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Abstract
Let P (z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1. We

obtain an improvement and a generalization of an inequality in polar derivative proved by Somsuwan
and Nakprasit [1]. Further, we also extend a result proved by Chanam and Dewan [2] to its polar version.
Besides, our results are also found to generalize and improve some known inequalities.
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1. Introduction and statement of results
The study of geometric relationship between the maximum moduli of a complex polynomial and its derivative

on the same circle or different circles by taking into account the position of zeros of the polynomial inside or outside
the same or a different circle has been drawing great interest among researchers for many decades. One of the
pioneering works in this area is due to S. Bernstein.

If P (z) is a polynomial of degree n, Bernstein [3] proved

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|. (1.1)

The above inequality is the famous Bernstein’s Inequality. Equality holds in (1.1) if all zeros of P (z) are found at the
origin.
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If we restrict ourselves to the class of polynomials P (z) of degree n having no zero in |z| < 1, then inequality
(1.1) can be refined and substituted by

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|. (1.2)

Inequality (1.2) was conjectured by Erdös and later proved by Lax [4]. The result is sharp and equality holds for the
polynomial P (z) = λ+ µzn, where |λ| = |µ|.

On the other hand, if P (z) is a polynomial of degree n having all its zeros in |z| ≤ 1, Turán [5] proved

max
|z|=1

|P ′(z)| ≥ n

2
max
|z|=1

|P (z)|. (1.3)

Inequality (1.3), which is often referred to as Turán’s Inequality, is best possible and equality occurs if P (z) has all
its zeros on |z| = 1.

It was asked by Professor R.P. Boas that if P (z) is a polynomial of degree n not vanishing in |z| < k, k > 0, then

how large can
{
max
|z|=1

|P ′(z)|/max
|z|=1

|P (z)|
}

be. A partial answer to this problem was given by Malik [6], who proved

that if P (z) is a polynomial of degree n having no zero in |z| < k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≤ n

1 + k
max
|z|=1

|P (z)|. (1.4)

The result is sharp and equality is attained for P (z) = (z + k)n. Whereas, for the polynomial P (z) having all its

zeros in |z| ≤ k, k ≤ 1, by applying the above inequality (1.4) to the polynomial q(z), where q(z) = znP

(
1

z

)
, Malik

[6] further obtained a generalization of (1.3) as

max
|z|=1

|P ′(z)| ≥ n

1 + k
max
|z|=1

|P (z)|. (1.5)

Inequality (1.5) is sharp and equality holds for P (z) = (z + k)n.

In inequalities (1.2) and (1.3) the boundaries of zero-free regions and the circle on which the estimates of P (z)
and its derivative are compared is the unit circle, which is not the case in inequalities (1.4) and (1.5) where the two
circles are not same. It is of interest to obtain generalization of the above inequalities by considering the maximum
moduli of the polynomial and its derivative on different circles other than the unit circle. In this direction the
following result was proved by Aziz and Zargar [7].

Theorem 1.1. If P (z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≤ 1, then for real numbers r and R such
that rR ≥ k2 and r ≤ R,

max
|z|=R

|P ′(z)| ≥ n (R+ k)
n−1

(r + k)
n

{
max
|z|=r

|P (z)|+ min
|z|=k

|P (z)|
}
. (1.6)

Equality in (1.6) holds for the polynomial P (z) = (z + k)n.

Chanam and Dewan [2] generalized and improved Theorem 1.1 by involving certain coefficients of P (z). They
proved

Theorem 1.2. Let P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , a0 6= 0 and 1 ≤ µ < n, be a polynomial of degree n ≥ 2 having all its

zeros in |z| ≤ k, where k > 0, then for rR ≥ k2 and r ≤ R,

max
|z|=R

|P ′(z)| ≥ n
{

n|an|Rµkµ−1 + µ|an−µ|Rµ−1

n|an|Rµ+1kµ−1 + n|an|k2µ + µ|an−µ| (Rkµ−1 +Rµ)

}
(1.7)

×
(
R+ k

r + k

)n{
max
|z|=r

|P (z)|+ min
|z|=k

|P (z)|
}
.
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Let P (z) be a polynomial of degree n and let α be any complex number. Then, the polar derivative of P (z) with
respect to α, denoted by DαP (z), is defined as

DαP (z) = nP (z) + (α− z)P ′(z). (1.8)

The polynomial DαP (z) is of degree at most (n− 1) and it generalizes the ordinary derivative in the sense that

lim
α→∞

DαP (z)

α
= P ′(z).

The following result, proved by Aziz and Rather [8], generalizes and extends Turán’s inequality (1.3) to its polar
version.

Theorem 1.3. Let P (z) be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for every real or complex
number α with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥
n(|α| − k)
1 + kn

max
|z|=1

|P (z)|. (1.9)

Further, Dewan and Upadhye [9] improved Theorem 1.3 by involving min
|z|=k

|P (z)|. They proved

Theorem 1.4. Let P (z) be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for every real or complex
number α with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥ n(|α| − k)
{

1

1 + kn
max
|z|=1

|P (z)|+ 1

2kn

(
kn − 1

kn + 1

)
min
|z|=k

|P (z)|
}
. (1.10)

Nakprasit and Somsuwan [1] generalized Theorem 1.4 by proving the following result.

Theorem 1.5. Let P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then

for every real or complex number α with |α| ≥ k and 1 ≤ R ≤ k,

max
|z|=R

|DαP (z)| ≥ nRn−1 (|α| − k)

[
Rn

Rn + kn

(
kµ + 1

kµ +Rµ

)n
µ

max
|z|=1

|P (z)|

+

{
kn

Rn + kn

(
1−

(
kµ + 1

kµ +Rµ

)n
µ

)
+

1

2kn

(
kn −Rn

kn +Rn

)}
min
|z|=k

|P (z)|

]
. (1.11)

In this paper, we first obtain an improvement and a generalization of Theorem 1.5. Theorem 1.5 is generalized in
the sense that inequality (1.11) is extended to circles with smaller radii, viz., for 0 < r ≤ 1 when the estimate of
max |DαP (z)| is considered. More precisely, we prove

Theorem 1.6. Let P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then

for every real or complex number α with |α| ≥ k and 0 < r ≤ 1 ≤ R ≤ k,

max
|z|=R

|DαP (z)| ≥ nRn−1 (|α| − k)
[

Rn

kn +Rn
Bmax
|z|=r

|P (z)|

+

{
kn

kn +Rn
(1−B) +

1

2kn

(
kn −Rn

kn +Rn

)}
min
|z|=k

|P (z)|
]
, (1.12)

where

B = exp


−n

R∫
r

µ

n

|an−µ|
k2µ

|an| − m
kn
kµ+1tµ−1 + tµ

tµ+1 + kµ+1 +
µ

n

|an−µ|
k2µ

|an| − m
kn

(kµ+1tµ + k2µt)

dt


(1.13)

and m = min
|z|=k

|P (z)|.
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The following result is obtained by taking r = 1 in Theorem 1.6.

Corollary 1.1. Let P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1,

then for every real or complex number α with |α| ≥ k and 1 ≤ R ≤ k,

max
|z|=R

|DαP (z)| ≥ nRn−1 (|α| − k)
[

Rn

kn +Rn
B1 max
|z|=1

|P (z)|

+

{
kn

kn +Rn
(1−B1) +

1

2kn

(
kn −Rn

kn +Rn

)}
min
|z|=k

|P (z)|
]
, (1.14)

where

B1 =


−n

R∫
1

µ

n

|an−µ|
k2µ

|an| − m
kn
kµ+1tµ−1 + tµ

tµ+1 + kµ+1 +
µ

n

|an−µ|
k2µ

|an| − m
kn

(kµ+1tµ + k2µt)

dt


(1.15)

and m = min
|z|=k

|P (z)|.

Remark 1.1. Corollary 1.1 is an improvement of Theorem 1.5. It is sufficient to show that the bound given by
inequality (1.14) is bigger than the bound given by inequality (1.11) concerning the estimate of max |DαP (z)|, i.e.,[

Rn

kn +Rn
B1 max
|z|=1

|P (z)|+
{

kn

kn +Rn
(1−B1) +

1

2kn

(
kn −Rn

kn +Rn

)}
min
|z|=k

|P (z)|
]

≥

[
Rn

Rn + kn

(
kµ + 1

kµ +Rµ

)n
µ

max
|z|=1

|P (z)|+

{
kn

Rn + kn

(
1−

(
kµ + 1

kµ +Rµ

)n
µ

)
+

1

2kn

(
kn −Rn

kn +Rn

)}
min
|z|=k

|P (z)|

]
.

From (2.1) of Lemma 2.2, we have
max
|z|=1

|P (z)| ≥ kn min
|z|=k

|P (z)|.

Since R ≥ 1, it follows that

Rnmax
|z|=1

|P (z)| − kn min
|z|=k

|P (z)| ≥ 0. (1.16)

Putting r = 1 in (2.9) of Lemma 2.5, we get

B1 ≥
(
kµ + 1

kµ +Rµ

)n
µ

, (1.17)

where B1 is given by (1.15).
In view of inequality (1.17), it is sufficient to show that the function f such that

f(x) = Rnmax
|z|=1

|P (z)|x+ kn(1− x) min
|z|=k

|P (z)|

is a non-decreasing function of x. Now as

f ′(x) = Rnmax
|z|=1

|P (z)| − kn min
|z|=k

|P (z)|

≥ 0 (by (1.16)),

f is a non-decreasing function of x, which proves our claim.

Further, for r = R = 1 in Theorem 1.6, we have the following result.
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Corollary 1.2. Let P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1,

then for every real or complex number α with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥ n(|α| − k)
{

1

kn + 1
max
|z|=1

|P (z)|+ 1

2kn

(
kn − 1

kn + 1

)
min
|z|=k

|P (z)|
}
. (1.18)

Remark 1.2. It is clear from Corollary 1.1 that Theorem 1.6 is a generalization of Theorem 1.4, as taking µ = 1 along
with r = R = 1, inequality (1.12) of Theorem 1.6 reduces to (1.10) of Theorem 1.4.

Dividing both sides of (1.12) by |α| and letting |α| → ∞ and putting R = k, we have the next result.

Corollary 1.3. If P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then

for 0 < r ≤ k,

max
|z|=k

|P ′(z)| ≥ nkn−1

2

{
Bmax
|z|=r

|P (z)|+ (1−B) min
|z|=k

|P (z)|
}
, (1.19)

where B is given by (1.13).

Remark 1.3. In particular, if we let r = k = 1 and µ = 1, (1.19) reduces to Turán’s inequality (1.3).
Next, we extend Theorem 1.2 due to Chanam and Dewan [2] to its polar version in which the assumption a0 6= 0

in the constant term of the polynomial P (z) is also dropped. The result also improves as well as generalizes other
well known inequalities.

Theorem 1.7. Let P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k,

k > 0, then for every real or complex number α with
|α|
R
≥ Aµ,n and for rR ≥ k2 and r ≤ R,

max
|z|=R

|DαP (z)|+mn ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)(
R+ k

r + k

)n [
max
|z|=r

|P (z)|+ min
|z|=k

|P (z)|
]
, (1.20)

where m = min
|z|=k

|P (z)| and

Aµ,n =
n|an|k2µ + µ|an−µ|Rkµ−1

µ|an−µ|Rµ + n|an|Rµ+1kµ−1
. (1.21)

Dividing on both sides of (1.20) by |α| and letting |α| → ∞, we have the following result.

Corollary 1.4. Let P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k,

k > 0, then for rR ≥ k2 and r ≤ R,

max
|z|=R

|P ′(z)| ≥ n

R (1 +Aµ,n)

(
R+ k

r + k

)n [
max
|z|=r

|P (z)|+ min
|z|=k

|P (z)|
]
, (1.22)

where Aµ,n is given by (1.21).

Remark 1.4. In view of Corollary 1.4, Theorem 1.7 is the polar derivative version of Theorem 1.2 in a richer form for
restrictions concerning the polynomial P (z), namely a0 6= 0, µ 6= n and n 6= 1 in the hypotheses of Theorem 1.2
have all been dropped in Theorem 1.7 and hence consequently in Corollary 1.4. In other words, Corollary 1.4 is a
better version of Theorem 1.2.

Further, taking k = R = r = 1 in Corollary 1.4, we have the following result.

Corollary 1.5. Let P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ 1,

then

max
|z|=R

|P ′(z)| ≥ n

2

{
max
|z|=r

|P (z)|+ min
|z|=k

|P (z)|
}
. (1.23)
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Inequality (1.23) verifies that Corollary 1.4 is a generalization as well as an improvement of inequality (1.3) due
to Turán [5].
Remark 1.5. Corollary 1.4 is also an improvement and a generalization of Theorem 1.1 as explained by Chanam and
Dewan [2, Remark 2].

2. Lemmas
We need the following lemmas to prove our theorems.

The following lemma was proved by Gardner et al.[10].

Lemma 2.1. If P (z) =
n∑
ν=0

aνz
ν is a polynomial of degree n, P (z) 6= 0 in |z| < k, k > 0, then |P (z)| ≥ m for |z| ≤ k,

where m = min
|z|=k

|P (z)|.

Lemma 2.2. If P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1,

then

max
|z|=1

|P (z)| ≥ kn min
|z|=k

|P (z)|. (2.1)

Proof. Let q(z) = znP

(
1

z

)
= a0z

n +
n∑
ν=µ

aνz
n−ν , 1 ≤ µ ≤ n. Since P (z) has all its zeros in |z| ≤ k, k ≥ 1, therefore

q(z) has no zero in |z| < 1

k
,
1

k
≤ 1. Let Q(z) = q

( z
k2

)
=

a0
k2n

zn +
n∑
ν=µ

aν
k2(n−ν)

zn−ν = an +
n∑
ν=µ

an−ν
k2ν

zν , then

Q(z) 6= 0 in |z| < k, k ≥ 1.
Therefore, by applying Lemma 2.1 to Q(z), we get for |z| = k

|Q(z)| ≥ min
|z|=k

|Q(z)|

= min
|z|=k

∣∣∣q ( z
k2

)∣∣∣
= min
|z|=k

∣∣∣∣∣( zk2)n P
(

1

z/k2

)∣∣∣∣∣
=

1

kn
min
|z|=k

∣∣∣∣P (k2z
)∣∣∣∣

=
1

kn
min
|z|=k

|P (z)|. (2.2)

Now as 1 ≤ k and hence in particular inequality (2.2) gives for |z| = 1

|Q(z)| ≥ 1

kn
min
|z|=k

|P (z)|, from which it is implied that

max
|z|=1

|Q(z)| ≥ 1

kn
min
|z|=k

|P (z)|, which is equivalent to

max
|z|=1

∣∣∣q ( z
k2

)∣∣∣ ≥ 1

kn
min
|z|=k

|P (z)|,

which implies

max
|z|=1

∣∣∣∣∣( zk2)n P
(

1

z/k2

)∣∣∣∣∣ ≥ 1

kn
min
|z|=k

|P (z)|,

which is equivalent to

1

k2n
max
|z|=1

∣∣∣∣P (k2z
)∣∣∣∣ ≥ 1

kn
min
|z|=k

|P (z)|. (2.3)
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Since k ≥ 1, it is obvious that k2 ≥ k ≥ 1 and hence by Maximum Modulus Principle [11]

max
|z|=k2

∣∣∣∣P (k2z
)∣∣∣∣ ≥ max

|z|=1

∣∣∣∣P (k2z
)∣∣∣∣ , which is equivalent to

1

(k2)n
max
|z|=k2

∣∣∣∣P (k2z
)∣∣∣∣ ≥ 1

(k2)n
max
|z|=1

∣∣∣∣P (k2z
)∣∣∣∣ , which simplifies to

1

(kn)2
max
|z|=1

|P (z)| ≥ 1

k2n
max
|z|=1

∣∣∣∣P (k2z
)∣∣∣∣ . (2.4)

Combining (2.3) and (2.4) we get

1

(kn)2
max
|z|=1

|P (z)| ≥ 1

kn
min
|z|=k

|P (z)|. (2.5)

Hence,

max
|z|=1

|P (z)| ≥ kn min
|z|=k

|P (z)|.

Lemma 2.3. If P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n such that P (z) 6= 0 in |z| < k, k > 0, then

for 0 < r ≤ R ≤ k,

max
|z|=r

|P (z)| ≥ B′ max
|z|=R

|P (z)|+ (1−B′) min
|z|=k

|P (z)|, (2.6)

where

B′ = exp

−n
R∫
r

µ

n

|aµ|
|a0| −m

kµ+1tµ−1 + tµ

tµ+1 + kµ+1 +
µ

n

|aµ|
|a0| −m

(kµ+1tµ + k2µt)

dt

 (2.7)

and m = min
|z|=k

|P (z)|. Equality holds in (2.6) for P (z) = (zµ + kµ)
n
µ , where n is a multiple of µ.

Lemma 2.4. If P (z) = a0 +
n∑
ν=µ

aνz
µ, 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k, where k > 0, then

for 0 < r ≤ R ≤ k,

B′ ≥
(
kµ + rµ

kµ +Rµ

)n
µ

, (2.8)

where B′ is given by (2.7).

Lemma 2.3 and Lemma 2.4 are due to Chanam and Dewan [12].

Lemma 2.5. Let P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k, k > 0, then for

0 < r ≤ R ≤ k,

B ≥
(
kµ + rµ

kµ +Rµ

)n
µ

, (2.9)

where B is given by (1.13).
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Proof. Let q(z) = znP

(
1

z

)
and Q(z) = q

( z
k2

)
. Then, Q(z) =

a0
k2n

zn+
n∑
ν=µ

aν
k2(n−ν)

zn−ν = an+
n∑
ν=µ

an−ν
k2ν

zν , where

1 ≤ µ ≤ n. Since P (z) 6= 0 in |z| < k, k > 0, we have Q(z) 6= 0 in |z| < k, k > 0. Hence, applying Lemma 2.4 to Q(z),
we get

B ≥
(
kµ + rµ

kµ +Rµ

)n
µ

,

where B is given by (1.13).

The next lemma is due to Qazi [13, Proof and Remark of Lemma 1].

Lemma 2.6. If P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k, k ≥ 1, then

|q′(z)| ≥ kµ+1

µ

n

∣∣∣∣aµa0
∣∣∣∣ kµ−1 + 1

1 +
µ

n

∣∣∣∣aµa0
∣∣∣∣ kµ+1

|P ′(z)| on |z| = 1 (2.10)

and

µ

n

∣∣∣∣aµa0
∣∣∣∣ kµ ≤ 1, (2.11)

where q(z) = znP

(
1

z

)
.

Lemma 2.7. If P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, is a polynomial of degree n having all its zeros in |z| ≤ k, k ≤ 1,

then for every real or complex number β with |β| ≥ A,

max
|z|=1

|DβP (z)| ≥
n

1 +A
(|β| −A) max

|z|=1
|P (z)|, (2.12)

where

A =
n|an|k2µ + µ|an−µ|kµ−1

µ|an−µ|+ n|an|kµ−1
.

Inequality (2.12) is best possible for µ = 1 and equality occurs for P (z) = (z − k)n with
|β| ≥ A = k.

Proof. Let q(z) = znP

(
1

z

)
. Then it can be easily verified that

|q′(z)| = |nP (z)− zP ′(z)|, for |z| = 1. (2.13)

Since the polynomial P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, has all its zeros in |z| ≤ k, k ≤ 1, q(z) =

an +
n∑
ν=µ

an−νz
ν has no zero in |z| < 1

k
,
1

k
≥ 1, therefore, by applying Lemma 2.6 to q(z), we have from (2.10)

|P ′(z)| ≥ 1

kµ+1


µ

n

|an−µ|
|an|

1

kµ−1
+ 1

1 +
µ

n

|an−µ|
|an|

1

kµ+1

 |q′(z)|
=

µ|an−µ|+ n|an|kµ−1

n|an|k2µ + µ|an−µ|kµ−1
|q′(z)|.
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Therefore,

|q′(z)| ≤ n|an|k2µ + µ|an−µ|kµ−1

µ|an−µ|+ n|an|kµ−1
|P ′(z)|

= A|P ′(z)|. (2.14)

From (2.14), we have

|P ′(z)|+ |q′(z)| ≤ (1 +A)|q′(z)|. (2.15)

Also, for |z| = 1, with the help of (2.13), we have

n|P (z)| = |nP (z)− zP ′(z) + zP ′(z)|
≤ |nP (z)− zP ′(z)|+ |P ′(z)|
= |q′(z)|+ |P ′(z)|. (2.16)

Combining (2.15) and (2.16), we get

n|P (z)| ≤ (1 +A)|P ′(z)|

i.e.,

|P ′(z)| ≥ n

1 +A
|P (z)|, for |z| = 1. (2.17)

For every real or complex number β, by definition, we have

DβP (z) = nP (z) + (β − z)P ′(z),

from which for |z| = 1, we have

|DβP (z)| ≥ ||β||P ′(z)| − |nP (z)− zP ′(z)||
= ||β||P ′(z)| − |q′(z)|| (by (2.13)). (2.18)

Further, by (2.14)

|β||P ′(z)| − |q′(z)| ≥ |β||P ′(z)| −A|P ′(z)|
= (|β| −A)|P ′(z)|, (2.19)

which is non-negative, since |β| ≥ A.
Combining (2.18) and (2.19), we get

|DβP (z)| ≥ (|β| −A) |P ′(z)|,

which on using (2.17), gives

|DβP (z)| ≥ (|β| −A) n

1 +A
|P (z)|.

The following lemma is due to Aziz and Zargar [7].

Lemma 2.8. If P (z) =
n∑
ν=0

aνz
ν is a polynomial of degree n having all its zeros in |z| ≤ k, k > 0, then for rR ≥ k2 and

r ≤ R, we have for |z| = 1,

|P (Rz)| ≥
(
R+ k

r + k

)n
|P (rz)|. (2.20)

Equality holds in (2.20) for P (z) = (z + k)n.
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3. Proof of the theorems

Proof of Theorem 1.6. Let F (z) = P (Rz). Then F (z) has all its zeros in the closed disk |z| ≤ k

R
,
k

R
≥ 1. Applying

Theorem 1.5 to F (z), we have

max
|z|=1

|Dα/RF (z)| ≥ n
(
|α| − k
R

) 1

1 +
kn

Rn

max
|z|=1

|F (z)|+ 1

2
kn

Rn

 kn

Rn
− 1

kn

Rn
+ 1

 min
|z|= k

R

|F (z)|


= n (|α| − k)Rn−1

[
1

kn +Rn
max
|z|=1

|F (z)|+ 1

2kn

(
kn −Rn

kn +Rn

)
min
|z|= k

R

|F (z)|

]
. (3.1)

Using the relations,

max
|z|=1

|Dα/RF (z)| = max
|z|=R

|DαP (z)|,

max
|z|=1

|F (z)| = max
|z|=R

|P (z)|

and min
|z|= k

R

|F (z)| = min
|z|=k

|P (z)|

in inequality (3.1), we get

max
|z|=R

|DαP (z)| ≥ nRn−1 (|α| − k)
[

1

kn +Rn
max
|z|=R

|P (z)|+ 1

2kn

(
kn −Rn

kn +Rn

)
min
|z|=k

|P (z)|
]
. (3.2)

Let q(z) = znP

(
1

z

)
and Q(z) = q

( z
k2

)
, then

Q(z) =
zn

k2n
P

(
k2

z

)
. (3.3)

Therefore, q(z) has no zero in |z| < 1

k
and Q(z) is a polynomial of degree n having no zero in |z| < k, k ≥ 1. Thus,

applying Lemma 2.3 to Q(z), we have

max
|z|=r

|Q(z)| ≥ B max
|z|=R

|Q(z)|+ (1−B) min
|z|=k

|Q(z)|, (3.4)

where B is given by (1.13).
From (3.3) we have for r > 0

max
|z|=r

|Q(z)| = rn

k2n
max
|z|=r

∣∣∣∣P (k2z
)∣∣∣∣ . (3.5)

Since 0 < r ≤ 1 ≤ R ≤ k, we have by Maximum Modulus Principle [11],

max
|z|=k2

∣∣∣∣P (k2z
)∣∣∣∣ ≥ max

|z|=1

∣∣∣∣P (k2z
)∣∣∣∣ (∵ k2 ≥ 1)

i.e.
1

k2n
max
|z|=k2

∣∣∣∣P (k2z
)∣∣∣∣ ≥ 1

k2n
max
|z|=1

∣∣∣∣P (k2z
)∣∣∣∣

i.e.
1

k2n
max
|z|=1

|P (z)| ≥ 1

k2n
max
|z|=1

∣∣∣∣P (k2z
)∣∣∣∣

≥ rn

k2n
max
|z|=1

∣∣∣∣P (k2z
)∣∣∣∣

≥ rn

k2n
max
|z|=r

∣∣∣∣P (k2z
)∣∣∣∣

= max
|z|=r

|Q(z)| (by (3.5)).
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Hence

max
|z|=r

|Q(z)| ≤ 1

k2n
max
|z|=1

|P (z)|

≤ 1

k2n
max
|z|=R

|P (z)| (∵ R ≥ 1). (3.6)

Again from (3.3) we have

max
|z|=R

|Q(z)| = max
|z|=R

∣∣∣∣∣ znk2nP
(
k2

z

)∣∣∣∣∣
=
Rn

k2n
max
|z|=R

∣∣∣∣∣P
(
k2

z

)∣∣∣∣∣
=
Rn

k2n
max
|z|=k2/R

|P (z)|

≥ Rn

k2n
max
|z|=r

|P (z)|
(
∵
k2

R
≥ r
)
. (3.7)

Also, we know that

min
|z|=k

|Q(z)| = 1

kn
min
|z|=k

|P (z)|. (3.8)

Using (3.6), (3.7) and (3.8) in inequality (3.4), we get

1

k2n
max
|z|=R

|P (z)| ≥ Rn

k2n
Bmax
|z|=r

|P (z)|+ (1−B)
1

kn
min
|z|=k

|P (z)|

i.e.,

max
|z|=R

|P (z)| ≥ RnBmax
|z|=r

|P (z)|+ kn(1−B) min
|z|=k

|P (z)|. (3.9)

Combining inequalities (3.2) and (3.9), we obtain

max
|z|=R

|DαP (z)| ≥ nRn−1(|α| − k)
[

1

kn +Rn

(
RnBmax

|z|=r
|P (z)|+ kn(1−B) min

|z|=k
|P (z)|

)
+

1

2kn

(
kn −Rn

kn +Rn

)
min
|z|=k

|P (z)|
]
,

which is equivalent to

max
|z|=R

|DαP (z)| ≥ nRn−1(|α| − k)
[

Rn

kn +Rn
Bmax
|z|=r

|P (z)|

+

{
kn

kn +Rn
(1−B) +

1

2kn

(
kn −Rn

kn +Rn

)}
min
|z|=k

|P (z)|
]
.

This completes the proof of Theorem 1.6.

Proof of Theorem 1.7. Let m = min
|z|=k

|P (z)|, then m ≤ |P (z)| for |z| = k. Since all the zeros of P (z) lie in |z| ≤ k,

k > 0, therefore, for every complex number λ with |λ| < 1, it follows from Rouche’s Theorem that for m > 0, the
polynomial G(z) = P (z) + λm has all its zeros in |z| ≤ k, k > 0.
Let

H(z) = G(Rz)

= P (Rz) + λm

= anR
nzn + an−µR

n−µzn−µ + an−µ−1R
n−µ−1zn−µ−1 + . . .+ a1Rz + a0 + λm.
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Therefore, H(z) has all its zeros in |z| ≤ k

R
,
k

R
≤ 1. Hence applying Lemma 2.7 to H(z), we get from (2.12)

max
|z|=1

∣∣Dα/RH(z)
∣∣ ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)
max
|z|=1

|H(z)|, (3.10)

where Aµ,n is given by (1.21). Therefore,

max
|z|=1

∣∣Dα/RG(Rz)
∣∣ ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)
max
|z|=1

|G(Rz)|,

which is equivalent to

max
|z|=R

|DαG(z)| ≥
n

1 +Aµ,n

(
|α|
R
−Aµ,n

)
max
|z|=R

|G(z)|. (3.11)

Applying (2.20) of Lemma 2.8 to G(z), we have

max
|z|=R

|G(z)| ≥
(
R+ k

r + k

)n
max
|z|=r

|G(z)| for r ≤ R and rR ≥ k2. (3.12)

Combining (3.11) and (3.12), we get

max
|z|=R

|DαG(z)| ≥
n

1 +Aµ,n

(
|α|
R
−Aµ,n

)(
R+ k

r + k

)n
max
|z|=r

|G(z)|

i.e. max
|z|=R

|DαP (z) + λmn| ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)(
R+ k

r + k

)n
max
|z|=r

|P (z) + λm| (3.13)

for r ≤ R and rR ≥ k2.

Let z0 on the circle |z| = r be such that max
|z|=r

|P (z)| = |P (z0)|. Then, in particular,

max
|z|=r

|P (z) + λm| ≥ |P (z0) + λm|. (3.14)

Combining (3.13) and (3.14), we get

max
|z|=R

|DαP (z) + λmn| ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)(
R+ k

r + k

)n
|P (z0) + λm| for r ≤ R and rR ≥ k2.

Choosing the argument of λ on the right hand side of (3.14) such that |P (z0) + λm| = |P (z0)|+ |λ|m, we get

max
|z|=R

|DαP (z) + λmn| ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)(
R+ k

r + k

)n{
max
|z|=r

|P (z)|+ |λ| min
|z|=k

|P (z)|
}

(3.15)

for r ≤ R and rR ≥ k2.

Using the simple fact that

|DαP (z) + λmn| ≤ |DαP (z)|+ |λ|mn

in (3.15) and letting |λ| → 1, we get

max
|z|=R

|DαP (z)|+mn ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)(
R+ k

r + k

)n{
max
|z|=r

|P (z)|+ min
|z|=k

|P (z)|
}

for r ≤ R and rR ≥ k2.

This completes the proof of Theorem 1.7.
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