐶𝐶1𝑄𝑄𝑡𝑡

(1) + 𝐶𝐶0𝑄𝑄𝑡𝑡
(0) …   𝑖𝑖𝑓𝑓 𝑖𝑖 = 𝑛𝑛 − 1

𝑄𝑄𝑡𝑡(𝑖𝑖−1)  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 
         (9)  

An example of a Fibonacci mode LFSR with a feedback polynomial [8]    𝑓𝑓(𝑥𝑥) = 𝑿𝑿𝟖𝟖 + 𝑿𝑿𝟒𝟒 +
𝑿𝑿𝟑𝟑 + 𝑿𝑿𝟐𝟐 + 𝟏𝟏, is shown in Figure 2.1. 
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Figure 2.1. LFSR Fibonacci 𝑋𝑋8 + 𝑋𝑋4 + 𝑋𝑋3 + 𝑋𝑋2 + 1 
 
 
LFSR Fibonacci is the most common model of LFSR used in systems that require the 
generation of a pseudo-random sequence. It is these qualities with its simple hardware 
implementation that make it very popular in cryptographic systems. 
 

2.2.2 Galois mode 
 
The Galois model, named after the 19th century French mathematician Evariste Galois [6], 
[12]. The function and basic idea behind this model is the same as the Fibonacci model. The 
critical difference is in how the feedback polynomial is interpreted. 

 
Figure 3. LSFR Galois Mode 
 
 
An LFSR in Galois configuration, which is also known as modular, internal XORs as well 
as one-to-many LFSR, is an alternate structure that can generate the same output stream as a 
conventional LFSR. In the Galois configuration, when the system is clocked, bits that are not 
tapped are shifted one position to the right unchanged. The taps, on the other hand, are 
XORed with the output bit before they are stored in the next position. The new output bit is 
the next input bit. The effect of this is that when the output bit is zero all the bits in the 
register shift to the right unchanged, and the input bit becomes zero. When the output bit is 
one, the bits in the top positions all flip (if they are 0, they become 1, and if they are 1, they 
become 0), and then the entire register is shifted to the right and the input bit becomes 1. The 
feedback polynomial of the LFSR Galois is defined: 
𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑛𝑛 + 𝐶𝐶𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝐶𝐶1𝑥𝑥 + 𝐶𝐶0,               
(10) 
 
A Galois LFSR of length n [6], with feedback polynomial f (x) that updates at each clock 
interval of t in equation 11.  
 

𝑅𝑅𝑡𝑡+1(𝑖𝑖) = �𝐶𝐶𝑛𝑛−1𝑅𝑅𝑡𝑡
(0),      𝑖𝑖𝑓𝑓 𝑖𝑖 = 𝑛𝑛 − 1

𝑅𝑅𝑡𝑡(𝑖𝑖+1) + 𝐶𝐶𝑖𝑖𝑅𝑅𝑡𝑡(0)  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 
                

    (11) 
 
An example of a Galois mode LFSR with a feedback polynomial [14] 𝑓𝑓(𝑥𝑥) = 𝑿𝑿𝟖𝟖 + 𝑿𝑿𝟒𝟒 +
𝑿𝑿𝟑𝟑 + 𝑿𝑿𝟐𝟐 + 𝟏𝟏, is shown in Figure 3.1. 
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Figure 3.1. LFSR Galois 𝑋𝑋8 + 𝑋𝑋4 + 𝑋𝑋3 + 𝑋𝑋2 + 1  
 
 

3. Proposed system: Coexistence of the two modes in one LFSR 
 
We will design a system that will combine the two modes (Fibonacci and Galois) in one 
register and which will be controlled by a random value T (T = 0 one chooses the mode 
Galois and if T = 1 one chooses the mode Fibonacci). This value T can be the output of any 
generator or, as in our case, a value 𝑌𝑌𝑛𝑛 of the logistic map. 
 

3.1 Logistic Map 
 
Logistics map [15], [16] is a well-known dynamic in non-linear systems theory, defined by 
equation (12): 
 

𝑦𝑦𝑘𝑘+1  =  𝑟𝑟 𝑥𝑥𝑘𝑘 (1 − 𝑥𝑥𝑘𝑘)                                        
(12) 
It gives a perfect explanation of dynamic system behavior. This system was developed by 
Prof. Pierre François Verhulst (1845) to measure the evolution of a population in a limited 
environment, later used in 1976 by the biologist Robert May to study the evolution of insect 
population: 
 
• 𝑦𝑦𝑘𝑘+1: Generation in the future that is proportional to 𝑥𝑥𝑘𝑘. 
• 𝑥𝑥𝑘𝑘:  Previous generation. 
• r: Positive constant incorporates all factors related to reproductive, successful 

overwintering eggs for example, etc. 
 
In order to study this dynamic system and some asymptotic individuals’ models, the first thing 
to do is to draw the parabolic graph 𝑦𝑦 =  𝑟𝑟 𝑥𝑥 (1 − 𝑥𝑥), and the diagonal 𝑦𝑦 = 𝑥𝑥.  
 
The operation that we will follow to draw the iterative form 𝑦𝑦𝑘𝑘+1 according to 𝑥𝑥𝑘𝑘 is simply 
summarized as follows: 
 
- Starting from an initial value x0 of the x-axis, we reach the function with a vertical; the 

function takes the value 𝑦𝑦1 = 𝑟𝑟 𝑥𝑥0 (1 − 𝑥𝑥0), 
- From horizontal 𝑦𝑦1 = 𝑟𝑟 𝑥𝑥0 (1 − 𝑥𝑥0), of the previous point, we join the line 𝑦𝑦 =  𝑥𝑥; 
- We represent the abscissa of the intersection with the vertical line x=x0; we have y1 = x1 
- From the 𝑥𝑥1 value of the x-axis, we reach the function with a vertical; the function takes 

the value 𝑦𝑦2 = 𝑟𝑟 𝑥𝑥1 (1 − 𝑥𝑥1),; and so on. 
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We take r = 3.9 and, x0=0.01 for the logistics map, the previous operations for 100 iterations 
are represented in Figure 4. 
 

 
 

Figure 4a. Evolution of 𝑦𝑦𝑘𝑘 in function of 𝑥𝑥𝑘𝑘 
 
 
Figure 4 shows two signals 𝑦𝑦𝑘𝑘 generated from the logistic map in chaotic mode (r = 3.9), one 
with an initial condition 𝑥𝑥0 = 0.1 and the other with 𝑥𝑥0= 0.100000000000001 very close to 
0.1. 

 
Figure 4b. Chaotic regime in the function of k 

 
Figure 4c. Sensitivity to initial conditions 
 
 
We note that a very small error on the knowledge of the initial state x0 in the phase space will 
be rapidly amplified and gives us two widely different signals. Quantitatively, the growth of 
error is locally exponential for highly chaotic systems (sensitivity to initial conditions). 
It should be noted that the initial condition error in this case is 10−15  and this is the smallest 
value because Matlab works with only 52 bits but the system can be sensitive to smaller 
values than 10−15  depending on the work environment. 
 

3.2 Diagram of "Cohabitation mode" 
 
The scheme of the Fibonacci / Galois "mode cohabitation" is proposed with the generating 
polynomial [14]:𝑓𝑓(𝑥𝑥) = 𝑿𝑿𝟖𝟖 + 𝑿𝑿𝟒𝟒 + 𝑿𝑿𝟑𝟑 + 𝑿𝑿𝟐𝟐 + 𝟏𝟏.  
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Figure 5. LFSR in cohabitation mode with  𝑋𝑋8 + 𝑋𝑋4 + 𝑋𝑋3 + 𝑋𝑋2 + 1 
 
 
The result of (Mod 2) is equal to either 0 or 1, if  (Mod 2) = 0 one chooses the mode Galois 
and, if (Mod 2) = 1 one chooses the mode Fibonacci. 
 

4. Results and interpretations 
 
One of the big problem in the pseudo random generator is to determine whether the 
generator is random or not, since there are no fix or universal tests that can evaluate the 
random of generator. One of the best test is to the study the properties of the numbers it 
generates, a good random generator should generate a sequence of numbers with properties 
of unpredictability and independence and follows a certain distribution (uniform in 
cryptography, Gaussian in telecommunications, etc.) [17], [18]. Another evaluation of the 
random quality of a generator is the control of the properties of the sequence that it generates 
by compare the performance of the generator studied with to theoretical ones. 
 
We will present some tests used to evaluate the performance of our generators such as 
entropy test, average test, or spectral test. 
 

A. Characteristics of the working computer 
 
The application was created from a PC HP pavilion 15 Notebook: 
 Memory: 4096MB RAM 
 Processor : intel® Core™ i3-3120M CPU @ 2.50GHZ 
 Operating System: Windows 7 Ultimate 32-bit Edition 
 Graphics Card: Intel® HD Graphics 4000 
 Total memory ≈ 2734 MB 

 
For the implementation of our application, we used the C/C++ programming language. 
 

B. Tests of different generators with different modes 
 
We will take the following values as initial conditions of the logistic map (eq.12), and this is 
valid throughout the paper: 
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1. X0=0.1, µ=3.9999, F=107.  
 
We multiply the result of the logistic sequence with F and take the integer part (by the 
function floor) and we do the modulo 2 which will give a result equal to either 1 or 0. 
 
𝑇𝑇𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑀𝑀 (𝐹𝐹 ∗ 𝜇𝜇𝑋𝑋𝑛𝑛−1(1 − 𝑋𝑋𝑛𝑛−1), 2)               (13) 
 
In addition, we will take the following assumptions: 
 
2. The feedback function is :  𝒇𝒇(𝒙𝒙) = 𝑿𝑿𝟖𝟖 + 𝑿𝑿𝟒𝟒 + 𝑿𝑿𝟑𝟑 + 𝑿𝑿𝟐𝟐 + 𝟏𝟏 
3. The seed of the cells of the register is 10101010. 

 
 

4.1 𝑻𝑻𝒏𝒏 vector of the logistic map 
 

 
Figure 6. Representation of 𝑇𝑇𝑛𝑛 as a NRZ signal 
 
 
Figure. 6 represents the first 100 values of the logistic sequence 𝑇𝑇𝑛𝑛 resulting from equation 13 
in the form of a representation of an NRZ signal. The 70000 values generated by Equation 13 
are summarized in Table 1. 
 
Table 1. 𝑇𝑇𝑛𝑛 Values Generated by Equation 13 

 𝑇𝑇𝑛𝑛 =1 𝑇𝑇𝑛𝑛 =0 

Number 35100 34900 
Rate in % 50.14% 49.85% 

This specific register of the cohabitation of the two modes (Fibonacci and Galois), uses the 
Fibonacci mode as well as the Galois mode. 
 

4.2 Status of flip-flops of the register 
 
For a seed =10101010, the LFSR with the polynomial  𝒇𝒇(𝒙𝒙) = 𝑿𝑿𝟖𝟖 + 𝑿𝑿𝟒𝟒 + 𝑿𝑿𝟑𝟑 + 𝑿𝑿𝟐𝟐 + 𝟏𝟏 
which is a primitive polynomial of degree 8, has a maximum period equal to 255 (= 𝟐𝟐𝟖𝟖 − 𝟏𝟏) 
in both modes: Fibonacci and Galois. 
 
To read the states of the LFSR flip-flops, read the values line by line.  
 
We start with the first line and, from left to right, then and the second line always from left to 
right, and so on until the end of the last value in the last line of the matrix, we return to the 
first value of the first line. 
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Table 2a. Status of flip-flops register in Fibonacci mode 

 
 
 
Table 2b. Status of flip-flops register in Galois mode 

 
 
 

The values (Table 2) of the states of the flip-flops of the register different from one mode to 
another. 
 
Table 3. Period of the cohabitation mode for different seeds 

Initial 
state of the 

register 

Length of the period 
Fibonacci Galois Cohabitation 

10101010  
 
 

255 

 
 
 

255 

19990 
11001110 19990 
10010011 470 
01001101 19990 
11100010 753 
00001111 451 

 
 
Table 3 gives the length of the period of the specific register in mode cohabitation for 
different seeds. The results presented are satisfactory and show that an LFSR in mode 
cohabitation has a much longer period than a separate LFSR mode (Fibonacci or Galois). 
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4.3 Frequency test 
 
The most natural test is that of the frequencies of occurrence of each digit, for a real random 
sequence, a particular number has no reason to be more or less represented than another. In 
other words, the frequencies of each digit must eventually come close to 10%. Obviously, the 
same thing is expected from our pseudo-random generator: this is the first test to which it is 
subjected. 
 

 
Figure 7. Frequencies of occurrence of each value from 0 to 255 for LFSR cohabitation mode 
 
 
It can be seen in the graph of figure 7 that all the values from 0 to 255 are represented 
approximately with the same frequency of occurrence. Therefore, our generator passes the 
frequency test. 
 

4.4 Entropy test 
 
Shannon entropy is a mathematical function that intuitively corresponds to the amount of 
information contained or delivered by a source of information. For a source, which is a 
discrete random variable X comprising n symbols, each symbol xi having a probability Pi to 
appear, the entropy H of the source X is defined as: 
 
𝐻𝐻(𝑥𝑥) = −∑ 𝑃𝑃𝑖𝑖 . 𝐸𝐸𝑀𝑀𝑔𝑔2𝑛𝑛

𝑖𝑖=1 (𝑃𝑃𝑖𝑖)                     
  (14a) 
We pose                𝑃𝑃𝑖𝑖 = 𝑘𝑘𝑖𝑖

𝑛𝑛
                         

  (14b) 
 
With i varying from 0 to 255, and n and the number of values generated in our case (n = 256 * 
256 = 65536), ki corresponds to the occurrence frequency of each number i. A logarithm 
based on 2 is usually used because the entropy then has the bit/symbol units. On the other 
hand, consider a source that has an alphabet of 256 characters. If all these characters are 
equiprobable, the entropy associated with each character is log2(256)= log2(28)=8 bits, which 
means that it takes 8 bits to transmit a character thus, its entropy is equal to 8 bits. 
 
Table 4. Value of LFSR entropy for different modes 

Nature 
of 

Source 

Entropy in bits/symbols 
Fibonacci Galois Cohabitation 

Entropy 7.994353 7.994351 7.990974 
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The ratio that of the source is 99.88% of a source that delivers equiprobable characters. 
Therefore, our generator passes the entropy test. 
 

4.5. Mean, variance, and autocorrelation factor tests 
 
We must test the distribution of the numbers produced in the sequence in its interval of 
operation, we have calculated the three operators: the mean, the variance, and the 
autocorrelation function of these numbers. In the ideal case [19], and for a random variable µ 
which follows a uniform distribution over an interval [0; 1], the following three values must 
be found: 
 

• Mean of  the numbers   (15a) 
𝑢𝑢� = 1

𝑛𝑛
∑ 𝑢𝑢𝑖𝑖𝑛𝑛
𝑖𝑖=1 =  1

2
= 0.5   

• Variance of  the numbers   (15b) 
𝑣𝑣 = 1

𝑛𝑛
∑ 𝑢𝑢𝑖𝑖2𝑛𝑛
𝑖𝑖=1 − 𝑢𝑢�2 =  1

12
= 0.0833 …   

• Autocorrelation Factor(14c) 
𝐸𝐸(𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖+1) = 1

𝑛𝑛
∑ 𝑢𝑢𝑖𝑖𝑛𝑛=1
𝑖𝑖=1 𝑢𝑢𝑖𝑖+1 =  1

4
= 0.25      

In our case, one pose: 
𝒖𝒖𝒊𝒊 = 𝒙𝒙𝒊𝒊

𝒎𝒎
 ,  ∀ i = 1, ..., n,            

    (16) 
m : The largest value or the value of the modulo. 

 

 
Figure 8.  Mean, Variance and autocorrelation factor Tests for LFSR en cohabitation de mode 
 
 
The results obtained are close to the ideal case results. Figure 8 confirms us that, the numbers 
generated by LFSR in cohabitation mode, have a random behavior. 
 

4.6. Spectral analysis 
 
Knuth describes [19] the spectral test as the most discriminating of all. Indeed, no proven bad 
generator could succeed. Very simple, the method consists in studying the distribution of the 
values generated in a dimension k (2D or 3D) to check the quality. In fact, all generators 
suffer from a Marsaglia effect (this is because we do not generate all the real numbers, but 
only fractions are generated).  
In general, the spectral test makes it possible to determine the deviation d between two lines. 
At the most, this gap is small at most the generator is of good quality.  
 
Dimension 2 (2D): Two consecutive values will be the coordinates of a point on the plane. 
One looks if; the points are uniformly distributed in a square. 
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Figure 9a.  Spectral Test of dimension 2D for LFSR respectively in, Fibonacci and Galois 
 
 

 
Figure 9b.  Spectral Test of dimension 2D for LFSR en cohabitation de mode 
 
 
Dimension 3 (3D): Three consecutive values will be the coordinates of a point in space. One 
looks if; the points are distributed evenly in a cube. By turning the cube, one sees the 
undesirable effect: plans of Marsaglia. It can be seen below that the points are located on 
planes.  
 

  
Figure 10a.  Spectral Test of dimension 3D for LFSR respectively in Fibonacci and Galois 
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Figure 10b.  Spectral Test of dimension 3D for LFSR en cohabitation de mode 
 
 
- The tests of 3D and 2D give a distribution of the values on spaced lines (we speak of the 
Marsaglia effect), and they are not distributed in the entire surface. 
 
We note that the LFSR in mode cohabitation (Figures 9b and 10b) inherits LFSR spectra from 
two separate modes (Figures 9a and 10a). 
 

4.5. Stream cipher with LFSR in cohabitation mode 
 
We propose to use the stream cipher [20] which consists to produce a key stream sequence, 
generated an LFSR in cohabitation mode, which will be XORed to the plaintext. Therefore, the 
cipher text will be obtained. 

 

                                    
Figure 11.  Stream Cipher 

 
 
mi : : plaintext, ci : cipher text, ki : key stream generated by LFSR in cohabitation mode. This 
type of generator generates key streams k1, k2, k3, ..., ki. These key streams are XORed to the 
plaintext m1, m2, m3,..., mi, to produce the cipher text [20]. 
 
ci = mi ⊕ ki                  (17a) 
 
For the decryption, the cipher text is XORed with an identical keystreams, to retrieve the 
plaintext: 
 
mi = ci⊕ki = (mi⊕ki) ⊕ki = mi          (17b) 
 

Mi Ci 

Plaintext 

Pseudo Random 
Generator 

Ki 

Pseudo Random 
Generator 

Ki 

Mi Ci 

Plaintext 
Cipher text 
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Any continuous synchronous encryption algorithm uses keys (secrets) and generates the same 
key stream [20] used for encryption and decryption, this flow is generated independently of the 
flow of the message.  
 

4.6. Implementation 
 
We propose to use LFSR in cohabitation mode for stream cipher, to generate a data stream 
that will be XORed with an image. We take the following assumptions: 
 
1. The feedback function is :  𝒇𝒇(𝒙𝒙) = 𝑿𝑿𝟖𝟖 + 𝑿𝑿𝟒𝟒 + 𝑿𝑿𝟑𝟑 + 𝑿𝑿𝟐𝟐 + 𝟏𝟏 
2. Initial conditions of the logistic sequence: the seed of the cells of the register is 

11001110. 
3. X(0)=0.1, µ=3.9999, F=107.  
4. The image is "Cameraman" of 256 * 256 pixels. 
5.  

 
Figure 12. Plaintext and Encrypted Image  
 
 
Histogram of the Images [21], [22]: For a monochrome image, that is to say with a single 
component, the histogram is defined as a discrete function that maps to each value intensity, 
the number of pixels of this value. The determination of the histogram is carried out by 
counting the number of pixel intensity for each of image. The histogram can then be seen as a 
probability density. The histograms are resistant to a number of transformations on the image. 
They are invariant to rotations and translations, and to a lesser extent to changes of point of 
view, and to changes of scale. Referring to the results obtained, we can clearly see that the 
plaintext image differs substantially from the corresponding ciphered one. Moreover, the 
histogram of the ciphered image is uniform which makes it difficult to extract the pixels 
statistical nature of the plaintext image. 
 
The histograms of the plaintext and the cipher images of the "cameraman" show that the 
proposed cryptosystem works in a correct way. 
 

  
Figure 13.  Histogram of plaintext and encrypted images  
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Entropy: From figures of the histogram of encrypted image, one note has a uniform 
histogram, which means that the gray levels have the same number of occurrences and hence 
the entropy is the maximum. Therefore, a grayscale image, where each pixel is represented by 
8 bits, must have entropy for the encrypted image, the closest possible 8 bits/pixel.  
 
Table 5. The entropy of the ciphered images 

Cameraman  
Image 

Entropy of Images 
Plaintext Cipher 

Entropy 7.009716 7.997222 
 
 
The obtained value is very close to the theoretical one (99.97%). Referring to the results, we 
can clearly see that the plaintext images differ significantly from her corresponding encrypted. 
Moreover, the histogram of the encrypted images is quite uniform which makes it difficult for 
the statistical extraction of pixels of the plaintext image.  
 
The computation of the entropy of the images encrypted by the LFSR in cohabitation mode 
reveals that, the proposed crypto-system functions in a correct way. 
 
Correlation of the Adjacent Pixels [23]: In probability and in statistics, to study the 
correlation between two random variables or numerical statistics is to study the strength of the 
bond that can exist between these variables. The searched link is an affine relationship, it is 
the linear regression. For example, we calculate the correlation coefficient between two sets 
of the same length (typical case: a regression). Assume we have the following table of values: 
X(x1, …, xn) and Y(y1, …, yn)  of each of the two series.  
 
A measure of this correlation is obtained by calculating the linear correlation coefficient of 
Bravais-Pearson [23].  
 
For the correlation coefficient linking these two sets, we apply the following formula: 
 
𝐶𝐶𝑀𝑀𝐸𝐸𝑓𝑓(𝑋𝑋,𝑌𝑌) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)

�𝐷𝐷(𝑋𝑋).√𝐷𝐷𝑌𝑌
                          (18a) 

 
Covariance between x and y is given as follows: 
 
𝑐𝑐𝑀𝑀𝑣𝑣(𝑋𝑋,𝑌𝑌) = 1

𝑁𝑁
∑ �(𝑋𝑋𝑖𝑖 − 𝐸𝐸(𝑋𝑋)�. (𝑌𝑌𝑖𝑖 − 𝐸𝐸(𝑌𝑌)))𝑁𝑁
𝑖𝑖=1          (18b) 

 
The average of X is :  
 
𝐸𝐸(𝑋𝑋) = 1

𝑁𝑁
∑ 𝑋𝑋𝑖𝑖𝑁𝑁
𝑖𝑖=1                (18c) 

 
The average of Y is : 
 
𝐸𝐸(𝑌𝑌) = 1

𝑁𝑁
∑ 𝑌𝑌𝑖𝑖𝑁𝑁
𝑖𝑖=1               (18e) 

 
The standard deviation of X is : 
 
𝐷𝐷(𝑋𝑋) = 1

𝑁𝑁
∑ (𝑋𝑋𝑖𝑖 − 𝐸𝐸(𝑋𝑋))2𝑁𝑁
𝑖𝑖=1              (18f) 

106 



The standard deviation of Y is : 
 
𝐷𝐷(𝑌𝑌) = 1

𝑁𝑁
∑ (𝑌𝑌𝑖𝑖 − 𝐸𝐸(𝑌𝑌))2𝑁𝑁
𝑖𝑖=1              (18g) 

 
The correlation coefficient is between -1 and 1. Intermediate values provide information on 
the degree of linear dependence between two variables. The closer the coefficient is close to 
extreme values -1 and 1, the closer the correlation between variables is strong we simply use 
the term "highly correlated" to describe the two variables. A correlation equal to 0 means that 
the variables are not correlated. To test the correlation coefficient, we selected randomly 1500 
pairs of two adjacent pixels in both encrypted and clear pictures.  
 
Value of the pixel at the position (x, y) 

  
 
Figure.14. Correlation between the horizontally adjacent pixels of respectively the plaintext 
image and the encrypted image 
 
 
Figure 14 shows the correlation between two horizontally adjacent pixels of the image clear 
and encrypted. We see that the neighboring pixels in the image have a clear correlation (coeff 
= 0.95324), while the encrypted will have one little correlation (coeff = -0.0048). This low 
correlation between two neighboring pixels in the encrypted image makes the attack of our 
cryptosystem difficult. 
 
In addition, it is clear that in the image clear, several lines can be adjusted to scatter but 
among all these lines can be retained which has a remarkable property giving rise to the right 
of the form 𝑌𝑌 = 𝑎𝑎 𝑋𝑋 + 𝑏𝑏 representing a linear correlation. 
 

5. Conclusion 
 
We have created a new mode for LFSR generators "cohabitation mode" that connects two 
modes (Fibonacci and Galois) together in the same LFSR and based on the logistic map. The 
length of the periodicity of this generator in "cohabitation mode" is much greater than those of 
the separate modes. 
 
We have tested this generator with (Frequency Test, Entropy Test, Average Test, Variance 
Test, Spectral Test, ....) The results are satisfactory. We also encrypted an image with this 
generator and tested this encryption. The results of the encryption tests are satisfactory. 

107 



However, the implementation of the proposed LFSR need more hardware than the classical 
ones. 
 
Secret key field: In the proposed algorithm, the secret key field is set as follows:  

ST = {x0, µ, F, K, D, T}. 
The initial state of the logistics map x0=0.1, µ=3.9999, F=107, the encryption key can be 
represented by the following fields: 
 
 x0,  
 µ,  
 F : scalar 
 K : starting point or the starting moment k, where we begin to do the encryption. 
 D: Initial state of the register (8 flip-flops = 8 bits) 
 T Mode (Fibonacci / Galois), Fibonacci mode T=0 or T=1 (1 bit) 

 
Where x0, µ,  are double-precision numbers. K are integer constants. If the precision of 
calculating x0, µ, is 10-16, and K ∈ [1, 1000].  
 
Therefore, the key space is larger than 28x 21x 1016 x 1016 x 107 x 103=1042 (with 103≈210) in 
this case we will have a key field of the order of 2149.  
 
We have 149 bits larger of key, this number is huge. Therefore, the encryption algorithm has a 
very large key space to withstand all kinds of brute force attacks. 
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