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Abstract. In this study, a kind of generalized involute and evolute curve pair is considered in 4 dimensional
semi Euclidean space with 2 index. The curvatures and the associated Frenet Frame of this kind of generalized
involute-evolute curve pair are presented.
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1. Introduction

Different curve couples are defined by examining the situations of the Frenet vectors of the curves relative to each
other at their corresponding points. Involute-evolute curve pair is one of them. The involute-evolute curve pair were
discovered by Huggens while trying to build a more accurate clock [2]. Fuchs defined the involute of a given curve as a
curve in such the tangent vector of the given curve at each point corresponds its normal vector [5]. The involute-evolute
curve pair is well known in 3-dimensional Euclidean space [6, 11]. The relations Frenet vectors of involute-evolute
curve pair were given in E3 [7]. Turgut and Erdoğan examined this curve pair in En [16]. Özyılmaz and Yılmaz
determined that an evolute Frenet apparatus can be formed by an involute apparatus in four dimensional Euclidean
space, so, in this way, another orthonormal frame in the same space can be obtained [14].

On the other hand, this curve pair has been studied by many researchers in Minkowski space [10, 12]. Bükçü and
Karacan presented the involute-evolute curves of the spacelike curve with a spacelike principal normal in Minkowski
3-Space [3]. Hanif et al. presented a special kind of generalized involute and evolute curve pair in 4-dimensional
Minkowski space by considering this curve pair in a different way. [9].

In this article, we consider (0, 2)-involute curve of a given timelike curve with respect to the causal characteristics
of the (0, 2)-plane that is spanned by the tangent and first binormal of the vector fields in the R4

2. Similarly, we examine
(1, 3)-evolute curve of a given timelike curve with respect to the causal characteristics of the (1, 3)-normal plane that
are spanned by the principal normal and the second binormal of the vector fields in the same space.
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2. Preliminaries

To meet the requirements in the next sections, the basic elements of the theory of curves in semi-Euclidean space
R4

2 are briefly presented in this section.
Let R4

2 denote 4-dimensional semi-Euclidean space with 2-index provided with standard flat metric given by

g = −da2
1 − da2

2 + da2
3 + da2

4,

where (a1, a2, a3, a4) is a rectangular coordinate system of R4. A vector w in R4
2 is called a spacelike, timelike or null

(lightlike) if hold g(w,w) > 0, g(w,w) < 0 or g(w,w) = 0 and w , 0, respectively. The norm of a vector w is given
by ‖w‖ =

√
|g(w,w)|. Therefore, w is a unit vector if g(w,w) = ±1. Two vectors u and w are said to be orthogonal

if g(u,w) = 0 [13]. Also, let u and w be two timelike vectors in R4
2. An arbitrary curve γ = γ(s) in R4

2 can locally
be spacelike, timelike or null (lightlike) if all of its velocity vectors γ′(s) are, respectively, spacelike, timelike or null
(lightlike). The velocity of the curve γ is given by ‖γ′‖. Thus, a timelike curve γ is said to be parametrized by arc
length function s if g(γ′, γ′) = −1 [13].

Let {T (s),N(s), B1(s), B2(s)} denotes the moving Frenet frame along γ in the semi-Euclidean space R4
2, then

T (s),N(s), B1(s) and B2(s) are called the tangent, the principal normal, the first binormal, and the second binormal
vector fields of γ, respectively.

A unit speed curve γ is said to be a Frenet curve if g(γ′′, γ′′) , 0. Let γ be a C∞ special timelike Frenet curve with
timelike principal normal, spacelike both first binormal and second binormal vector fields in R4

2, parametrized by arc
length function s. Moreover, non-zero C∞ scalar functions κ1, κ2 and κ3 be the first, second, and third curvatures of γ,
respectively. Then for a C∞ special nonnull Frenet curve γ, the Frenet formula is given by

T ′ = εκ1N

N′ = −εκ1T + κ2B1

B′1 = κ2N + κ3B2 (2.1)
B′2 = −κ3B1,

where T,N, B1 and B2 mutually orthogonal vector fields satisfying

g(T,T ) = g(N,N) = ε, g(B1, B1) = g(B2, B2) = −ε

and ε =

{
+1; γ spacelike
−1; γ timelike (for the semi-Euclidean space En+1

v , see [1, 4, 15] ).

Definition 2.1 ( [3]). Let any curves γ and γ∗ be given with coordinate neighborhoods (I, γ)and (I, γ∗), respectively.
Let’s denote the Frenet frames at the points γ(s), γ∗(s) corresponding to s by {T,N, B} and {T ∗,N∗, B∗} , respectively. If
g(T,T ∗) = 0 for ∀s ∈ I, the curve pair (γ, γ∗) is the involute-evolute curve pair. Then the curve γ∗ is called the involute
of the curve γ and the curve γ is called the evolute of the curve γ∗ [16].

Definition 2.2 ( [3]). The plane spanned by {T, B1} is called the (0, 2)-tangent plane of γ at any point of γ,. The plane
spanned by {N, B2} is called the (1, 3)-normal plane of γ [8].

Definition 2.3 ( [3]). Let γ : I → R4
2 and γ∗ : I → R4

2 be two regular curves in R4
2, where s is the arc-length parameter

of γ. Denote s∗ = ϕ(s) to be the arc-length parameters of γ∗. For ∀s ∈ I, if the (0, 2)-tangent plane of γ at γ(s) of
coincides with the (1, 3)-normal plane at γ∗(s) of γ∗, then γ∗ is called the (0, 2)-involute curve of γ and γ is called the
(1, 3)-evolute curve of γ∗ in the R4

2.

3. The (0,2)-Involute Curve of a Timelike Curve in E4
2

In this section, we proceed to study the existence and expression of the (0, 2)-involute curve of a given timelike
curve in R4

2.
Let γ : I → R4

2 be a regular timelike curve with arc-length parameter s and κ1, κ2 and κ3 never vanish. Suppose that
γ∗ : I → R4

2 is the (0, 2)-involute curve of γ. It is clear that γ∗ can be timelike or spacelike. Denote T ∗, N∗, B∗1, B
∗
2 to be

the Frenet frame along and κ∗1, κ∗2 and κ∗3 to be the curvatures of γ∗. Then

span {T, B1} = span
{
N∗, B∗2

}
, span {N, B2} = span

{
T ∗, B∗1

}
.
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Moreover, γ∗ can be expressed as
γ∗(s) = γ(s) + λ(s)T (s) + µ(s)B1, (3.1)

where λ(s) and µ(s) are C∞ functions on I. Differentiating (3.1) with respect to s and using the Frenet formula (2.1),
we get

ϕ′T ∗ = (1 + λ′)T + (µκ2 − λκ1)N + µ′B1 + µκ3B2. (3.2)
By the inner products of both-sides of (3.2) with T and B1, respectively, we get 1 + λ′ = 0 and µ′ = 0, which implies
that µ is constant and λ = λ0 − s, where λ0 is the integration constant and ϕ′ = ds∗/ds. So (3.2) becomes

ϕ′T ∗ = (µκ2 − λκ1)N + µκ3B2. (3.3)

Denote
δ =

µκ2 − λκ1

ϕ′
, ζ =

µκ3

ϕ′
.

Then (3.3) can be written as
T ∗ = δN + ζB2, ζ

2 − δ2 = ε. (3.4)
Case 1: µ , 0. In this case, ζ , 0. Denote δ/ζ = α1. Then δ = ζα1 and

µκ2 − λκ1 = α1µκ3, ϕ
′ = ζ−1µκ3, ζ

2 =
ε

1 − α2
1

. (3.5)

Differentiating (3.4) with respect to s and using the Frenet frame (2.1) we get

εϕ′κ∗1N∗ = δκç1T + δ′N + (δκ2 − ζκ3)B1 + ζ′B2. (3.6)

By the inner products of both-sides of (3.6) with N and B2, respectively, we get δ′ = 0 and ζ′ = 0, which implies that
δ and ζ are constants. So (3.6) gives us

εϕ′κ∗1N∗ = δκ1T + (δκ2 − ζκ3)B1. (3.7)

Denote
ϑ =

ζα1κ1

εϕ′κ∗1
, % =

ζ(α1κ2 − κ3)
εϕ′κ∗1

. (3.8)

So from the equation (3.7), we get
N∗ = ϑT + %B1, ε = %2 − ϑ2. (3.9)

Denote %/ϑ = α2. Then we find % = α2ϑ and

α1(κ2 − α2κ1) = κ3, ϑ
2 =

ε

α2
2 − 1

. (3.10)

From the first equations of (3.5) and (3.10), we have

η =
κ2

κ1
=
λ/µ − α2

1α2

1 − α2
1

,
κ3

κ1
= α1(η − α2).

Denote ζ/ϑ = α3. Then ζ = α3ϑ. From (3.8), we have

εϕ′κ∗1 = α1α3κ1, α
2
3 =

α2
2 − 1

1 − α2
1

. (3.11)

Differentiating (3.9) with respect to s and using the Frenet formula, we get

− εϕ′κ∗1T ∗ + ϕ′κ∗2B∗1 = ϑ′T + (%κ2 − ϑκ1)N + %′B1 + %κ3B2. (3.12)

By the inner products of both-sides of (3.12) with T and B1, respectively, we get ϑ′ = 0 and %′ = 0, which implies that
ϑ and % are constants. In this case, (3.12) turns into

ϕ′κ∗2B∗1 = (%κ2 − ϑκ1)N + %κ3B2 + εϕ′κ∗1T ∗. (3.13)

Substituting (3.4) and (3.11) into (3.13), we obtain

ϕ′κ∗2B∗1 = ϑκ1(α2η + α2
3 − α

2
2)(N + α1B2). (3.14)

From (3.14), we may choose that

B∗1 = ζN + δB2, ϕ
′κ∗2 = α−1

3 κ1(α2η + α2
3 − α

2
2).
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Differentiating with respect to s and using the Frenet formula (2.1), we get

ϕ′κ∗2N∗ + ϕ′κ∗3B∗2 = ζκ1T + (ζκ2 − δκ3)B1,

from which we obtain
ϕ′κ∗3B∗2 = −α−1

3 κ1(η − α2)(%T + ϑB1). (3.15)
From (3.15), we may choose that

B∗2 = %T + ϑB1, ϕ
′κ∗3 = −α−1

3 κ1(η − α2).
So we can give the following theorem.

Theorem 3.1. Let γ : I → R4
2 be a regular timelike curve with arc-length parameter s so that κ1, κ2 and κ3 never

vanish. If γ∗ : I → R4
2 is the (0, 2)-involute mate curve of γ, γ∗(s) = γ(s) + (λ0 − s)T (s) + µB1 with µ , 0, then κ1, κ2

and κ3 satisfy
κ2

κ1
= η,

κ3

κ1
= α1(η − α2), η =

λ0 − s − µα2
1α2

µ(1 − α2
1)

,

where λ0, µ, α1 and α2 are given constants. Moreover, the three curvatures of γ∗ are given by

κ∗1 =
ϑα2

3

εµ(η − α2)
, κ∗2 =

ϑ(α2η + α2
3 − α

2
2)

µα1(η − α2)
, κ∗3 = −

ϑ

µα1
,

where ϑ , 0. The associated Frenet Frame are given by

T ∗ = ϑα3(α1N + B2),N∗ = ϑ(T + α2B1), B∗1 = ϑα3(N + α1B2), B∗2 = ϑ(α2T + B1).

Case 2: µ = 0. In this case, (3.1) turns into

γ∗(s) = γ(s) + (λ0 − s)T (s). (3.16)

Differentiating (3.16) with respect to s and using the Frenet formula (2.1), we get

ϕ′T ∗ = −(λ0 − s)κ1N,

from which we may assume that
ϕ′ = (λ0 − s)κ1,T ∗ = −N. (3.17)

Differentiating the second equation of (3.17) with respect to s and using the Frenet formula (2.1), we get

εϕ′κ∗1N∗ = −κ1T − κ2B1.

Suppose that

N∗ = ϑT + %B1, ϑ =
−κ1

εϕ′κ∗1
, % =

−κ2

εϕ′κ∗1
,−ϑ2 + %2 = ε. (3.18)

It follows that
κ2

κ1
=
%

ϑ
.

Differentiating (3.18) with respect to s, we obtain that ϑ and % are constant and

ϕ′κ∗2B∗1 = εϕ′κ∗1T ∗ + (−ϑκ1 + %κ2)N + eκ3B2 = −
κ1

ϑ
(1 + ε)N + %κ3B2.

Suppose that
B∗1 = B2, ϕ

′κ∗2 = %κ3,
κ1

ϑ
(1 + ε) = 0. (3.19)

Corollary 3.2. Since κ1 , 0, ε = −1 in the last equation of expression (3.19), the (0, 2)-involute mate curve of a
timelike curve can only be timelike, for µ = 0.

Differentiating (3.19) with respect to s, we obtain

ϕ′κ∗3B∗2 = −ϕ′κ∗2N∗ − κ3B1 = −ϑκ3(%T + ϑB1).

We suppose that T ∗ × N∗ × B∗1 × B∗2 = T × N × B1 × B2. Then

B∗2 = %T + ϑB1, ϕ
′κ∗3 = −ϑκ3.

So we can give the following theorem.



T.A. Aydin, H. Kocayiğit, Turk. J. Math. Comput. Sci., 13(2)(2021), 331–337 335

Theorem 3.3. Let γ : I → R4
2 be a regular timelike curve with arc-length parameter s so that κ1, κ2 and κ3 never

vanish. If γ∗ : I → R4
2 is the (0, 2)-involute mate curve of γ, γ∗(s) = γ(s) + (λ0 − s)T (s) with µ = 0, then κ1, κ2 satisfy

%κ1 − ϑκ2 = 0,

where λ0, ϑ and % are given constants. Moreover, the three curvatures of γ∗ are given by

κ∗1 =
−1

ε(λ0 − s)ϑ
, κ∗2 =

%κ3

(λ0 − s)κ1
, κ∗3 =

−ϑκ3

(λ0 − s)κ1
.

The associated Frenet Frame are given by

T ∗ = −N,N∗ = ϑT + %B1, B∗1 = B2, B∗2 = %T + ϑB1.

4. The (1,3)-Evolute Curve of a Timelike Curve in E4
2

In this section, we proceed to study the existence and expression of the (1, 3)-evolute curve of a given timelike curve
in R4

2.
Let γ : I → R4

2 be a regular timelike curve with arc-length parameter s so that κ1, κ2 and κ3 never vanish. Suppose
that γ∗ : I → R4

2 is the (1, 3)-evolute curve of γ. It is clear that γ∗ can be timelike or spacelike. Denote T ∗, N∗, B∗1, B
∗
2

to be the Frenet frame along and κ∗1, κ∗2 and κ∗3 to be the curvatures of γ∗. Then

span {T, B1} = span
{
N∗, B∗2

}
, span {N, B2} = span

{
T ∗, B∗1

}
,T⊥T ∗.

Moreover, γ∗ can be expressed as
γ∗(s) = γ(s) + v(s)N(s) + w(s)B2, (4.1)

where v(s) and w(s) are C∞ functions on I. Differentiating (4.1) with respect to s and using the Frenet formula (2.1),
we get

ϕ′T ∗ = (1 + vκ1)T + v′N + (vκ2 − wκ3)B1 + w′B2. (4.2)
By the inner products of both-sides of (4.2) with T and B1, respectively, we get

ϕ′T ∗ = v′N + w′B2, v = −
1
κ1
,w = −

κ2

κ1κ3
. (4.3)

Denote

a =
v′

ϕ′
, b =

w′

ϕ′
. (4.4)

Then (4.3) turns into
T ∗ = aN + bB2, b2 − a2 = ε. (4.5)

Differentiating (4.5) with respect to s and using the Frenet formula (2.1), we get

εϕ′κ∗1N∗ = aκ1T + a′N + (aκ2 − bκ3)B1 + b′B2. (4.6)

Taking inner product on both-sides of (4.6) with N and B2 respectively, we get a′ = 0 and b′ = 0 which implies that a
and b are constants. From (4.4), we obtain

v = aϕ + v0 = −
1
κ1
,w = bϕ + w0 = −

κ2

κ1κ3
. (4.7)

Moreover, (4.6) turns into
εϕ′κ∗1N∗ = aκ1T + (aκ2 − bκ3)B1. (4.8)

Denote
m =

aκ1

εϕ′κ∗1
, n =

aκ2 − bκ3

εϕ′κ∗1
.

Then (4.8) turns into
N∗ = mT + nB1, εϕ

′κ∗1 = m−1aκ1, n2 − m2 = ε. (4.9)
Moreover, we have

naκ1 + mbκ3 − maκ2 = 0.
Case 1: n , 0. Differentiating (4.9) with respect to s and using (2.1), we obtain

− εϕ′κ∗1T ∗ + ϕ′κ∗2B∗1 = m′T + (nκ2 − mκ1)N + n′B1 + nκ3B2. (4.10)
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By the inner products of both-sides of (4.10) with T and B1 respectively, we get m′ = 0 and n′ = 0, which implies that
m and n are constants. In this case, (4.10) turns into

ϕ′κ∗2B∗1 = (
a2 − m2

m
κ1 + nκ2)N + (

ab
m
κ1 + nκ3)B2. (4.11)

Denote

ψ = (ϕ′κ∗2)−1(
a2 − m2

m
κ1 + nκ2), ω = (ϕ′κ∗2)−1(

ab
m
κ1 + nκ3).

Then (4.11) turns into
B∗1 = ψN + ωB2, ω

2 − ψ2 = ε. (4.12)
Since T ∗ ⊥ B∗1, it follows from (4.5) and (4.12) that ψ/ω = b/a, which implies that

B∗1 = bN + aB2, ϕ
′κ∗2 =

bκ1

m
+

nκ3

a
. (4.13)

Differentiating (4.13) with respect to s and using (2.1), we get

ϕ′κ∗3B∗2 = −ϕ′κ∗2N∗ + bκ1T + (bκ2 − aκ3)B1 = −
mκ3

a
(nT + mB1). (4.14)

It follows that from (4.14) that
B∗2 = nT + mB1, ϕ

′κ∗3 = −
mκ3

a
.

So we can give the following theorem.

Theorem 4.1. Let γ : I → R4
2 be a regular curve with arc-length parameter s so that κ1, κ2 and κ3 never vanish.

Suppose that γ∗ : I → R4
2 the (1, 3)-evolute mate curve of γ,

γ∗(s) = γ(s) −
1

aκ1
[aN(s) + bB2] −

n
mκ3

B2,

with n , 0, then κ1, κ2 satisfy naκ1 + mbκ3 − maκ2 = 0, where a and b are given constants. Moreover, the three
curvatures of are given by

κ∗1 =
aκ1

εϕ′m
, κ∗2 =

bκ1

ϕ′m
+

nκ3

ϕ′a
, κ∗3 = −

mκ3

ϕ′a
.

The associated Frenet Frame are given by

T ∗ = aN + bB2,N∗ = mT + nB1, B∗1 = bN + aB2, B∗2 = nT + mB1.

Case 2: n = 0. In this case, we may suppose that

N∗ = mT, εϕ′κ∗1 = m−1aκ1, aκ2 − bκ3 = 0, ε = −m2. (4.15)

Corollary 4.2. Since m2 = −ε, ε ≤ 0, the (1, 3)-evolute mate curve of a timelike curve in R4
2 can only be timelike, for

n = 0. Also m = ε.
Moreover, we have from (4.7) and the third equation of (4.15) that

v = a(ϕ + ϕ0) = −
1
κ1
,w = b(ϕ + ϕ0) = −

b
aκ1

.

Differentiating (4.15) with respect to s and using (2.1), we get

ϕ′κ∗2B∗1 = εϕ′κ∗1T ∗ − mκ1N.

It follows that we may choose

B∗1 = bN + aB2, ϕ
′κ∗2 =

bκ1

ε
. (4.16)

Differentiating (4.16) with respect to s, using (2.1) and the third equation of (4.15), we get

ϕ′κ∗3B∗2 = −ϕ′κ∗2N∗ + (bκ2 − aκ3)B1.

from which we obtain
B∗2 = mB1, ϕ

′κ∗3 = a−1κ3.

So we can give the following theorem.
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Theorem 4.3. Let γ : I → R4
2 be a regular curve with arc-length parameter s so that κ1, κ2 and κ3 are not zero.

Suppose that γ∗ : I → R4
2 the (1,3)-evolute mate curve of γ,

γ∗(s) = γ(s) −
1

aκ1
[aN(s) + bB2]

with a = 0, then κ1, κ2 satisfy aκ2 − bκ3 = 0 where a and b are given constants. Moreover, the three curvatures of are
given by

ϕ′κ∗1 =
aκ1

ϕ′
, κ∗2 =

bκ1

εϕ′
, κ∗3 =

κ3

aϕ′
.

The associated Frenet Frame are given by

T ∗ = aN + bB2,N∗ = mT, B∗1 = bN + aB2, B∗2 = mB1.

5. Results

In this article a kind of generalized involute-evolute curve pair is presented in 4 dimensional semi Euclidean space
with 2 index. We examine the existence of the (0, 2)-involute curve and the (1, 3)-evolute curve of the timelike curve
for the different cases in the R4

2. The curvatures and the associated Frenet Frame of this kind of generalized involute-
evolute curve pair are presented for each existence state.
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