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Abstract. This paper contains the formulation of an algorithm for solving two-point singular nonlinear
boundary value problems of ordinary differential equations. This method is basically a fourth derivative
block method obtained from the collocation and interpolation of an assumed derivatives and functional of a
basis function. Its implementation was on the evaluation of derivatives of the given smooth first derivative
function u′(t) up to the fourth derivative, at some points t. It is proved that the algorithm is consistent,
zero-stable and convergent. Errors for uniform step lengths are also investigated and presented. Numerical
examples are provided to show the efficiency of the algorithm.

1. Introduction

Considering the following singular non-linear two-point boundary value problem

a(t)u′′(t) + b(t)u′(t) = f (t,u,u′), t ∈ [0, 1], u′(0) = 0, u(1) = ub (1)

with assumption that
a(0) = 0, a(t) > 0, t ∈ (0, 1), b(0) , 0, f (0,u(0),u′(0)) = 0 (2)

with coefficients a(t) and b(t) are differentiable functions on [0, 1] and f (t,u,u′) is assumed continuous on
ω := [0, 1] × <2. It could be observed that the problem is singular at the initial point t = 0. If a(t) and b(t)
satisfy

a(1) = 0, b(1) , 0and f (1,u(1),u′(1)) = 0, (3)

it is also singular at point t = 1.
Problems of the form (1) satisfying conditions (2) to (3) posses property which make the solutions difficult
to obtain or the numerical solutions are poor, and as such special techniques are required for their effective
solution. Problems (1) with condition (2) are one-point singular in nature while (1) with conditions (2)
and (3) are two-point singular problems. These singular two-point problems happen much of the time in
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numerous models, for example, electro-hydrodynamics and some warm blasts, and in the recent times, have
been researched by utilizing some numerical techniques by Baxley ([3] and [4]), Qu and Agarwal [5], Chawla
and Subramanian ([6] and Chawla, Subramanian and Sathi [7]). The numerical approach explored in these
literature include cubic and quintic spline methods, and the collocation methods. An even-order two-point
boundary value problem solutions were obtained by Liu[8]. A continuous generic algorithm was used by
Arqub, Abo-Hammour, Momani and Shawegfeh [9] for solving the form of problem in (1). A subdivision
collocation method for solving two point boundary value problems of order three was considered by
Mustafa and Ejaz [10]. Parametric difference method was used by Pandey [11] in the solution of two-point
boundary value problem. An alternative approach was considered by Ghomanjani and Shateyi [12] using
the Bezoer curve method with an orthogonal based Bernstein polynomials constructed by the Gram-Schmidt
technique. Solutions of one-point singular Lane-endem equations and related stiff problems were effectively
solved using some new numerical techniques by Ogunniran, Haruna & Adeniyi [13] and also Ogunniran
[14] obtained a class of multi-derivative method for solution of some singular Advection equations of partial
differential equations. An extensive linear analysis was carried out on some Runge-kutta methods on their
possibilities in the solution of one point singular Lane-Endem equations by Ogunniran, Tayo, Haruna and
Adebisi [15]. Extensive analysis for the possibility of existence and uniqueness of solution for a two-point
boundary value problems for ordinary differential equations was carried out by Eloe and Henderson [16]
in their paper titled; two-point boundary value problems for ordinary differential equations, uniqueness
implies existence. However, two-point boundary value problems may exist in problems of order greater
than two as found in Agarwal and Kelevedjiev [17]. This paper presents a unique approach on the solution
of fourth-order two-point boundary value problems.

2. Method

Recently, lots of attention has been on obtaining more effective and proficient methods for solving stiff
problems and subsequently a wide class of methods have been proposed. A possibly decent numerical
method for solving stiff systems of ordinary differential equations need to have good accuracy and some
reasonably wide region of absolute stability (Dahlquist, 1963). According to Hairer and Wanner (1996), the
search for high order A-stable multi-step methods is carried out in two main ways: using high derivatives
of solutions and including some additional stages, such as off-step points or super-future points. And this
transforms into the many field of general multi-step methods.
Throughout the formulation of this method, except where stated otherwise, the transformation

T =
2(t − tn)

kh
− 1, (4)

where k = 3 is the step number and h is the step length, a small distance taken that does not entirely leave
the interval.
For purpose of obtaining an approximation for (1), we assume a continuous approximation for un(t) of a
three step fourth derivative method of the form:

u(x) ≈ α(t)un +

4∑
i=1

hiβi(t) f (i−1)
n +

4∑
i=1

3∑
j=1

hiγi j(t) f (i−1)
(n+ j) (5)

for u′ = f (t,u) where f (t,u) is continuous and differentiable, un is an approximation to u(tn), tn = nh; h > 0
and f ( j)

m = f ( j)(tm,um) such that:
f (0)(tm,um) (6)

f ( j)(tm,um) =
∂ f ( j−1)(t,u)

∂t
+ f (t,u)

∂ f ( j−1)(t,u)
∂u

(7)
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To this end, approximation of the exact solution u(t) was sought by evaluating the function:

u(t) =

16∑
j=0

a jt j (8)

where a j, j = 0(1)16 are coefficients determined, t j are the basis functions of degree 16.
While ensuring that (5) corresponds with the analytical solution at the end point tn, the following conditions
were imposed on u(x) and its derivatives; u(k)(t), k = 1(1)4

u(tn+ j) = un+ j, j = 0
u′(tn+ j) = fn+ j, j = 0, 1, 2, 3.
u′′(tn+ j) = 1n+ j, j = 0, 1, 2, 3.
u′′′(tn+ j) = hn+ j, j = 0, 1, 2, 3.
u(iv)(tn+ j) = in+ j, j = 0, 1, 2, 3.

(9)

while the conditions of (9) are imposed on (8), the following system equations were obtained;

a0 = yn
a1 = fn

a1 + 2 a2 + 3 a3 + 4 a4 + 5 a5 + 6 a6 + 7 a7 + 8 a8
+9 a9 + 10 a10 + 11 a11 + 12 a12 + 13 a13 + 14 a14 + 15 a15 + 16 a16 = fn+1

a1 + 4 a2 + 12 a3 + 32 a4 + 80 a5 + 192 a6 + 448 a7 + 1024 a8
+2304 a9 + 5120 a10 + 11264 a11 + 24576 a12 + 53248 a13

+114688 a14 + 245760 a15 + 524288 a16 = fn+2
a1 + 6 a2 + 27 a3 + 108 a4 + 405 a5 + 1458 a6 + 5103 a7 + 17496 a8
+59049 a9 + 196830 a10 + 649539 a11 + 2125764 a12 + 6908733 a13

+22320522 a14 + 71744535 a15 + 229582512 a16 = fn+3
2 a2 = 1n

2 a2 + 6 a3 + 12 a4 + 20 a5 + 30 a6 + 42 a7 + 56 a8 + 72 a9
+90 a10 + 110 a11 + 132 a12 + 156 a13 + 182 a14 + 210 a15 + 240 a16 = 1n+1

2 a2 + 12 a3 + 48 a4 + 160 a5 + 480 a6 + 1344 a7 + 3584 a8
+9216 a9 + 23040 a10 + 56320 a11 + 135168 a12 + 319488 a13 + 745472 a14

+1720320 a15 + 3932160 a16 = 1n+2
2 a2 + 18 a3 + 108 a4 + 540 a5 + 2430 a6 + 10206 a7 + 40824 a8

+157464 a9 + 590490 a10 + 2165130 a11 + 7794468 a12 + 27634932 a13
+96722262 a14 + 334807830 a15 + 1147912560 a16 = 1n+3

6 a3 = hn
6 a3 + 24 a4 + 60 a5 + 120 a6 + 210 a7 + 336 a8 + 504 a9

+720 a10 + 990 a11 + 1320 a12 + 1716 a13 + 2184 a14
+2730 a15 + 3360 a16 = hn+1

6 a3 + 48 a4 + 240 a5 + 960 a6 + 3360 a7 + 10752 a8 + 32256 a9
+92160 a10 + 253440 a11 + 675840 a12 + 1757184 a13 + 4472832 a14

+11182080 a15 + 27525120 a16 = hn+2
6 a3 + 72 a4 + 540 a5 + 3240 a6 + 17010 a7 + 81648 a8 + 367416 a9

+1574640 a10 + 6495390 a11 + 25981560 a12 + 101328084 a13
+386889048 a14 + 1450833930 a15 + 5356925280 a16 = hn+3

24 a4 = in
24 a4 + 120 a5 + 360 a6 + 840 a7 + 1680 a8 + 3024 a9

+5040 a10 + 7920 a11 + 11880 a12 + 17160 a13 + 24024 a14
+32760 a15 + 43680 a16 = in+1

24 a4 + 240 a5 + 1440 a6 + 6720 a7 + 26880 a8 + 96768 a9
+322560 a10 + 1013760 a11 + 3041280 a12 + 8785920 a13 + 24600576 a14

+67092480 a15 + 178913280 a16 = in+2
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24 a4 + 360 a5 + 3240 a6 + 22680 a7 + 136080 a8 + 734832 a9
+3674160 a10 + 17321040 a11 + 77944680 a12 + 337760280 a13 + 1418593176 a14

+5803335720 a15 + 23213342880 a16 = in+3

(10)

Solving (10), a j, j = 0(1)16 were obtained, the values were substituted in (8) and related term were collected
in un, fn, fn+1, fn+2, fn+3, 1n, 1n+1, 1n+2, 1n+3, hn, hn+1, hn+2, hn+3, in, in+1, in+2, in+3 to obtain:

u(t) = αnun + hβ1(t) fn + h2β2(t)1n + h3β3(t)hn + h4β4(t)in + h
[
γ11(t) fn+1 + γ12(t) fn+2 + γ13(t) fn+3

]
+h2 [

γ21(t)1n+1 + γ22(t)1n+2 + γ23(t)1n+3
]
+ h3 [

γ31(t)hn+1 + γ32(t)hn+2 + γ33(t)hn+3
]

+h4 [
γ41(t)in+1 + γ42(t)in+2 + γ43(t)in+3

] (11)

where

αn(t) = 1
β1(t) = t − 54391 t5

1296 + 713717 t6

3888 −
62588555 t7

163296 + 276696055 t8

559872 −
1259675 t9

2916 + 9332263 t10

34992 −
5049247 t11

42768
+ 5227135 t12

139968 −
1251365 t13

151632 + 18545 t14

15309 −
2477 t15

23328 + 4711 t16

1119744
β2(t) = −81 t5 + 2007 t6

4 −
19035 t7

14 + 68955 t8

32 −
320945 t9

144 + 101285 t10

64
−

138705 t11

176 + 35265 t12

128 −
13795 t13

208 + 4695 t14

448 −
47 t15

48 + 21 t16

512
β3(t) = 1863 t5

16 −
10359 t6

16 + 367875 t7

224 −
637125 t8

256 + 89695 t9

36 −
27605 t10

16 + 148197 t11

176
−

18525 t12

64 + 14285 t13

208 −
75 t14

7 + 95 t15

96 −
21 t16

512
β4(t) = 529 t5

81 −
36821 t6

972 + 1026995 t7

10206 −
11217545 t8

69984 + 1974065 t9

11664 −
17350807 t10

139968
+ 2742691 t11

42768 −
6550475 t12

279936 + 894155 t13

151632 −
957245 t14

979776 + 1117 t15

11664 −
4711 t16

1119744
γ11(t) = 1/2 t2

−
4711 t5

270 + 61909 t6

864 −
72497 t7

504 + 33704285 t8

186624 −
338717 t9

2187 + 549763 t10

5832 −
147109 t11

3564 + 603953 t12

46656 −
5983 t13

2106 + 67715 t14

163296 −
211 t15

5832 + 533 t16

373248
γ12(t) = − 891 t5

10 + 1881 t6

4 −
32103 t7

28 + 13485 t8

8 −
474731 t9

288 + 71729 t10

64 −
189809 t11

352
+ 23465 t12

128 −
17941 t13

416 + 2995 t14

448 −
59 t15

96 + 13 t16

512
γ13(t) = − 2511 t5

40 + 11277 t6

32 −
101169 t7

112 + 354405 t8

256 −
25249 t9

18 + 3935 t10

4 −
42811 t11

88
+ 10849 t12

64 −
4241 t13

104 + 1445 t14

224 −
29 t15

48 + 13 t16

512
γ21(t) = − 193 x5

90 + 4037 x6

324 −
32233 x7

972 + 617465 x8

11664 −
3921371 x9

69984 + 1920017 x10

46656
−

202945 x11

9504 + 729457 x12

93312 −
199861 x13

101088 + 107395 x14

326592 −
755 x15

23328 + 533 x16

373248
γ22(t) = 1/6 t3

−
533 t5

180 + 7015 t6

648 −
123413 t7

6048 + 766211 t8

31104 −
119969 t9

5832 + 119401 t10

9720 −
25199 t11

4752 + 12791 t12

7776 −
335 t13

936 + 353 t14

6804 −
35 t15

7776 + 11 t16

62208
γ23(t) = − 81 t5

10 + 99 t6

2 −
3753 t7

28 + 6801 t8

32 −
63241 t9

288 + 6219 t10

40 −
27139 t11

352
+ 5149 t12

192 −
2671 t13

416 + 113 t14

112 −
3 t15

32 + t16

256γ31(t) = 81 t5

8 −
909 t6

16 + 32589 t7

224 −
28497 t8

128 + 16205 t9

72 −
3147 t10

20 + 13639 t11

176
−

2579 t12

96 + 167 t13

26 −
113 t14

112 + 3 t15

32 −
t16

256
γ32(t) = 23 t5

90 −
241 t6

162 + 8999 t7

2268 −
49373 t8

7776 + 157207 t9

23328 −
6032 t10

1215 + 8189 t11

3168
−

14773 t12

15552 + 8129 t13

33696 −
1097 t14

27216 + 31 t15

7776 −
11 t16

62208
γ33(t) = 1/24 t4

−
11 t5

45 + 145 t6

216 −
365 t7

324 + 79441 t8

62208 −
1495 t9

1458 + 11591 t10

19440 −
25 t11

99
+ 1201 t12

15552 −
35 t13

2106 + 65 t14

27216 −
t15

4860 + t16

124416
γ41(t) = − 27 t5

10 + 57 t6

4 −
963 t7

28 + 199 t8

4 −
41233 t9

864 + 30527 t10

960 −
5279 t11

352
+ 1921 t12

384 −
37 t13

32 + 79 t14

448 −
23 t15

1440 + t16

1536
γ42(t) = − 27 t5

20 + 123 t6

16 −
2241 t7

112 + 7979 t8

256 −
3469 t9

108 + 5501 t10

240 −
1015 t11

88
+ 785 t12

192 − t13 + 9 t14

56 −
11 t15

720 + t16

1536
γ43(t) = − t5

90 + 7 t6

108 −
131 t7

756 + 1081 t8

3888 −
6905 t9

23328 + 3403 t10

15552 −
1087 t11

9504
+ 1313 t12

31104 −
121 t13

11232 + 197 t14

108864 −
7 t15

38880 + t16

124416

(12)
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Evaluating (12) at tn+1, tn+2 and tn+3 yield the desired discrete block method below:

un+1 = − 34637 in+3
1868106240 h4

−
2617 in+2
1064448 h4

−
37603 in+1
5322240 h4 + 50857 in

373621248 h4

+ 401183 hn+3
934053120 h3 + 224473 hn+2

11531520 h3 + 965 hn+1
2306304 h3 + 4135199 hn

934053120 h3

−
20331329 1n+3

5604318720 h2
−

398083 1n+2

3294720 h2
−

7097579 1n+1

23063040 h2 +
331133249 1n

5604318720 h2

+h 12457877 fn+3

1120863744 + h 1071529 fn+2

4612608 + h 1730473 fn+1

4612608 + h 427519381 fn
1120863744 + un

un+2 = −h4 16 in+3
729729 − h4 in+2

297 − h4 64 in+1
10395 + h4 509 in

3648645
+h3 1864 hn+3

3648645 + h3 206 hn+2
6435 + h3 584 hn+1

45045 + h3 470 hn
104247

−h2 47504 1n+3

10945935 − h2 10441 1n+2

45045 − h2 8864 1n+1

45045 + h2 654539 1n

10945935

+h 29272 fn+3

2189187 + h 6577 fn+2

9009 + h 7864 fn+1

9009 + h 839939 fn
2189187 + un

un+3 = −h4 81 in+3
512512 + h4 729 in+2

197120 − h4 729 in+1
197120 + h4 81 in

512512
+h3 6327 hn+3

1281280 + h3 41553 hn+2
1281280 + h3 41553 hn+1

1281280 + h3 6327 hn
1281280

−h2 162531 1n+3

2562560 + h2 194643 1n+2

2562560 − h2 194643 1n+1

2562560 + h2 162531 1n

2562560

+h 28905 fn+3

73216 + h 80919 fn+2

73216 + h 80919 fn+1

73216 + h 28905 fn
73216 + un

(13)

2.1. Order and Error Constant

Applying Taylor’s series expansion on (5) and collecting like terms, we have the difference equation

l[u(t); h] = c0u(t) + c1hy(1)(t) + c2hy(2)(t) + · · · + cqhy(q)(t) + · · · (14)

where
c0 = 1 − αn

c1 = 3 − βi −
∑3

j=1 γ j3
...

cq = 3q

q! −
3q−1

(q−1)!

∑3
j=1 γ j3


(15)

According to Henrici (1962), a method has order p if

l[u(t); h] = o(hp+1) (16)

where
c0 = c1 = · · · = cp = 0 but cp+1 , 0. (17)

Using this principle, the order and error constant of (13) are shown below

Evaluating Point Order Error Constant
tn+1 16 183

4883993354240000
tn+2 16 1231

62585703900720000
tn+3 16 570391

32043880397168640000

The method (13) is consistent since order of the method is 16 which is greater than 1.

2.2. Zero-stability

This relates to a phenomenon where the step size h→ 0. Taking limit of (13) as h→ 0, we have:

un+1 = un+2 = un+3 = un (18)

which can be written in matrix form as
IUi − B0Ui−1 = 0 (19)
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where

I =

 1 0 0
0 1 0
0 0 1

 , Ui =

 un+1
un+2
un+3


B0 =

 0 0 1
0 0 1
0 0 1

 , Ui−1 =

 ui
ui
ui


According to Lambert (1975), a block method is zero-stable if the roots rk of the first characteristic polynomial
ξ(r) = det|Ir − B0| does not exceed 1 i.e. |rk| ≤ 1. The first characteristic polynomial of method (13) is given
by

r2(r − 1) = 0 (20)

The roots of (20) are r = 0, 0, 1 in which all is < 1, thus Method (13) is zero-stable.

2.3. Convergence

According to Henrici (1962), we can establish the convergence of the block method since consistency
and zero-stability are necessary and sufficient reasons for convergence.

2.4. Linear Stability

Practically, the robustness of a method is reliably found with h > 0, this implies that the convergence
of a method is a necessary but not a sufficient condition for a method to be useful. Linear stability is a
conceptional behaviour of numerical methods concerned with the behaviour of the method when h > 0 and
its region of absolute stability. This is a concept different from zero-stability. The linear stability properties
of the derived method is determined by expressing it in a form applicable to the test problem:

u′ = λu, for which u′n = λun, u′′n = λ2un, · · · ,u
(n)
n = λnun., λ < 0 (21)

to yield:
Uµ+1 = M(z)Uµ, z = hλ (22)

where the amplification matrix M(z) is given by:

M(z) = (A(0)
− zB(0)

− z2C(0)
− z3D(0)

− z4E(0))−1(A(1) + zB(1) + z2C(1) + z3D(1) + z4E(1)). (23)

where z = hλ.

A(0) =


1 0 0

0 1 0

0 0 1

 A(1) =


0 0 1

0 0 1

0 0 1


B(0) =


1730473
4612608

1071529
4612608

12457877
1120863744

7864
9009

6577
9009

29272
2189187

80919
73216

80919
73216

28905
73216

 B(1) =


0 0 427519381

1120863744

0 0 839939
2189187

0 0 28905
73216



C(0) =


−

7097579
23063040 −

398083
3294720 −

20331329
5604318720

−
8864
45045 −

10441
45045 −

47504
10945935

−
194643
2562560

194643
2562560 −

162531
2562560

 C(1) =


0 0 331133249

5604318720

0 0 654539
10945935

0 0 162531
2562560
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Figure 1: Region of Absolute Stability of Method (13)

D(0) =


965

2306304
224473

11531520
401183

934053120

584
45045

206
6435

1864
3648645

41553
1281280

41553
1281280

6327
1281280

 D(1) =


0 0 4135199

934053120

0 0 470
104247

0 0 6327
1281280



E(0) =


−

37603
5322240 −

2617
1064448 −

34637
1868106240

−
64

10395 −
1

297 −
16

729729

−
729

197120
729

197120 −
81

512512

 E(1) =


0 0 50857

373621248

0 0 509
3648645

0 0 81
512512


The matrix M(z) has eigenvalues ξ1, ξ2, · · · , ξm = 0, 0, · · · , ξm, where the dominant eigenvalue ξm is the
stability function R(z) which is a rational function with real coefficients, m is the order of R(z),

R(z) =

28561 z12 + 1164410 z11 + 25844325 z10 + 401535225 z9 + 4765597305 z8 + 44819838000 z7

+338397658200 z6 + 2046767184000 z5 + 9765253436400 z4 + 35606883312000 z3

+93666717144000 z2 + 158855192496000 z + 130821923232000

z12
− 170 z11 + 14325 z10

− 754425 z9 + 26611305 z8
− 648043200 z7

+11234575800 z6
− 141313788000 z5 + 1292613260400 z4

− 8445396960000 z3

+37600178616000 z2
− 102788653968000 z + 130821923232000

(24)

The stability function and plot for the method is as given below:

3. Numerical Examples

This section contains some two-point singular boundary value problems, their conditions and true
solutions as found in literature.
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Test Problem 1 [5]

u′′(t) + 2
t u′(t) = βtβ−2(1 + β + βtβ)

t ∈ (0, 1),u′(0) = 0,u(1) = e
u(t) = etβ

 (25)

Test Problem 2 [5]

u′′(t) + 2
t u′(t) = 3cos(t) − tsin(t)

t ∈ (0, 1),u′(0) = 0,u(1) = cos1 + sin1
u(t) = cost + tsint.

 (26)

Test Problem 3 [5]

u′′(t) + 2
t u′(t) = −2(eu + e

u
2 )

t ∈ (0, 1),u′(0) = 0,u(1) = 0

u(t) = 2lo1
2

1 + t2

 (27)

Test Problem 4 [11]

The boundary value problem below arose from the analysis of the confinement of a plasma column by
radiation pressure with different boundary conditions,

u′′(t) = λsinh(λu(t)), 0 < t < 1
subject to boundary conditions

u′(0) = 1, and u(1) = 0.
u(t) = sinh(t)

 (28)

4. Discussion of Results and Conclusion

The following formula
lim
maxt
|u(t) − ui(t)| (29)

where u(t) is the exact solution and ui(t) is the numerical solution evaluated at some t ∈ [0, 1], was used
in the computation of maximum errors. Numerical methods were programmed on Windows 10 operating
system in MATLAB 9.2 environment on 8.00GB RAM HP Pavilion x360 Convertible, 64-bits Operating
System, x64-based processor Intel(R) Core(TM) i3-7100U CPU @ 2.40GHz.
The following table display the comparison of performances for new method against existing methods with
Computational time.
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Table 1: Table of Comparison of Maximum Errors with Existing Methods Using Different h, β = 1 for Test Problem 1

Test Problem Method h =
1
8

h =
1

16
h =

1
32

Qu & Agarwal (1997) 1.720000 E(-2) 2.800000 E(-3) 2.660000 E(-4)
1 Method (13) 5.714330 E(-5) 5.714330 E(-5) 5.716299 E(-5)

Qu & Agarwal (1997) 1.090000 E(-5) 1.080000 E(-6) 7.890000 E(-8)
2 Method (13) 5.403023 E(-9) 5.403023 E(-9) 5.461926 E(-9)

Qu & Agarwal (1997) 1.200000 E(-3) 1.070000 E(-4) 8.030000 E(-6)
3 Method (13) 2.021798 E(-8) 2.021798 E(-8) 1.200000 E(-8)

Table 2: Table of Comparison of Maximum Errors with Existing Method Using Different h and λ, for Test Problem 4

λ Method h =
1
4

h =
1
8

h =
1
16

Pandey (2018) 1.1055857 E(-1) 1.1045857 E(-1) 1.1032658 E(-1)
0.1 Method (13) 1.387182 E(-4) 1.387225 E(-5) 1.387229 E(-8)

Pandey (2018) 1.7244926 E(-1) 1.7190818 E(-1) 1.7155264 E(-1)
0.15 Method (13) 1.559298 E(-4) 1.559312 E(-5) 1.559399 E(-8)

Pandey (2018) 2.374965 E(-1) 2.358833 E(-1) 0.0000 E(0)
0.2 Method (13) 0.000000 E(0) 0.000000 E(0) 0.000000 E(0)

1)

Table 3: Table of Computational Time of Method (13) Measured in seconds
Test Problem h Computation Time

1
8 0.3438

1 1
16 0.4063
1
32 0.4844
1
8 0.2500

2 1
16 0.3250
1
32 0.3350
1
8 0.2110

3 1
16 0.2520
1
32 0.3200
1
8 0.3250

4 1
16 0.3255
1
32 0.3525

1)Tables 1 and 2 show the numerical computational results on test problems considered. Extensive comparison was done with
existing methods in literature. The method was demonstrated on some Examples and the superiority of the derived method over
existing methods was established. It is worthy to say that the derived methods exhibit stronger computational strength executed
under very low computational times as shown in Table 3. Figures 2-9 show the graphical comparison for solutions of derived method
with exact and error distribution curve across the selected interval.
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Figure 2: Method (13) vs Exact for Test Problem 1

Figure 3: Error Distribution along t of Method (13) for Test
Problem 1

Figure 4: Method (13) vs Exact for Test Problem 2

Figure 5: Error Distribution along t of Method (13) for Test
Problem 2

Figure 6: Method (13) vs Exact for Test Problem 3

Figure 7: Error Distribution along t of Method (13) for Test
Problem 3

Figure 8: Method (13) vs Exact for Test Problem 4

Figure 9: Error Distribution along t of Method (13) for Test
Problem 4
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