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Özet. Bu makalede, Lorentz metrikli para-kontakt manifoldların özel bir sınıfı olan Lorentz para-Kenmotsu manifold-
ların altmanifoldları çalışılmıştır. Öncelikle, bir Lorentz para-Kenmotsu manifoldun bir almanifoldunun bazı özellikleri
elde edilmiştir. Daha sonra, holomorfik ve sadece reel dağılımların integrallenebilirlik koşulları incelenmiştir. Son olarak,
paralel kanonik yapılar için bazı sonuçlar verilmiştir.
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Abstract. In this paper, we study on submanifolds of a Lorentzian para-Kenmotsu manifold which is a special kind
of para-contact manifolds with Lorentzian metric. Firstly, we obtain some basic properties for a submanifold of a
Lorentzian para-Kenmotsu manifold. Then, we examine integrability conditions of holomorphic distribution and purely
real distribution. Finally, we obtain some results for parallel canonical structures.
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1. Introduction

An almost complex structure J is an endomorphism on a Hermitian manifold that J = −I. We
recall the manifold an almost complex manifold and also if J is integrable manifold becomes complex.
On the other hand, similar to complex structure a para-complex structure is defined on a Hermitian
manifold M with the endomorphism J : Γ(TM) −→ Γ(TM), such that J2 = I. Para-complex
structures have many different geometric properties from classical complex structures. A canonical
example is the product of two manifolds M+ × M− of the same dimension. Also there are many
applications of these manifolds in physics [19].

Contact manifolds have been studied in the tensorial viewpoint since 1960s. In this way, some
geometric properties of almost complex and complex manifolds have guided researchers in the study
of contact manifolds. For example, Sasakian manifolds, which are an important example of contact
manifolds, are considered as one-dimensional analogues of Kähler manifolds. Similarily, para-Kähler
structures have been studied in para-complex geometry and para-Sasakian structure have been studied
in para-contact geometry. An almost para-contact structure was defined by Kaneyuki Willams [6].
Many authors worked on almost para-contact metric manifolds and their subclasses [1, 12, 19, 14, 16].

In 1969, Takahashi [15] studied on Sasakian manifolds with pseudo-Riemannian metric. In 1990,
K. L. Duggal [5] analyzed the paper of Takahashi and they considered space time manifolds with
contact structure. Lorentzian Kenmotsu manifolds have been defined by Roşça [9]. Sari and Turgut
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Vanlı [10, 11] worked on Lorentzian Kenmotsu manifolds. In [20], Tirpathi and De presented a survey
on tLorentzian para-contact manifolds. Also, some authors investigated LP-Kenmotsu manifolds in
[2, 7, 8].

In the presented paper, we study on generic submanifolds of Lorentzian para-Kenmotsu manifolds.
Firstly, we obtain some basic properties for a submanifold of a LP-Kenmotsu manifold. Then, we
examine integrability conditions of holomorphic distribution and purely real distribution. Finally, we
obtain some results for parallel canonical structures.

2. Preliminaries and basic results

In this section, we give some fundamental facts of LP-Kenmotsu manifolds and the submanifold
theory.

Definition 1. Let M be an n−dimensional differentiable manifold with Lorentzian metric ḡ. If we
have a para-contact structure (ϕ, ξ, η) on M as the following :

ϕ2 = I + η ⊗ ξ, η(ξ) = −1

(̄ϕX,ϕY ) = ḡ(X,Y ) + η(X)η(Y ),

where ϕ is a tensor field of type (1, 1), η is a 1−form, ξ is a vector field, then M is called a Lorentzian
almost para-contact metric manifold [20].

From the definition, it is clear that g(ϕX, Y ) = g(X,ϕY ). Similar to any contact or para-contact
structure the fundamental 2−form Φ is defined by

Φ(X,Y ) = g(X,ϕY ),

for any X,Y ∈ Γ(TM̄). Moreover, an almost para-contact metric manifold is normal if

N = [ϕ,ϕ] + 2dη ⊗ ξ = 0

where [ϕ,ϕ] is denoting the Nijenhuis tensor field associated to ϕ.

Definition 2. A Lorentzian almost para-contact metric manifold M is said to be a Lorentzian almost
para-Kenmotsu manifold if 1-form η is closed and dΦ = −2η ∧ Φ.

If M is also normal, then M is called a Lorentzian para-Kenmotsu manifold. Except for the
definitions, also we can classify para-contact manifolds by covariant derivation of ϕ. By the following
theorem, a Lorentzian para-contact metric manifold is characterized as LP-Kenmotsu manifold.

Theorem 1. A Lorentzian almost para-contact metric manifold M is a LP-Kenmotsu manifold if and
only if (

∇Xϕ
)
Y = −ḡ(ϕX, Y )ξ − η(Y )ϕX (1)

for all X,Y ∈ Γ(TM) [7].

Corollary 1. Let
(
M,ϕ, ξ, η, g

)
be a Lorentzian para-Kenmotsu manifold. Then we have

∇Xξ = ϕ2X (2)

for all X ∈ Γ(TM).

Gauss and Weingarten formulas on an m−dimensional submanifold of a LP-Kenmotsu manifold
with induced metric g are given by

∇XY = ∇XY + h(X,Y ) (3)

∇XV = ∇⊥XV −AVX (4)

for any X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where ∇⊥ is the connection in the normal bundle, h is the
second fundamental from of M and AV is the Weingarten endomorphism associated with V .

The second fundamental form h and the shape operator A have the following relation

g(h(X,Y ), V ) = g(AVX,Y ). (5)

A submanifold M of M is said to be totally geodesic if h(X,Y ) = 0, for any X,Y ∈ Γ(TM).
For X ∈ Γ(TM) we put

ϕX = PX +NX (6)
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where PX and NX denote tangential and normal components of ϕX, respectively. Similarly, for
V ∈ Γ(T⊥M), we write

ϕV = pV + nV (7)

where pV and nV denote tangential and normal components of ϕV , respectively.
For X,Y ∈ Γ(TM), we have

g(ϕX, Y ) = g(X,ϕY ).

From (6), we can state
g(PX +NX,Y )− g(X,PY +NY ) = 0.

Thus we obtain g(X,PY ) = g(PX, Y ). On the other hand, for a vector field V ∈ Γ(T⊥M) we have

g(ϕX, V ) = g(X,ϕV ).

From (7), we get g(X, pV ) = g(NX,V ).
Finally, for K ∈ Γ(T⊥M) we can state

g(pK + nK, V )− g(K, pV + nV ) = 0.

From (7) we obtain g(K,nV ) = g(nK, V ). We can summarize all these results by the following lemma.

Lemma 1. For all X,Y ∈ Γ(TM), V,K ∈ Γ(T⊥M) we have

g(X,PY ) = g(PX, Y ),

g(X, pV ) = g(NX,V ),

g(K,nV ) = g(nK, V ).

Suppose that ξ ∈ Γ(TM). Then we have

0 = ϕξ = Pξ +Nξ = 0.

Since, TM = TM ⊕ T⊥M , it is obvious that Pξ = Nξ = 0. On the other hand we have

0 = η(ϕX) = g(ξ, ϕX) = g(ξ, PX) + g(ξ,NX) = η(PX) + η(NX) = 0

and thus we get η ◦ P = η ◦N = 0. After following similar steps we have

ϕ2X = ϕ(PX +NX) = P 2X +NPX + pNX + nNX.

Since P 2X + pNX ∈ Γ(TM) and NPX + nNX ∈ Γ(T⊥M), we get P 2 + pN = I + η ⊗ ξ and
NP + nN = 0.

Finally we have
ϕ2P = ϕ(pV + nV ) = PpV +NpV + pnV + n2V

Since n2V +NpV ∈ Γ(T⊥M) and PpV + pnV ∈ Γ(TM), we get n2 +Np = I and pn+ Pp = 0. We
can summarize all these results as following.

Lemma 2. On a submanifold of a LP-Kenmotsu manifold we have

Pξ = 0 = Nξ

η ◦ P = 0 = η ◦N
P 2 + pN = I + η ⊗ ξ

NP + nN = 0

n2 +Np = I

pn+ Pp = 0.

By using formula (1), we obtain covariant derivation of T and N via the induced connection ∇ and
∇⊥. For X,Y ∈ Γ(TM) from (3), (4), (6) and (7) we get

(∇Xϕ)Y = ∇XPY + h(X,PY )−ANYX +∇⊥XNY − P∇XY −N∇XY − ph(X,Y )− nh(X,Y ).

From (1) and with consider tangential and normal parts we obtain

−g(PX, Y )ξ − η(Y )PX = (∇XP )Y −ANYX − ph(X,Y )

and
−η(Y )NX = (∇XN)Y − h(X,PY )−ANYX.
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Similarly, we can obtain covariant derivation of p and n via the induced connection ∇ and ∇⊥. For
V ∈ Γ(T⊥M) and from (3), (4), (6) and (7) we have

(∇Xϕ)V = ∇XpV + h(X, pV ) +AnVX +∇⊥XnV + PAVX +NAVX − p∇⊥XV − n∇⊥XV.
From (1) and with consider tangential and normal parts we obtain

−g(NX,V )ξ = (∇Xp)V + PAVX −AnVX

and
0 = (∇Xn)V + h(X, pV ) +NAVX.

We can summarize all these results as following.

Lemma 3. On a submanifold of a LP-Kenmotsu manifold, we have

(∇XP )Y = ANYX + ph(X,Y )− g(PX, Y )ξ − η(Y )PX (8)

(∇XN)Y = nh(X,Y ) + h(X,PY ) + η(Y )NX (9)

(∇Xp)V = AnVX + PAVX − g(NX,V )ξ (10)

(∇Xn)V = −h(X, pV )−NAVX. (11)

3. Main results

In this section, we give the definition of a generic submanifold of a Lorentzian para-Kenmotsu
manifold and we obtain some results.

A generic submanifold of a Kähler manifold was defined and studied by Chen in [3]. In [21], the
authors studied on generic submanifolds of a Sasakian manifold with a special vector field and they give
the definition of a generic submanifold with a different way. In this paper, we follow Chen’s definition
for para-contact case and use this definition to construct our results for LP-Kenmotsu manifolds.

Let define the maximal invariant subspace under ϕ by

Hx = TxM ∩ ϕTxM x ∈M.

Definition 3. If Hx has constant dimension along M , then M is called a generic submanifold of M .
Hx is said to be ϕ−holomorphic distribution.

A generic submanifold M in a LP-Kenmotsu manifold M is called a semi invariant submanifold if
the orthogonal complementary distribution H⊥ of H in TM is totally real, i.e. ϕH⊥x ⊆ T⊥x M, T⊥x M
the normal space of M at x.

Consider the orthogonal complementary distribution H⊥x in TM . If we have

• Hx⊥H⊥x ,
• PH⊥x ⊆ H⊥x ,
• Hx ∩ ϕH⊥x = {0},

then H⊥x is called purely real ϕ−distribution.
Let take a vector field V in Γ(T⊥x M). As we know ϕV = pV + nV which shows ϕV has tangential

and normal components. Thus ϕV could be in TM if nV = 0 or in T⊥x M if p = 0. So the the geometric
properties of ϕV gives some important information. Suppose that also we have ϕV ∈ Γ(ϕT⊥x M) .
Thus V ∈ Γ(T⊥x M ∩ ϕT⊥x M). We recall these vector fields as ϕ−holomorphic normal vector fields.
The space of these vector fields are stated by µx and defines a differentiable vector subbundle of T⊥M.
µ is said to be ϕ−holomorphic normal vector subbundle. Finally, we can say that a vector field V
has components in tangential part of purely real ϕ−distribution and ϕ−holomorphic normal vector
subbundle. Thus we can write

T⊥M = NH⊥ ⊕ (T⊥x M ∩ ϕT⊥x M)

On the other hand p project T⊥x M to H⊥ and PH⊥ become orthogonal to ϕ−holomorphic normal
vector subbundle µ. In the other words, we have

T⊥M = NH⊥ ⊕ µ, p(T⊥M) = H⊥, g(NH⊥, µ) = 0.

By above constructions we define three distributions of a generic submanifold of a M in a LP-Kenmotsu
manifold M : ϕ−holomorphic distribution H, purely real ϕ−distribution H⊥ and ϕ−holomorphic
normal distribution µ

In the following results, by using the basic properties of generic submanifolds, we obtain integrability
conditions.
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Theorem 2. The ϕ−holomorphic distribution H is always integrable.

Proof. Firstly, for Y ∈ Γ(H) we know that,

g(Y, ξ) = 0.

Then we conclude that,
g(∇XY, ξ) = −g(∇Xξ, Y ). (12)

On the other hand, for all X,Y ∈ Γ(H) we have

g([X,Y ], ξ) = g(∇XY, ξ)− g(∇YX, ξ).

By virtue of (2) and (12), we get desired result. �

Theorem 3. The holomorphic distribution H⊥⊕{ξ} of a generic submanifold M is integrable if and
only if (AnZW −AnWZ +∇ZpW −∇W pZ) ∈ H⊥ for any vector Z,W ∈ Γ(H⊥) .

Proof. For all Z,W ∈ Γ(H⊥) and X ∈ Γ(H) we get

g([Z,W ], ϕX) = g(∇ZW,ϕX)− g(∇WZ,ϕX).

Then, using (3), we have

g([Z,W ], ϕX) = g(∇ZW,ϕX)− g(∇WZ,ϕX).

On the other hand, from (1), we obtain

g([Z,W ], ϕX) = g(∇ZϕW,X)− g(∇WϕZ,X).

Then, using (3), (4) and (7), we get

g([Z,W ], ϕX) = g(∇ZpW,X)− g(AnWZ,X)− g(∇W pZ,X) + g(AnZW,X)

which completes the proof. �

Theorem 4. The holomorphic distribution H⊕ {ξ} and its leaves are totally geodesic in M if and
only if g(h(H,H), nH⊥) = 0.

Proof. For all X,Y ∈ Γ(H) and V ∈ Γ(H⊥), from (5) we get

g(h(X,Y ), nV ) = −g(AnVX,Y ) = g(∇XnV, Y ).

On the other hand, using (7) we have

g(h(X,Y ), nV ) = g(∇XϕV, Y )− g(∇XpV, Y ) = g(∇XV, ϕY )

since ∇HH⊥ ⊂ H⊥ we obtain

g(h(X,Y ), nV ) = g(∇XV, Y ) = 0

which completes the proof. �

Proposition 1. Let M be a generic submanifold of a LP-Kenmotsu manifold M . Then we have the
following results;

(1) P is parallel if and only if ANXY = ANYX for any vector X,Y ∈ Γ(TM).
(2) N is parallel if and only if AnVX = AV PX for all X ∈ Γ(TM), V ∈ Γ(T⊥M).
(3) n is parallel if and only if AV PU = AUpV for all U ∈ Γ(TM) and V ∈ Γ(T⊥M).

Proof. For any vector X,Y ∈ Γ(TM), using (5) and (8), we get (1). On the other hand, for all
X ∈ Γ(TM), V ∈ Γ(T⊥M)and from (9), we get

g((∇YN)X,V ) = g(h(Y,X), nV )− g(h(Y, PX), V ).

Then, by using (5) we have

g((∇YN)X,V ) = g(AnVX,Y )− g(AV PX, Y )

which proves (2). Finally, for all U,X ∈ Γ(TM) and V ∈ Γ(T⊥M), using (11) we have

g((∇Xn)V,U) = g(NAVX,U)− g(h(X, tV ), U).

After some calculations, we get

g((∇Xn)V,U) = g(X,AV TU)− g(AU tV,X)

which gives (3). �
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