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ABSTRACT

In this paper, we study normal magnetic curves in C-manifolds. We prove that magnetic trajectories
with respect to the contact magnetic fields are indeed ¢,-slant curves with certain curvature
functions. Then, we give the parametrizations of normal magnetic curves in R?"** with its
structures as a C-manifold.
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1. Introduction
Let (M, g) be a Riemannian manifold, F' a closed 2-form and let us denote the Lorentz force on M by ®, which
is a (1,1)-type tensor field. If F' is associated by the relation
g(®X,Y) = F(X,Y), VXY € x(M), (L.1)

then it is called a magnetic field ([1], [2] and [5]). Let V be the Riemannian connection associated to the
Riemannian metric g and « : I — M a smooth curve. If ~ satisfies the Lorentz equation

VoY () = (1)), (1.2)

then it is called a magnetic curve or a trajectory for the magnetic field F'. The Lorentz equation can be considered
as a generalization of the equation for geodesics. Magnetic trajectories have constant speed. If the speed of the
magnetic curve v is equal to 1, then it is called a normal magnetic curve [6]. For fundamentals of almost contact
metric manifolds, we refer to Blair’s book [4]. This paper is based on a similar idea of Ozgur and the present

author’s previous paper [7].

2. Preliminaries

Le (M nts, ) be a differentiable manifold, ¢ a (1, 1)-type tensor field, n* 1-forms, £, vector fields for
1,2,...,s, satisfying

)

=X+ Z 1% (X) €a, 2.1)

n“ () = 05, p§a =0, N® (pX) =0, n* (X) =g (X,&),
9(eX,0Y) = g(X,Y) Zn 22)

where X, Y € TM. Then (¢,&.,n%, g) is called framed o-structure and (M?"5 o, &,,n%, g) is called framed -
manifold. The fundamental 2-form and Nijenhuis tensor is given by:

Q(va) :g(Xv@Y)v
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Ny (X,Y) = —QZdTIO‘ (X,Y)&a.

a=1

Ifd2=0and dn®* =0, M = (M, ¢,&,,n%, g) is called a C-manifold. In a C-manifold, it is known that
(Vxp)Y =0

and
nga - 07

(see [3] and [4]).

3. Magnetic Curves in C'-manifolds

Let~ : I — M be a unit-speed curve in an n-dimensional Riemannian manifold (17, g). The curve 7 is called
a Frenet curve of osculating order r (1 < r < n), if there exists orthonormal vector fields T’ v, ..., v, along the curve
validating the Frenet equations

T = ’}// = Ula
VTT = K1V2,
Vrve = —kK1v1 + K2vs, (3.1)
Vro, = —kKp_1Vp-1,

where k1, ..., K,—1 are positive functions called the curvatures of . If k; = 0, then ~ is called a geodesic. If ; is a
non-zero positive constant and r = 2, v is called a circle. If k1, ..., k,_1 are non-zero positive constants, then ~ is
called a helix of order r (r > 3) . If r = 3, it is shortly called a helix.

A submanifold of a C-manifold is said to be an integral submanifold if n*(X) =0, a € {1,2,..., s}, where
X is tangent to the submanifold. A Legendre curve is a 1-dimensional integral submanifold of a C-manifold
(M?"Fs . &,,n%, g). More precisely, a unit-speed curve v : I — M is a Legendre curve if T is g-orthogonal to
all¢, (e =1,2,...s), where T = v'.

Definition 3.1. Let v be a unit-speed curve in a C-manifold (M, ¢,&,,n%,¢). ~v is called a 6,—slant curve if
there exist constant contact angles such that #*(T) = cosf,, a =1,2,...,s. lf 0, =0 foralla = 1,2, ..., s, then
is shortly called slant. Moreover, if 0, = 7 forall a = 1,2, ..., s, then v is called a Legendre curve.

For 6,—slant curves, we can give the following inequality for the constant contact angles:

S

Z cos? 6, < 1.

a=1

The equality case is only valid when ~ is a geodesic as an integral curve of £+ } cos6,&,.

a=1
Let v be a unit-speed Legendre curve in a C-manifold (M, ¢, &4, n%, g). If we differentiate n*(7") = 0, we obtain
n®(v2) = 0. We can continue this process until we find 7*(v,) = 0. Thus, we can state the following proposition:

Proposition 3.1. If v is a unit-speed Legendre curve in a C-manifold (M, p,&n,n", g), then &, is g-orthogonal to
sp{T,va,...,0.}, foralla =1,2,...,s.

If we consider equations (1.1), (1.2) and (3.1) together, for a normal magnetic curve of a magnetic field ' with
charge ¢, we find
VT = OT,

F(XvY) :g(q)XaY)a

F,(X,)Y) = ¢Q(X)Y)
= qg(X,(pY),
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which gives us

Py = —qp.
Here, T denotes the tangential vector field of the normal magnetic curve ~ for the magnetic field £, in M. Then,

we have the following equations:
VT = —q¢T, (3.2)

ngot = 07

VreT (Vro) T + VT

¢ (—q¢T)

I
|
Q
/l—\
N
Jr
INgE
=
o
E
o
~_

If we take the inner product of equation (3.2) with &,, we obtain
0 = g(=q¢T.&) =g (VT &)

d
= %g (T,8a) -

Integrating both sides, we get
n*(T) = cos O, = constant,

forall « = 1,2, ..., s. Equations (3.1) and (3.2) give us

V1T = kv = —qT), (3.3)
g(eT,oT) = g(T,T) =Y (n™(T))?*
a=1
= 1- Z cos? 0,
a=1
and
T = ([1=) cos®ba.
a=1

From equation (3.3), we find

S
k1=lq||1— Z cos? 0, = constant, (3.4)
a=1
S
—qoT = kiva =g| |1 — Z cos? 0,0
a=1

T = —sgn(q),|1— Z cos? O, vs. (3.5)
a=1

If ko = 0, then r = 2 and v is a circle. If we apply n® to equation (3.5), we obtain

and

77a (UQ) = 07
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which gives us

Vrn®(ve) = 0
= g (VTU27 fa) +9 (T7 vaa)

= —K1c08l,.

As a result, we get cosf, =0, for all @« =1,2,...,s. Hence, v is a Legendre circle, ||¢T|| =1 and x; = |g|. Let
ko # 0. Using equations (2.1) and (3.1), we calculate

VTQOT = (VTQO) T+ (,DVTT
= ¢ (—qpT) (3.6)
= —q <T+ Zcos 9a§a> .
a=1

Differentiating equation (3.5), we also have

1— cos? 0(1 (7I€1T + HQUg) (37)

a=1

VreT = —sgn(q)

In view of (3.4), (3.6) and (3.7), it is easy to see that

q lzs: cos0,E0 — <XS: cos? 0a> T| = sgn(q) (3.8)
a=1 a=1
Note that
g(T,TY=1,¢g (T, icos 9a£a> = ZS: cos2 0,
a=1 a=1
g <zs: cos 0,&q, Zs: cOS 9a§a> = zs: cos? O, g (vs,v3) = 1.
a=1 a=1 a=1
So, if we calculate the norm of both sides of equation (3.8), we get
(3.9)

If we write (3.9) in (3.8), we have

i cos 0,8, = <i cos? HQ) T+ J i cos? Ga\l 1— i cos? 0,03 (3.10)

a=1 a=1 a=1 a=1

If we differentiate (3.10), we find 3 = 0. From equations (3.5) and (3.10), we can write

—sgn(q)

/1= 3 cos?b,
a=1
1

vg = = = (Z cos 0, — <Z cos? 9a> T) (3.12)
\/Z cos? O, \/1 — > cos?f, \a=1 a=1
a=1

oT (3.11)

Vo =

a=1

Finally, if k1 = 0, after some calculations, by (2.1) and (3.5), we obtain 7' = + > cos0,&,, where >~ cos?6, = 1.
a=1 a=1

So, we can give the following theorem:
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Theorem 3.1. Lety: I — M = (M, ¢,&q,n%, g) be a unit-speed curve in a C-manifold M. Then ~y is a normal magnetic
curve for Fy (¢ # 0) in M if and only if
i) v is a geodesic 0, —slant curve as an integral curve of £ Y, cos 0n&,, where Y cos? 0, = 1; or

a=1

a=1
ii) y is a Legendre circle with k1 = |q| having the Frenet frame field

{T, —sgn(q)T} ;

or
iii) ~ is a non-Legendre 6, —slant helix with

having the Frenet frame field

{T, ’1)27’03} 5

where Z cos? 0, < 1, vg and v are given in equations (3.11) and (3.12), respectively.
a=1

Corollary 3.1. If v is a unit-speed slant curve in a C-manifold M, then it is a normal magnetic curve if and only if
i) it is a geodesic as an integral curve of Z Eas O

ii) y is a Legendre circle with k1 = |q| havmg the Frenet frame field

{T, —sgn(q)T} ;

or
iii) 7y is a non-Legendre slant helix with k, = |q| V1 — scos? 0, ky = |q| \/se cos 0, having the Frenet frame field

—sgn(q)
T, oT, o — scos 0T
{ V1 —scos? 6 \f\/l—scos2 (Z{ )}
where 6 # 7 is the contact angle satisfying |cos 0] < —- and € = sgn (cosf).

Proof. Since 6, =0 forall « = 1,2, ..., s, if we use

S

E cos? 0, = scos® 0

a=1
and . .

Z cos 0,&, = cosb Z éa

a=1 a=1
in Theorem 3.1, the proof is clear. O

Remark. If we take s = 1, we have Proposition 1 in [8].

Let M = (M, p,€4,n% g) be a C-manifold. A Frenet curve of order r =2 is called a ¢-curve in M if
sp{T,v2,&1,....&s} is a p—invariant space. A Frenet curve of order r > 3 is called a p-curve if sp {T, v, ..., v, } is
p—invariant. A p—helix of order r is a py—curve with constant curvatures ky, ..., k._1. A p—helix of order 3 is
shortly named a ¢—helix.

Proposition 3.2. If v is a Legendre ¢—helix in a C-manifold M, then it is a Legendre p—circle.
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Proof. Let v be a Legendre p—helix. Then the contact angles 6, = 7 for all « = 1,2, ..., s and the Frenet frame

field {T', v, v3} is p—invariant. Since ~ is Legendre, we have g (¢T, ¢T) = 1. Thus, we can write
g (T, v2) = cosp, (3.13)
@I = cos pwy £ sin pws, (3.14)
for some function p = pu(t). If we differentiate equation (3.13), we find

—p'sing = kag (T, v3) (3.15)
= tKgsinp.

Firstly, let us assume that ;1 = 0, i.e. T = vy. Since v is a Legendre curve, applying ¢ to ¢T = v, we obtain
©*T = —T = pv,. Differentiating both sides of T = vy, we also have

V1T = Vv,

(Vro)T + oVrT = —k1 T + Kavs,
K1pve = —k1T + Kavs,
—r1T = —k1T + Kovs,
which is equivalent to ko = 0. Likewise, if 4 = 7, we obtain k2 = 0. Finally, let us assume that x # 0, 7. In this
case, since v is a helix, using (3.15), we have

K1 = constant,

ko = Fu' = constant.

If we differentiate (3.14) and use ko = Fu', we calculate
K1pUg = —K1 cos uT.
If we apply ¢ to both sides, we conclude ¢T" = Fv,, which gives x, = 0. This completes the proof. O

Remark. For s = 1, we obtain Proposition 2 of [8]. Likewise, the following theorem generalizes Theorem 1 of
[8] to C-manifolds:

Theorem 3.2. Let « be a p—helix of order r < 3 in a C-manifold M = (M, p, £,,n%, g). Then, the following statements
are valid:

i) If cos O, (o = 1,2, ..., s) are constants such that Y cos® 0, = 1, then ~y is an integral curve of £ 5~ cos 0,&,, hence
a=1 a=1
it is a normal magnetic curve for arbitrary q.
ii) If cos0o =0 foralla = 1,2, ..., s, i.e. v is a Legendre p—curve, then it is a magnetic circle generated by the magnetic
field Fiy,,.
_ S 2, K2 . .
iii) If cos 6, (o = 1,2, ..., s) are constants such that a2::1 cos® 0, = P then ~ is a magnetic curve for Fi\/m.

iv) Except above cases, vy cannot be a magnetic curve for any magnetic field F,.

Proof. In view of Theorem 3.1 and Proposition 3.2, it is straightforward to show that V7 = —qT for valid
q. O

4. Magnetic Curves of R?*"™ with its structures as a C-manifold

In this section, we consider parameterizations of normal magnetic curves in M = R?""* as a C-manifold. Let
{Z1, ey Try Y1, oy Yny 21, -, 25 } D€ the coordinate functions and define

0 0 0
_axi7n_ayi7£a_%7

Xi
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fori=1,..,nand o = 1,2,...,s. {X;,Y;, &} is an orthonormal basis of x (M) with respect to the usual metric

n S

9= (@) + (dy)’| + Y (dza)”.

i=1 a=1
Let us define a (1, 1)-type tensor field ¢ as

Finally, let n* = dz, for a = 1,2, ..., s. It is well-known that (M, ¢, £, 1%, g) is a C-manifold, since dn® = 0 and
dQ =0, where Q (X,Y) = g(X,9Y) forall X,Y € x(M) (see [3] and [4]).
Let us denote normal magnetic curve by

Y= (’Yla "'7’}/1'7/7771-&-17 "')7277,7’}/277,4-17 "'7721’7,-‘1-8) .
Then

/

/ ro / / ’
T= Y= (717 coos Vs V1o 0 Vons Von+10 ""7271—&-3) )

which gives us
" "o n " " "
VTT - (71 RRRS) ’ynv ’ynJrlv ey 7277,7 72n+17 ey 72n+s) )

QDT = (’Y;H—la "'ajén’ _’Yia A _7;7,7 Oa A 0) .

Since

VT = —qT,
we have

N (T) = Yo 4o = c0s by = constant
and
Yonta = €080t + hq.

We also get

’71/'/ = *Q’Y;LH’ (4.1)

Ynri = @Y (4.2)

fori=1,...,n. As a result, we obtain
1

Vv + TngiTnai = 0,

ie. )
()2 + (Voys)” =2

Since v is unit-speed, that is g(7',7') = 1, we have

n

ZC? + i:cos20a =1
a=1

i=1

If we consider differentiable functions f; : I — R, we can write

v; = cicos fi, (4.3)
Vi = Cisin fi. (4.4)
Then, we have

v = —c; flsin f;, (4.5)
Ynyi = Cifi cos fi. (4.6)

If we write (4.4) and (4.5) in (4.1), or likewise (4.3) and (4.6) in (4.2), we find
—¢ifisin fi = —qc;sin f; 4.7)
ci fi cos fi = qc; cos f;. (4.8)
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Let us analyze equations (4.7) and (4.8):
i) If ¢; # 0, sin f; # 0 and cos f; # 0, Vi, then we have f/ = g, that is,

fi(t) = qt + d;.

Hence, we find
Ci .
vi = —sin (gt + d;) + by,
q

—c;
Yn+i = 7 cos (qt + d;) + byt

ii) If ¢; = 0, 34, then (4.3) and (4.4) give us 7; = ¢; = 0 and v,, ,; = ¢; = 0, respectively. So we have ; = b; and
Yn+i = bnti, which can also be obtained from above parameterization by writing ¢; = 0.

iii) If sin f; = 0,34, then f; = kw, (k € Z), which is a constant, so cos f; = £1. Thus (4.8) gives ¢; = 0, since
g # 0and f/ = 0. So, this is the same as Case ii).

iv). If cos f; = 0, 3i, then f; = § + km, (k € Z) , which is a constant, so sin f; = £1. Therefore (4.7) gives ¢; = 0,
since ¢ # 0 and f; = 0. This is again the same as Case ii).

As a result, we can give all four cases in one parameterization and state the following theorem:

Theorem 4.1. The normal magnetic curves on R*"+* satisfying the Lorentz equation V1T = —qpT have the parametric
equations

Vi = % sin (gt +d;) + b,
q

e
Yrti = TZ cos (gt + d;) + b yis

Y2n+a = COS Oat + hom

where i =1,...,n, a =1,2,...,s, b;, by, di, he are arbitrary constants, 0, are the constant contact angles and c; are
arbitrary constants satisfying

n S

Zc?zl—ZCOSQGQ > 0.

=1 a=1
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