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Introduction 

Canavan disease is a childhood leukodystrophy which 

often leads to death in childhood. Its name goes back 

to Myrtelle M. Canavan who published a case report 

on a child with a very enlarged head, neurological 

symptoms such as nystagmus, and psychomotor 

retardation in 1931 [1]. In retrospect the first clinical 

description of the disorder was accredited to Globus 

and Strauss (1928) [2]. Bogaert and Bertrand defined it 

as a clinical entity [3]. 

 

Since the brain of patients with Canavan disease shows 

a spongy degeneration of the white matter [1,4] the 

disorder is also known as “spongy degeneration (van 

Bogaert and Bertrand type)” [5]. Canavan disease 

follows an autosomal recessive trait of inheritance [6] 

and is caused by mutations in the ASPA gene resulting 

in deficiency in aspartoacylase (aminoacylase 2) [7], 

which catalyzes the hydrolysis of N-acetylaspartate 

(NAA) [8]. (Figure 1) 

Abstract:  
Canavan disease is a genetic neurodegenerative disorder caused by mutations in the ASPA gene encoding aspartoacylase, also known as 
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Figure 1: Aspartoacylase (ASPA; EC 3.5.1.15), also known as aminoacylase 2, catalyzes the hydrolysis of N-acetylaspartic acid. 

 

While Canavan disease is particularly frequent 

among Ashkenazi Jews [3,5,9] it has been reported in 

many populations [10-14]. 

 

Clinical features 

Children with Canavan disease are usually 

considered symptom-free in the first three months of 

life, although mild retardation, hypotonia and 

inadequate visual tracking may be detectable in an 

attentive examination [15]. Traeger and Rapin have 

reported that about a fifth of the patients present at 

birth with a poor suck, irritability and poor visual 

fixation [16]. 

 

Usually, the disease manifests not later than at the 

age of six months [6].
 

Key clinical features are 

developmental delay, head lag and macrocephaly 

[3,15-17]. The head circumference exceeded the 90
th
 

percentile in 54 of 59 children with Canavan disease 

reported by Traeger and Rapin [16]. 

 

Observation of the three signs macrocephaly, 

hypotonia and head lag should lead to suspicion of 

Canavan disease, especially if there is evidence for 

white matter involvement [15]. Affected individuals 

do not meet important developmental milestones. 

They do not acquire appropriate motor and verbal 

skills and do also lose abilities. Interaction is often 

further impaired by ophthalmological symptoms [16]. 

Optic atrophy, retinal degeneration and horizontal 

nystagmus are frequent findings in Canavan disease 

[3,4,15,16]. 

 

Early observed irritability usually increases with the 

progression of the disease [15]. Hypotonia and 

reduced motor activity are additional early 

recognizable features. 

 

Later those features can change to spasticity [2,4,15]. 

The spasticity may resemble cerebral palsy. For this 

reason some children with Canavan disease have 

been diagnosed with cerebral palsy [15]. 

 

At the age of one or two years most Canavan patients 

develop sleep disturbances and feeding problems. 

Some children with Canavan disease suffer from 

seizures. In 38 of the 60 children included in the 

survey by Traeger and Rapin, epilepsy was 

ascertained at various ages, from birth to 15 years 

[16]. Others describe seizures in about half of the 

patients, mostly generalized tonic-clonic convulsions. 

As a reaction to a stimulus, tonic extensor spasms 

often occur with an excessively ophistotonic posture 

[4,6]. 

 

Common understanding of Canavan disease is that 

the life expectancy of children with Canavan disease 

is very short and that children with the classic course 

of the disease die mostly in the first three years of 

their life [6]. However, there are more and more 

patients who achieve an age of more than ten years. 

Matalon and Michals-Matalon have contributed this 

to better medical and nursing care [15], although 

there is still no curative therapy. Increased awareness 

of the disease and improved diagnostic possibilities 

deserve also consideration and may have led to more 

frequent diagnosis of mild manifestations which may  

previously have escaped investigations and statistics. 

Notably, early reports on Canavan disease often 

referred to individuals of Ashkenazi Jewish origin 

[3,5,17] whereas more recent publications underline 

the panethnic character of the disease [14,18–21]. 

 

Neuropathology                                                         

Formerly, pathologic changes in the brain of Canavan 
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patients could only be detected at autopsy and 

histopathological examination. In 1931, Myrtelle 

Canavan’s autopsy findings were spongy 

degeneration of the white matter and an expansion of 

cerebral ventricles and aqueduct. Cerebrum as well as 

cerebellum were very soft and gelatinous [1]. In the 

histopathological examination of brains of affected 

children Bogaert and Bertrand found a widespread 

vacuolization change in both white and gray matter 

[3]. Others reported a marked elevation of the 

number of protoplasmic astrocytes and a diffuse loss 

of cortical neurons in Canavan disease [4]. 

 

In electron microscopic studies, vacuoles have been 

found within protoplasmic astrocytes. They are 

considered the main cause for the vacuoulated 

appearance of the white matter [5]. 

 

Radiology 
Nowadays the pathologic changes in the brains of 

patients with Canavan disease can be visualized by 

cerebral imaging. Findings include leukodystrophic 

signs, lack of myelin, brain atrophy and increasing 

ventriculomegaly [20,22,23]. Affection of the basal 

ganglia is revealed in some cases [22–24]. On CT 

scans white matter changes can be demonstrated [23]. 

Reversal of signal intensities in T1- and T2-weighted 

MRI scans as well as elevated white matter T1 values 

are signs for pathologic changes in myelination 

[20,23,25]. 

 

Brismar et al. 1990 considered CT and MRI results 

nonspecific for Canavan disease [26]. They found no 

correlation of the abnormalities with the severity of 

the clinical presentation [26]. Proton magnetic 

resonance spectroscopy (
1
H-MRS) is used to 

quantitate the levels of NAA in the brain of Canavan 

patients in vivo [20,24,25,27]. Mostly, elevated NAA 

concentrations  are reported, if compared to the 

reference compounds choline or creatine [25,27]. The 

data of Janson et al. indicate that in Canavan patients 

NAA levels increase linearly as a function of age, 

with a frontal to occipital gradient. This parallels the 

progression of symptoms and white matter 

degeneration [20]. In some patients changes are also 

detectable by cranial ultrasound. Ventricular 

extension as well as elevated echogenicity of white 

matter and periventricular gray matter can then be 

detected [23]. 

 

Laboratory Investigations 
 

Metabolite Studies 
Following the discovery that patients with Canavan 

disease present with N-acetylaspartic aciduria, the 

determination of NAA levels in urine has become an 

important tool for the identification of individuals 

with this inborn error of metabolism [28–30]. NAA is 

one of the parameters which are assessed by the 

analysis of urinary organic acids using gas 

chromatography-mass spectrometry  (Figure 2) [31]. 

Bal et al. have demonstrated that it is the L-

enantiomer of NAA which accumulates in Canavan 

disease [32]. Elevated concentrations of NAA have 

also been demonstrated in plasma and cerebrospinal 

fluid of affected individuals [33,34]. However, 

diagnostic investigations in urine are more easily 

accomplished. 

 

Aspartoacylase Activity 
Since Canavan disease is due to aspartoacylase 

deficiency, enzyme assays have been developed 

which allow the confirmation of the diagnosis in 

cultured skin fibroblasts [28,35,36]. Matalon et al. 

reported that the aspartoacylase activity in cultured 

fibroblasts from heterozygous mutation carriers was 

diminished to about half of the activity detected in 

normal fibroblasts [37]. 

 

Mutation Analysis 
The human ASPA gene encoding aspartoacylase was 

localized on the short arm of chromosome 17 (17p13-

ter) [38]. It comprises six exons coding for 313 

amino acids [7,38]. Obviously aspartoacylase was 

highly conserved during evolution [38]. 
 

The highest prevalence of Canavan disease has been 

reported for Ashkenazi Jews (carrier rate 1:37.7 to 

1:57 [39–41]). Two mutations, a missense E285A 

mutation and a nonsense Y231X mutation, account 

for about 97% of the affected alleles in patients of 

Ashkenazi Jewish origin [10]. Genetic screening is 

possible among high-risk couples in which both 

partners have Ashkenazi Jewish background [42]. 
 

The most prevalent mutation among the non-Jewish 

population is the missense mutation A305E, in which 

an alanine residue is replaced by glutamic acid. In 

different surveys this mutation was found in 39.5% to  
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        Figure 2: The pattern of urinary organic acids (analyzed as methyl esters [ME] by gas chromatography with mass- 

selective detection) of a patient with Canavan disease demonstrates accumulation of N-acetylaspartic acid which is normally 

present in trace amounts only. Isopropylmalonic acid served as the internal standard.

 

60% of the analyzed chromosomes of Canavan 

patients [10–12]. Besides the three common 

mutations many others are known and new mutations 

are still being discovered [11,12,43]. 

 

Prenatal diagnosis 
DNA analysis is the most reliable approach to 

prenatal diagnosis of Canavan disease. It is the 

method of choice when the mutations are known. As 

among Askenazi Jewish populations two mutations 

cause almost all cases of Canavan disease, 

preconception carrier testing and prenatal diagnosis 

for those two mutations are available. In other groups 

the candidate mutations are far more numerous. This 

renders molecular diagnosis more complex and 

sometimes impossible within the given time frame.  

 

 

 

Enzyme activity testing has been considered non-

reliable with the samples usually applied for prenatal 

testing [37,44,45]. 

 

A more predictive method for prenatal diagnosis with 

adequate sensitivity and selectivity is quantification 

of NAA levels in amniotic fluid by gas 

chromatography – mass spectroscopy (GC-MS) 

[33,46,47] or liquid chromatography – tandem mass 

spectrometry LC-MS/MS [48]. However, slight 

elevations of NAA levels in the amniotic fluid should 

be interpreted with caution to avoid false positive 

results [49]. 

 

Recently, preimplantation diagnostics have been used 

for in vitro screening of embryos from parents who  
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are known carriers of ASPA mutations [42]. In 

countries where such a procedure is legal this 

represents an additional diagnostic option. 

 

Phenotype-genotype correlation 

A strong-genotype phenotype correlation has not 

been demonstrated in Canavan disease so far. 

However, there is evidence that patients who are 

compound heterozygotes for certain (perhaps even 

protective?) mutations such as K213E, Y288C and 

G212A may have a rather benign phenotype 

[18,19,21,50,51]. So far, the small number of patients 

known to have those and similar genotypes and the 

lack of mechanistic studies limit our understanding of 

Canavan disease. 

 

Pathomechanisms as a basis of therapeutic 

approaches 
So far, there is no established treatment of Canvan 

disease beyond symptomatic measures, e.g., 

controlling seizures.  Some children require feeding 

via a nasogastric or gastrostomy tube when normal 

feeding becomes too difficult [15,16]. 

 

It is known that lack of aspartoacylase is the 

underlying defect in Canavan disease. However, the 

pathogenetic correlation between the enzyme 

deficiency causing elevated levels of NAA and the  

neuronal and white matter degeneration leading to the  

phenotype of Canavan disease is not clear yet. Much 

work has been done on this topic and theories 

concerning pathogenesis have been established. 

Some of them have led to suggestions for new 

therapeutic strategies. 

 

The elevated NAA levels in tissues and body fluids 

have been interpreted as a possible indication of 

toxicity of NAA or its metabolites [52]. Burlina et al. 

focused on N-acetylaspartylglutamate (NAAG) [53], 

a probable product of NAA [54]. They have assumed 

that high levels of NAAG in the brain caused by high 

concentrations of NAA could have pathologic effects 

either by disturbing NMDA receptor-dependent 

processes or by causing accumulation of glutamate 

[53,55,56]. 

 

Direct injections of 4 µmol of NAA into the brains of 

rats were found to result in absence-like seizures, 

injections of 8 µmol of NAA have been shown to 

cause convulsive seizures. Both types of seizures 

have been accompanied by epileptiform discharges in 

the EEG and abnormal behavior [57,58]. The authors 

concluded NAA to be excitatory [57]. Critics 

argumented that the high doses they used do not 

correspond to the far lower NAA concentrations 

present in the brain of Canavan patients. They 

considered dysmyelination an alternative explanation 

for the seizures [59]. Injection of 2 µmol of NAA did 

not induce seizures in normal rats [57]. 

 

Recently, NAA has been detected in a wide range of 

food [60]. Therefore, Delaney et al. have performed 

toxicity studies following oral administration of 

NAA. They found that neither one high dose of 2000 

mg/kg NAA nor repeated doses of 10, 100, 500 or 

1000 mg/kg/day NAA cause any adverse effects or 

biologically significant changes [61]. On 2009 

Karaman et al. reported that NAA in food is not 

mutagenic [62]. 

 

Another theory about the pathogenesis of Canavan 

disease is that NAA may act as an osmoregulator in 

the brain [63,64]. Investigators found that the efflux 

of NAA from the neurons to the extracellular fluid 

(ECF) is associated with water efflux [63] and that 

the extracellular concentration of NAA in the rat 

striatum rises during hyposmotic phases [64]. 

 

It was also proposed that NAA functions as a 

molecular water pump in myelinated neurons and that 

its accumulation leads to osmotic dysregulation in the 

brain which is responsible for the dysmyelination and 

subcortical vacuolation observed in Canavan disease 

[65–67]. Reduced levels of GABA and its precursor 

glutamate were found in the brains of Canavan 

patients and knockout mice. Therefore administration 

of a glutamine analogue and a GABA analogue has 

been proposed as a possible therapeutical approach 

particularly to alleviate spasticity [68]. 

 

In 2009 the results of Kumar et al. have indicated that 

aspartoacylase may be involved in the epigenetic 

regulation of myelin genes and genes responsible for 

the differentiation of oligodendrocytes [69], the cells 

in which aspartoacylase is localized [70–72]. Another 

theory attributes the pathology observed in Canavan 

disease to the inability to liberate free acetate from 

NAA due to the lack of aspartoacylase. In healthy 

individuals NAA appears to be the primary source of 

acetate required for some portion of myelin lipid 
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synthesis during postnatal axonal myelination 

[70,72–78]. This hypothesis is supported by data on 

the incorporation of acetate from NAA into myelin 

lipid [74,78] and on deficiency of myelin lipid 

synthesis in the brains of aspartoacylase knockout 

mice [75].
 
An argument against this hypothesis is that 

there are alternative sources for acetate in the brain 

[6]. 

 

Based on the hypothesis of acetate deficiency, dietary 

acetate supplementation with glyceryl triacetate 

(GTA) has been proposed as a therapy of Canavan 

disease. After application of GTA increased acetate 

levels were detected in mice [77]. There was no 

elevation of NAA levels in the brain [77] and there 

was no evidence for adverse effects or clinical 

deterioration in two infants and in rats [79]. In the 

tremor rat model of Canavan disease, application of 

GTA improved motor function and changed the 

composition of myelin lipids [80]. 

 

Recently, the application of lithium has been studied 

as a new experimental treatment after lithium 

chloride had been found to reduce NAA levels in 

some parts of the brain of the tremor rat model for 

Canavan disease [81]. The application of lithium to 

patients was shown to be well tolerated and to cause 

a moderate decrease of brain NAA which was  

significant only in one examined area [82,83]. In 

MRI-scans, T1 values indicated a moderate 

amelioration. However, clinical tests did not show 

any statistically significant improvement [82,83]. It 

should be noted that only two open studies with very 

few patients, seven in total, have been performed to 

assess this experimental therapeutic approach. 

 

Experimental approaches using gene therapy in 

humans and animals so far have not opened a 

therapeutic perspective [37,52,84–86]. 

 

 

 

Recently, interest in deficiency of aspartoacylase has 

further grown due to the discovery of deficiency of 

aminoacylase 1 [87,88]. Aspartoacylase, also called 

aminoacylase 2, only cleaves N-acetylaspartate. 

Aminoacylase 1 cleaves virtually all N-acetylated L-

amino acids except for N-acetylaspartate and N-

acetylproline [8]. Aminoacylase 1 deficiency was 

mostly detected in children with neurological 

abnormalities [87–89] Ongoing research addresses 

possible interactions between the two aminoacylases. 

This may contribute to a better understanding of 

Canavan disease and its etiology. 

 

Following the discovery of the synthesis of NAA by 

N-acetyltransferase 8-like protein (encoded by the 

NAT8L gene) early in 2010, this protein will probably 

attract attention as a new potential target for affecting 

NAA levels soon [90]. 

 

Conclusions 
Canavan disease is a genetic neurodegenerative 

disease caused by mutations in the ASPA gene. 

Important clinical features are macrocephaly, 

hypotonia, head lag and developmental delay. 

Patients show elevated urinary concentrations of 

NAA. While it is often expected that patients with 

Canavan disease will die in childhood, there is 

increasing evidence for a wide variation of the 

clinical phenotype. Although it is a panethnic disease, 

information on affected individuals in populations of 

Non-Ashkenazi Jewish origin is rather limited. 

Ongoing research aims at a better understanding of 

Canavan disease and underlying mechanisms as a 

basis for new therapeutic approaches. 
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